1
|
Ur Rahman F, Shah AB, Muhammad M, khan E, Ataya FS, Batiha GES. Antioxidant, antibacterial, enzyme inhibition and fluorescence characteristics of unsymmetrical thiourea derivatives. Heliyon 2024; 10:e31563. [PMID: 38826706 PMCID: PMC11141368 DOI: 10.1016/j.heliyon.2024.e31563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
A series of six unsymmetrical thiourea derivatives, namely 1-cyclohexyl-3-(pyridin-2-yl) thiourea (1), 1-cyclohexyl-3-(3-methylpyridin-2-yl)thiourea (2), 1-cyclohexyl-3-(2,4-dimethylphenyl) thiourea (3), 1-(4-chlorophenyl)-3-cyclohexylthiourea (4), 1-(3-methylpyridin-2-yl)-3-phenylthiourea (5), and 1-(3-chlorophenyl)-3-phenylthiourea (6), were successfully synthesized via reaction between different amines with isothiocyanates under a non-catalytic environment. Structural elucidation of compounds (1-6) was performed using FT-IR and NMR (1H and 13C) spectroscopy. The infrared spectra displayed characteristic stretching vibrations, while the 13C NMR chemical shifts of the thiourea moiety (C[bond, double bond]S) were observed in the range of 179.1-181.4 ppm. The antioxidative and antimicrobial properties of the compounds were assessed, as well as their inhibitory effects on acetylcholinesterase and butyrylcholinesterase were evaluated. In order to analyze the fluorescence characteristics of each compound (1-6), the excitation (λex) and emission (λem) wavelengths were scanned within the range of 250-750 nm, with the solvent blank serving as a standard. It was observed that when dissolved in acetone, toluene, tetrahydrofuran, and ethyl acetate, these compounds exhibited emission peaks ranging from 367 to 581 nm and absorption peaks ranging from 275 to 432 nm.
Collapse
Affiliation(s)
- Faizan Ur Rahman
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Ezzat khan
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Li Y, Castañeda-Bagatella DM, Kakkad D, Ai Y, Chen H, Champagne PA. Synthetic and mechanistic study on the conjugate isothiocyanation of enones with trimethylsilyl isothiocyanate. Org Biomol Chem 2023. [PMID: 38009326 DOI: 10.1039/d3ob01710a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Alkyl isothiocyanates (R-NCS) have pharmacological applications and provide a synthetic handle to various functional groups including thioureas. There are however few methods to access alkyl isothiocyanates through the creation of the C-N bond. We have developed a simple approach for the conjugate isothiocyanation of enones by trimethylsilyl isothiocyanate (TMSNCS), which proceeds through the 1,4-addition of the weak isothiocyanate nucleophile to activated enones in the absence of external promoters. This method avoids the direct use of highly toxic acids and bases, produces β-isothiocyanato carbonyl products in yields of 87-98% under mild conditions (less than 6 hours at 0 °C), and displays wide functional group tolerance. Density functional theory calculations highlighted competing cationic and anionic mechanisms, where the enone activation by the TMSNCS reagent is accelerated in protic solvents. The selective formation of the isothiocyanate vs. thiocyanate isomers is explained by the thermodynamically-controlled nature of the reaction in which only the conjugate isothiocyanation is exergonic.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Diana M Castañeda-Bagatella
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Dhyeyi Kakkad
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Yongling Ai
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | - Pier Alexandre Champagne
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
3
|
Kumar P, Bhalla A. Isothiocyanates ( in situ) and sulfonyl chlorides in water for N-functionalization of bicyclic amidines: access to N-alkylated γ-/ω-lactam derivatized thiourea and sulfonamides. Org Biomol Chem 2023; 21:8868-8874. [PMID: 37888837 DOI: 10.1039/d3ob01584j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Herein, we showcase the potential of isothiocyanates generated in situ and aryl sulfonyl chlorides as electrophiles in water for N-functionalization of bicyclic amidines (DBN and DBU). This strategy provides complementary access to a range of thiouredosulfides, sulfonamides, aroylthioureas and amides derivativatized with distal γ- and ω-lactams. A novel sulfonyl chloride mediated formation of β-uredo sulfides has been achieved from β-isothiocyanato sulfides, removing the requirement for the harsh synthesis of unstable isocyanates. Mechanistic studies suggest a radical mechanism for the difunctionalization of alkenes, the efficacy of H2O in the ring opening of bicyclic amidines, and an oxygen source along with sulfonyl chloride as desulfurization agents for thiourea to afford urea derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, UT, India.
