1
|
Yuan GY, Zhang JM, Xu YQ, Zou Y. Biosynthesis and Assembly Logic of Fungal Hybrid Terpenoid Natural Products. Chembiochem 2024; 25:e202400387. [PMID: 38923144 DOI: 10.1002/cbic.202400387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
In recent decades, fungi have emerged as significant sources of diverse hybrid terpenoid natural products, and their biosynthetic pathways are increasingly unveiled. This review mainly focuses on elucidating the various strategies underlying the biosynthesis and assembly logic of these compounds. These pathways combine terpenoid moieties with diverse building blocks including polyketides, nonribosomal peptides, amino acids, p-hydroxybenzoic acid, saccharides, and adenine, resulting in the formation of plenty of hybrid terpenoid natural products via C-O, C-C, or C-N bond linkages. Subsequent tailoring steps, such as oxidation, cyclization, and rearrangement, further enhance the biological diversity and structural complexity of these hybrid terpenoid natural products. Understanding these biosynthetic mechanisms holds promise for the discovery of novel hybrid terpenoid natural products from fungi, which will promote the development of potential drug candidates in the future.
Collapse
Affiliation(s)
- Guan-Yin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Jin-Mei Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yan-Qiu Xu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P.R. China
| |
Collapse
|
2
|
Jiang R, Yue Z, Shang L, Wang D, Wei N. PEZy-miner: An artificial intelligence driven approach for the discovery of plastic-degrading enzyme candidates. Metab Eng Commun 2024; 19:e00248. [PMID: 39310048 PMCID: PMC11414552 DOI: 10.1016/j.mec.2024.e00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
Plastic waste has caused a global environmental crisis. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. However, it is challenging and time-consuming to discover novel plastic-degrading enzymes using conventional cultivation-based or omics methods. There is a growing interest in developing effective computational methods to identify new enzymes with desirable plastic degradation functionalities by exploring the ever-increasing databases of protein sequences. In this study, we designed an innovative machine learning-based framework, named PEZy-Miner, to mine for enzymes with high potential in degrading plastics of interest. Two datasets integrating information from experimentally verified enzymes and homologs with unknown plastic-degrading activity were created respectively, covering eleven types of plastic substrates. Protein language models and binary classification models were developed to predict enzymatic degradation of plastics along with confidence and uncertainty estimation. PEZy-Miner exhibited high prediction accuracy and stability when validated on experimentally verified enzymes. Furthermore, by masking the experimentally verified enzymes and blending them into homolog dataset, PEZy-Miner effectively concentrated the experimentally verified entries by 14∼30 times while shortlisting promising plastic-degrading enzyme candidates. We applied PEZy-Miner to 0.1 million putative sequences, out of which 27 new sequences were identified with high confidence. This study provided a new computational tool for mining and recommending promising new plastic-degrading enzymes.
Collapse
Affiliation(s)
- Renjing Jiang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| | - Zhenrui Yue
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Lanyu Shang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Dong Wang
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, 61820, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, United States
| |
Collapse
|
3
|
Aggerbeck MR, Frøkjær EE, Johansen A, Ellegaard-Jensen L, Hansen LH, Hansen M. Non-target analysis of Danish wastewater treatment plant effluent: Statistical analysis of chemical fingerprinting as a step toward a future monitoring tool. ENVIRONMENTAL RESEARCH 2024; 257:119242. [PMID: 38821457 DOI: 10.1016/j.envres.2024.119242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
In an attempt to discover and characterize the plethora of xenobiotic substances, this study investigates chemical compounds released into the environment with wastewater effluents. A novel non-targeted screening methodology based on ultra-high resolution Orbitrap mass spectrometry and nanoflow ultra-high performance liquid chromatography together with a newly optimized data-processing pipeline were applied to effluent samples from two state-of-the-art and one small wastewater treatment facility. In total, 785 molecular structures were obtained, of which 38 were identified as single compounds, while 480 structures were identified at a putative level. Most of these substances were therapeutics and drugs, present as parent compounds and metabolites. Using R packages Phyloseq and MetacodeR, originally developed for bioinformatics, significant differences in xenobiotic presence in the wastewater effluents between the three sites were demonstrated.