| | - Aman Bhalla
- Department of Chemistry and Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, UT, India.
| |
Collapse
|
4
|
Wei LK, Abd Rahim SZ, Al Bakri Abdullah MM, Yin ATM, Ghazali MF, Omar MF, Nemeș O, Sandu AV, Vizureanu P, Abdellah AEH. Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4635. [PMID: 37444950 DOI: 10.3390/ma16134635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
In the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential. This is because metal recycling not only helps conserve natural resources but also requires less energy as compared to the production of new products from virgin raw materials. The use of metal scrap in rapid tooling (RT) for injection molding is an interesting and viable approach. Recycling methods enable the recovery of valuable metal powders from various sources, such as electronic, industrial, and automobile scrap. Mechanical alloying is a potential opportunity for sustainable powder production as it has the capability to convert various starting materials with different initial sizes into powder particles through the ball milling process. Nevertheless, parameter factors, such as the type of ball milling, ball-to-powder ratio (BPR), rotation speed, grinding period, size and shape of the milling media, and process control agent (PCA), can influence the quality and characteristics of the metal powders produced. Despite potential drawbacks and environmental impacts, this process can still be a valuable method for recycling metals into powders. Further research is required to optimize the process. Furthermore, ball milling has been widely used in various industries, including recycling and metal mold production, to improve product properties in an environmentally friendly way. This review found that ball milling is the best tool for reducing the particle size of recycled metal chips and creating new metal powders to enhance mechanical properties and novelty for mold additive manufacturing (MAM) applications. Therefore, it is necessary to conduct further research on various parameters associated with ball milling to optimize the process of converting recycled copper chips into powder. This research will assist in attaining the highest level of efficiency and effectiveness in particle size reduction and powder quality. Lastly, this review also presents potential avenues for future research by exploring the application of RT in the ball milling technique.
Collapse
Affiliation(s)
- Leong Kean Wei
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Shayfull Zamree Abd Rahim
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Mohd Mustafa Al Bakri Abdullah
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Allice Tan Mun Yin
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
| | - Mohd Fathullah Ghazali
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau 02600, Malaysia
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Mohd Firdaus Omar
- Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis, Kangar 01000, Malaysia
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Kangar 01000, Malaysia
| | - Ovidiu Nemeș
- Department of Environmental Engineering and Sustainable Development Entrepreneurship, Faculty of Materials and Environmental Engineering, Technical University of Cluj-Napoca, B-dul Muncii 103-105, 400641 Cluj-Napoca, Romania
| | - Andrei Victor Sandu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. D. Mangeron 71, 700050 Iasi, Romania
- Romanian Inventors Forum, Str. Sf. P. Movila 3, 700089 Iasi, Romania
| | - Petrica Vizureanu
- Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Blvd. D. Mangeron 71, 700050 Iasi, Romania
- Technical Sciences Academy of Romania, Dacia Blvd 26, 030167 Bucharest, Romania
| | - Abdellah El-Hadj Abdellah
- Laboratory of Mechanics, Physics and Mathematical Modelling (LMP2M), University of Medea, Medea 26000, Algeria
| |
Collapse
|
5
|
Auvray T, Friščić T. Shaking Things from the Ground-Up: A Systematic Overview of the Mechanochemistry of Hard and High-Melting Inorganic Materials. Molecules 2023; 28:897. [PMID: 36677953 PMCID: PMC9865874 DOI: 10.3390/molecules28020897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
We provide a systematic overview of the mechanochemical reactions of inorganic solids, notably simple binary compounds, such as oxides, nitrides, carbides, sulphides, phosphides, hydrides, borides, borane derivatives, and related systems. Whereas the solid state has been traditionally considered to be of little synthetic value by the broader community of synthetic chemists, the solid-state community, and in particular researchers focusing on the reactions of inorganic materials, have thrived in building a rich and dynamic research field based on mechanically-driven transformations of inorganic substances typically seen as inert and high-melting. This review provides an insight into the chemical richness of such mechanochemical reactions and, at the same time, offers their tentative categorisation based on transformation type, resulting in seven distinct groupings: (i) the formation of adducts, (ii) the reactions of dehydration; (iii) oxidation-reduction (redox) reactions; (iv) metathesis (or exchange) reactions; (v) doping and structural rearrangements, including reactions involving the reaction vessel (the milling jar); (vi) acid-base reactions, and (vii) other, mixed type reactions. At the same time, we offer a parallel description of inorganic mechanochemical reactions depending on the reaction conditions, as those that: (i) take place under mild conditions (e.g., manual grinding using a mortar and a pestle); (ii) proceed gradually under mechanical milling; (iii) are self-sustained and initiated by mechanical milling, i.e., mechanically induced self-propagating reactions (MSRs); and (iv) proceed only via harsh grinding and are a result of chemical reactivity under strongly non-equilibrium conditions. By elaborating on typical examples and general principles in the mechanochemistry of hard and high-melting substances, this review provides a suitable complement to the existing literature, focusing on the properties and mechanochemical reactions of inorganic solids, such as nanomaterials and catalysts.
Collapse
Affiliation(s)
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Kazybayeva DS, Irmukhametova GS, Khutoryanskiy VV. Thiol-Ene “Click Reactions” as a Promising Approach to Polymer Materials. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422010055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Yuan Y, Wang L, Porcheddu A, Colacino E, Solin N. Mechanochemical Preparation of Protein : hydantoin Hybrids and Their Release Properties. CHEMSUSCHEM 2022; 15:e202102097. [PMID: 34817915 PMCID: PMC9299789 DOI: 10.1002/cssc.202102097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Indexed: 05/04/2023]
Abstract
Mechanochemistry is a versatile methodology that can be employed both for covalent bond formation in organic synthesis as well as a mediator to allow preparation novel colloidal dispersions for drug delivery. Herein, ball-milling was employed for the solid-state preparation of fluorescent hydrophobic hydantoins, followed by the unprecedented mechanochemically-mediated complexation of hydrophobic hydantoins within hydrophilic protein β-lactoglobulin (BLG) and BLG nanofibrils (BLGNFs). These hydantoin:protein materials were in turn incorporated into hydrogels. The effect of incorporation of hydantoins into proteins, as well as the effect of protein structure, on the release properties were then investigated. The conversion of BLG to BLGNFs led to a more sustained release demonstrating that heat treatment of BLG into BLGNFs could be employed to modify release properties. To the best of our knowledge, this is the first example where protein : hydantoin complexes were prepared by mechanochemical methodology and mechanochemistry was combined with self-assembly in order to prepare protein nanomaterials for drug-delivery applications. In addition, the use of the developed protein materials is not limited to delivery of drugs but can for example be employed as components of smart food (delivery of nutrients) or release systems of pesticides.
Collapse
Affiliation(s)
- Yusheng Yuan
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Lei Wang
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| | - Andrea Porcheddu
- Department of Chemical and Geological SciencesUniversity of CagliariCittadella UniversitariaSS 554 bivio per Sestu09042MonserratoItaly
| | | | - Niclas Solin
- Department of Physics, Chemistry, and BiologyBiomolecular and Organic ElectronicsLinköping University581 83LinköpingSweden
| |
Collapse
|
8
|
Ganapathi V, Prasad TR, Valluru KR, Maroju S, Mule SNR, Guguloth V. Ultrasound-Mediated Synthesis of Sulfonyl Urea Derivatives and Their In Vitro Antiproliferative Activity. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
10
|
Sagandira CR, Khasipo AZ, Sagandira MB, Watts P. An overview of the synthetic routes to essential oral anti-diabetes drugs. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Awad FS, Bakry AM, Ibrahim AA, Lin A, El-Shall MS. Thiol- and Amine-Incorporated UIO-66-NH 2 as an Efficient Adsorbent for the Removal of Mercury(II) and Phosphate Ions from Aqueous Solutions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01892] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fathi S. Awad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ayyob M. Bakry
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Department of Chemistry, Faculty of Science, Jazan University, Jizan 45142, Saudi Arabia
| | - Amr Awad Ibrahim
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Andrew Lin
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - M. Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
12
|
Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules 2021; 26:molecules26154506. [PMID: 34361659 PMCID: PMC8347686 DOI: 10.3390/molecules26154506] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022] Open
Abstract
In this study six unsymmetrical thiourea derivatives, 1-isobutyl-3-cyclohexylthiourea (1), 1-tert-butyl-3-cyclohexylthiourea (2), 1-(3-chlorophenyl)-3-cyclohexylthiourea (3), 1-(1,1-dibutyl)-3-phenylthiourea (4), 1-(2-chlorophenyl)-3-phenylthiourea (5) and 1-(4-chlorophenyl)-3-phenylthiourea (6) were obtained in the laboratory under aerobic conditions. Compounds 3 and 4 are crystalline and their structure was determined for their single crystal. Compounds 3 is monoclinic system with space group P21/n while compound 4 is trigonal, space group R3:H. Compounds (1–6) were tested for their anti-cholinesterase activity against acetylcholinesterase and butyrylcholinesterase (hereafter abbreviated as, AChE and BChE, respectively). Potentials (all compounds) as sensing probes for determination of deadly toxic metal (mercury) using spectrofluorimetric technique were also investigated. Compound 3 exhibited better enzyme inhibition IC50 values of 50, and 60 µg/mL against AChE and BChE with docking score of −10.01, and −8.04 kJ/mol, respectively. The compound also showed moderate sensitivity during fluorescence studies.
Collapse
|
13
|
Bai Z, Zhou Q, Zhu H, Ye X, Wu P, Ma L. QTMP, a Novel Thiourea Polymer, Causes DNA Damage to Exert Anticancer Activity and Overcome Multidrug Resistance in Colorectal Cancer Cells. Front Oncol 2021; 11:667689. [PMID: 34123833 PMCID: PMC8194350 DOI: 10.3389/fonc.2021.667689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies, and multidrug resistance (MDR) severely restricts the effectiveness of various anticancer drugs. Therefore, the development of novel anticancer drugs for the treatment of CRC patients with MDR is necessary. Quaternized thiourea main-chain polymer (QTMP) is a self-assembled nanoparticle with good water solubility. Notably, QTMP is not a P-glycoprotein (P-gp) substrate, and it exhibits potent cytotoxic activity against CRC cells, including HCT116/DDP and P-gp-mediated multidrug-resistant Caco2 cells. QTMP also exhibits a strong anticancer activity against SW480 cells in vivo. Interestingly, reactive oxygen species (ROS) and reactive nitrogen species (RNS) production were increased in a concentration-dependent manner in QTMP-treated HCT116, SW480 and Caco2 cells. Importantly, QTMP causes DNA damage in these CRC cells via direct insertion into the DNA or regulation of ROS and/or RNS production. QTMP also induces caspase-dependent apoptosis via overproduction of ROS and RNS. Therefore, QTMP is a promising anticancer therapeutic agent for patients with CRC, including those cancer cells with P-gp-mediated MDR. The present study also indicates that the design and synthesis of anticancer drugs based on thiourea polymers is promising and valuable, thereby offering a new strategy to address MDR, and provides reference resources for further investigations of thiourea polymers.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Zhou
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Huayun Zhu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pingping Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Affiliation(s)
- Tiziano De Ventura
- Department of Chemistry and Pharmaceutical Sciences University of Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| | - Vinicio Zanirato
- Department of Chemistry and Pharmaceutical Sciences University of Ferrara Via Fossato di Mortara 17 44121 Ferrara Italy
| |
Collapse
|
15
|
Saetan T, Sukwattanasinitt M, Wacharasindhu S. A Mild Photocatalytic Synthesis of Guanidine from Thiourea under Visible Light. Org Lett 2020; 22:7864-7869. [PMID: 32986446 DOI: 10.1021/acs.orglett.0c02770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we developed the catalytic guanylation of thiourea using Ru(bpy)3Cl2 as a photocatalyst under irradiation by visible light. The conversion of various thioureas to the corresponding guanidines was achieved using 1-5 mol % of photocatalyst in a mixture of water and ethanol at room temperature. Key benefits of this reaction include the use of photoredox catalyst, low-toxicity solvents/base, ambient temperature, and an open-flask environment.
Collapse
Affiliation(s)
- Trin Saetan
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sumrit Wacharasindhu
- Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
16
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
17
|
Understanding the enzymatic inhibition of intestinal alkaline phosphatase by aminophenazone-derived aryl thioureas with aided computational molecular dynamics simulations: synthesis, characterization, SAR and kinetic profiling. Mol Divers 2020; 25:1701-1715. [PMID: 32862361 DOI: 10.1007/s11030-020-10136-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
The work presented in this paper aims toward the synthesis of aryl thiourea derivatives 4a-l of pyrazole based nonsteroidal anti-inflammatory drug named 4-aminophenazone, as potential inhibitors of intestinal alkaline phosphatase enzyme. The screening of synthesized target compounds 4a-l for unraveling the anti-inflammatory potential against calf intestinal alkaline phosphatase gives rise to lead member 4c possessing IC50 value 0.420 ± 0.012 µM, many folds better than reference standard used (KH2PO4 IC50 = 2.8 ± 0.06 µM and L-phenylalanine IC50 = 100 ± 3.1 µM). SAR for unfolding the active site binding pocket interaction along with the mode of enzyme inhibition based on kinetic studies is carried out which showed non-competitive binding mode. The enzyme inhibition studies were further supplemented by molecular dynamic simulations for predicting the protein behavior against active inhibitors 4c and 4g during docking analysis. The preliminary toxicity of the synthesized compounds was determined by using brine shrimp assay. This work also includes detailed biochemical analysis along with RO5 parameters for all the newly synthesized drug derivatives 4a-l.
Collapse
|
18
|
Braun NJ, Quek JP, Huber S, Kouretova J, Rogge D, Lang‐Henkel H, Cheong EZK, Chew BLA, Heine A, Luo D, Steinmetzer T. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem 2020; 15:1439-1452. [PMID: 32501637 PMCID: PMC7497253 DOI: 10.1002/cmdc.202000237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/06/2022]
Abstract
A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.
Collapse
Affiliation(s)
- Niklas J. Braun
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jun P. Quek
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
| | - Simon Huber
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jenny Kouretova
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dorothee Rogge
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Heike Lang‐Henkel
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Ezekiel Z. K. Cheong
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Bing L. A. Chew
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- Institute of Health TechnologiesInterdisciplinary Graduate ProgrammeNanyang Technological University61 Nanyang Dr.Singapore637335Singapore
| | - Andreas Heine
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dahai Luo
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Torsten Steinmetzer
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| |
Collapse
|
19
|
Dayaker G, Tan D, Biggins N, Shelam A, Do JL, Katsenis AD, Friščić T. Catalytic Room-Temperature C-N Coupling of Amides and Isocyanates by Using Mechanochemistry. CHEMSUSCHEM 2020; 13:2966-2972. [PMID: 32222112 DOI: 10.1002/cssc.201902576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 03/13/2020] [Indexed: 06/10/2023]
Abstract
A mechanochemical route is developed for room-temperature and solvent-free derivatization of different types of amides into carbamoyl isatins (up to 96 % conversion or yield), benzamides (up to 81 % yield), and imides (up to 92 % yield). In solution, this copper-catalyzed coupling either does not take place or requires high temperatures at which it may also be competing with alternative thermal reactivity, highlighting the beneficial role of mechanochemistry for this reaction. Such behavior resembles the previously investigated coupling with sulfonamide substrates, suggesting that this type of C-N coupling is an example of a mechanochemically favored reaction, for which mechanochemistry appears to be a favored environment over solution.
Collapse
Affiliation(s)
- Gandrath Dayaker
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Davin Tan
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Naomi Biggins
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Asha Shelam
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Jean-Louis Do
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Athanassios D Katsenis
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| | - Tomislav Friščić
- Department of Chemistry, McGill University, FRQNT Centre for Green Chemistry and Catalysis (CCVC/CGCC), 801 Sherbrooke St. W., H31 0B8, Montreal, Canada
| |
Collapse
|
20
|
Gonçalves IL, da Rosa RR, Eifler-Lima VL, Merlo AA. The use of isoxazoline and isoxazole scaffolding in the design of novel thiourea and amide liquid-crystalline compounds. Beilstein J Org Chem 2020; 16:175-184. [PMID: 32117474 PMCID: PMC7034240 DOI: 10.3762/bjoc.16.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
A series of novel thiourea and amide liquid crystals containing 5-membered isoxazoline and isoxazole rings were synthetized and the liquid crystal properties studied. Thioureas were obtained using a condensation reaction of benzoyl chlorides, arylamines and ammonium thiocyanate. The amides, on the other hand, were the byproduct of a quantitative reaction which used potassium cyanate as the starting material. Thiourea and amide derivatives were predominantly SmA mesophase inductors. A nematic mesophase was observed only for thioureas and amides containing an isoxazole ring. Additionaly, the liquid crystal behavior was also dependent on the relative position of nitrogen and oxygen atoms on the 5-membered heterocycle.
Collapse
Affiliation(s)
- Itamar L Gonçalves
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre/RS, Brazil
| | - Rafaela R da Rosa
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vera L Eifler-Lima
- Laboratório de Síntese Orgânica Medicinal/LaSOM, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, Porto Alegre/RS, Brazil
| | - Aloir A Merlo
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Steppeler F, Iwan D, Wojaczyńska E, Wojaczyński J. Chiral Thioureas-Preparation and Significance in Asymmetric Synthesis and Medicinal Chemistry. Molecules 2020; 25:E401. [PMID: 31963671 PMCID: PMC7024223 DOI: 10.3390/molecules25020401] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/23/2023] Open
Abstract
For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development.
Collapse
Affiliation(s)
- Franz Steppeler
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Dominika Iwan
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Elżbieta Wojaczyńska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50 370 Wrocław, Poland; (F.S.); (D.I.)
| | - Jacek Wojaczyński
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie St., 50 383 Wrocław, Poland;
| |
Collapse
|
22
|
González-Fernández R, Álvarez D, Crochet P, Cadierno V, Menéndez MI, López R. Catalytic hydration of cyanamides with phosphinous acid-based ruthenium( ii) and osmium( ii) complexes: scope and mechanistic insights. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00523a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The catalytic hydration of cyanamides to ureas has been accomplished employing, for the first time, homogeneous catalysts, i.e. the phosphinous acid complexes [MCl2(η6-p-cymene)(PMe2OH)] (M = Ru, Os).
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC)
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Química Organometálica “Enrique Moles”
- Facultad de Química
| | - Daniel Álvarez
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- E-33006 Oviedo
- Spain
| | - Pascale Crochet
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC)
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Química Organometálica “Enrique Moles”
- Facultad de Química
| | - Victorio Cadierno
- Laboratorio de Compuestos Organometálicos y Catálisis (Unidad Asociada al CSIC)
- Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Departamento de Química Orgánica e Inorgánica
- Instituto Universitario de Química Organometálica “Enrique Moles”
- Facultad de Química
| | - M. Isabel Menéndez
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- E-33006 Oviedo
- Spain
| | - Ramón López
- Departamento de Química Física y Analítica
- Universidad de Oviedo
- E-33006 Oviedo
- Spain
| |
Collapse
|
23
|
Kaabel S, Friščić T, Auclair K. Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. Chembiochem 2019; 21:742-758. [PMID: 31651073 DOI: 10.1002/cbic.201900567] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Sandra Kaabel
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| | - Karine Auclair
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal QC H3A 0B8 Canada
| |
Collapse
|
24
|
Song H, Han Z, Zhang C. Concise and Additive‐Free Click Reactions between Amines and CF3SO3CF3. Chemistry 2019; 25:10907-10912. [DOI: 10.1002/chem.201901865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hai‐Xia Song
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 P.R. China
| | - Zhou‐Zhou Han
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 P.R. China
| | - Cheng‐Pan Zhang
- School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 P.R. China
| |
Collapse
|
25
|
Kaabel S, Stein RS, Fomitšenko M, Järving I, Friščić T, Aav R. Size-Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angew Chem Int Ed Engl 2019; 58:6230-6234. [PMID: 30664335 DOI: 10.1002/anie.201813431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 12/22/2022]
Abstract
Self-organization is one of the most intriguing phenomena of chemical matter. While the self-assembly of macrocycles and cages in dilute solutions has been extensively studied, it remains poorly understood in solvent-free environments. Provided here is the first example of using anionic templates to achieve selective assembly of differently-sized macrocycles in a solvent-free system. Using acid-catalyzed synthesis of cyclohexanohemicucurbiturils as a model, size-controlled, quantitative synthesis of 6- or 8-membered macrocycles by spontaneous anion-directed reorganization of mechanochemically-made oligomers in the solid state is demonstrated.
Collapse
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Robin S Stein
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Maria Fomitšenko
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tomislav Friščić
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, QC, H3A 0B8, Canada
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| |
Collapse
|
26
|
Kaabel S, Stein RS, Fomitšenko M, Järving I, Friščić T, Aav R. Size‐Control by Anion Templating in Mechanochemical Synthesis of Hemicucurbiturils in the Solid State. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sandra Kaabel
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Robin S. Stein
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Maria Fomitšenko
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Ivar Järving
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| | - Tomislav Friščić
- Department of ChemistryMcGill University 801 Sherbrooke St. W. Montreal QC H3A 0B8 Canada
| | - Riina Aav
- Department of Chemistry and BiotechnologyTallinn University of Technology Akadeemia tee 15 12618 Tallinn Estonia
| |
Collapse
|
27
|
Đud M, Glasovac Z, Margetić D. The utilization of ball milling in synthesis of aryl guanidines through guanidinylation and N-Boc-deprotection sequence. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Denlinger KL, Ortiz-Trankina L, Carr P, Benson K, Waddell DC, Mack J. Liquid-assisted grinding and ion pairing regulates percentage conversion and diastereoselectivity of the Wittig reaction under mechanochemical conditions. Beilstein J Org Chem 2018; 14:688-696. [PMID: 29623132 PMCID: PMC5870152 DOI: 10.3762/bjoc.14.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Mechanochemistry is maturing as a discipline and continuing to grow, so it is important to continue understanding the rules governing the system. In a mechanochemical reaction, the reactants are added into a vessel along with one or more grinding balls and the vessel is shaken at high speeds to facilitate a chemical reaction. The dielectric constant of the solvent used in liquid-assisted grinding (LAG) and properly chosen counter-ion pairing increases the percentage conversion of stilbenes in a mechanochemical Wittig reaction. Utilizing stepwise addition/evaporation of ethanol in liquid-assisted grinding also allows for the tuning of the diastereoselectivity in the Wittig reaction.
Collapse
Affiliation(s)
- Kendra Leahy Denlinger
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Lianna Ortiz-Trankina
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Preston Carr
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Kingsley Benson
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - Daniel C Waddell
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| | - James Mack
- Department of Chemistry, University of Cincinnati, PO Box 210172, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
29
|
Do JL, Tan D, Friščić T. Oxidative Mechanochemistry: Direct, Room-Temperature, Solvent-Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712602] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jean-Louis Do
- Department of Chemistry; McGill University; 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Davin Tan
- Department of Chemistry; McGill University; 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tomislav Friščić
- Department of Chemistry; McGill University; 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
30
|
Do JL, Tan D, Friščić T. Oxidative Mechanochemistry: Direct, Room-Temperature, Solvent-Free Conversion of Palladium and Gold Metals into Soluble Salts and Coordination Complexes. Angew Chem Int Ed Engl 2018; 57:2667-2671. [DOI: 10.1002/anie.201712602] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Jean-Louis Do
- Department of Chemistry; McGill University; 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Davin Tan
- Department of Chemistry; McGill University; 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Tomislav Friščić
- Department of Chemistry; McGill University; 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
31
|
Santhosh L, Durgamma S, Shekharappa, Sureshbabu VV. Staudinger/aza-Wittig reaction to access N β-protected amino alkyl isothiocyanates. Org Biomol Chem 2018; 16:4874-4880. [PMID: 29931019 DOI: 10.1039/c8ob01061g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unified approach to access Nβ-protected amino alkyl isothiocyanates using Nβ-protected amino alkyl azides through a general strategy of Staudinger/aza-Wittig reaction is described. The type of protocol used to access isothiocyanates depends on the availability of precursors and also, especially in the amino acid chemistry, on the behavior of other labile groups towards the reagents used in the protocols; fortunately, we were not concerned about both these factors as precursor-azides were prepared easily by standard protocols, and the present protocol can pave the way for accessing title compounds without affecting Boc, Cbz and Fmoc protecting groups, and benzyl and tertiary butyl groups in the side chains. The present strategy eliminates the need for the use of amines to obtain title compounds and thus, this method is step-economical; additional advantages include retention of chirality, convenient handling and easy purification. A few hitherto unreported compounds were also prepared, and all final compounds were completely characterized by IR, mass, optical rotation, and 1H and 13C NMR studies.
Collapse
Affiliation(s)
- L Santhosh
- # 109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Dr. B. R. Ambedkar Veedhi, Bangalore University, Bangalore, 560001, India.
| | | | | | | |
Collapse
|