Collapse
Affiliation(s)
- Marie Rønne Aggerbeck
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark.
| | - Emil Egede Frøkjær
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Anders Johansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark; Aarhus University Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark; Aarhus University Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, 8600, Silkeborg, Denmark.
| |
Collapse
|
4
|
Arishi AA, Shang Z, Lacey E, Crombie A, Vuong D, Li H, Bracegirdle J, Turner P, Lewis W, Flematti GR, Piggott AM, Chooi YH. Discovery and heterologous biosynthesis of glycosylated polyketide luteodienoside A reveals unprecedented glucinol-mediated product offloading by a fungal carnitine O-acyltransferase domain. Chem Sci 2024; 15:3349-3356. [PMID: 38425541 PMCID: PMC10901484 DOI: 10.1039/d3sc05008d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Luteodienoside A is a novel glycosylated polyketide produced by the Australian fungus Aspergillus luteorubrus MST-FP2246, consisting of an unusual 1-O-β-d-glucopyranosyl-myo-inositol (glucinol) ester of 3-hydroxy-2,2,4-trimethylocta-4,6-dienoic acid. Mining the genome of A. luteorubrus identified a putative gene cluster for luteodienoside A biosynthesis (ltb), harbouring a highly reducing polyketide synthase (HR-PKS, LtbA) fused at its C-terminus to a carnitine O-acyltransferase (cAT) domain. Heterologous pathway reconstitution in Aspergillus nidulans, substrate feeding assays and gene truncation confirmed the identity of the ltb cluster and demonstrated that the cAT domain is essential for offloading luteodienoside A from the upstream HR-PKS. Unlike previously characterised cAT domains, the LtbA cAT domain uses glucinol as an offloading substrate to release the product from the HR-PKS. Furthermore, the PKS methyltransferase (MT) domain is capable of catalysing gem-dimethylation of the 3-hydroxy-2,2,4-trimethylocta-4,6-dienoic acid intermediate, without requiring reversible product release and recapture by the cAT domain. This study expands the repertoire of polyketide modifications known to be catalysed by cAT domains and highlights the potential of mining fungal genomes for this subclass of fungal PKSs to discover new structurally diverse secondary metabolites.
Collapse
Affiliation(s)
- Amr A Arishi
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
- Department of Botany and Microbiology, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Zhuo Shang
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
- School of Pharmaceutical Sciences, Shandong University Jinan Shandong 250012 China
| | - Ernest Lacey
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd Smithfield NSW 2164 Australia
| | - Hang Li
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Joe Bracegirdle
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Peter Turner
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - William Lewis
- School of Chemistry, The University of Sydney NSW 2006 Australia
| | - Gavin R Flematti
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University Sydney NSW 2109 Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia Perth WA 6009 Australia
| |
Collapse
|
5
|
Dai G, Sun J, Peng X, Shen Q, Wu C, Sun Z, Sui H, Ren X, Zhang Y, Bian X. Astellolides R-W, Drimane-Type Sesquiterpenoids from an Aspergillus parasiticus Strain Associated with an Isopod. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37369059 DOI: 10.1021/acs.jnatprod.3c00215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Sesquiterpenoids with a cage-like multiring frame are rarely found in nature. Mining of the isopod-derived fungus Aspergillus parasiticus SDU001 by the one strain-many compounds (OSMAC) strategy unexpectedly led to the discovery of fungal drimane-type sesquiterpenoids astellolide R (1), featuring an unusual cage-like 6/6/5/6/5 pentacyclic ring system, astellolide S (2), possessing a rare nicotinic acid building block, and astellolides T-W (3-6). Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, and electronic circular dichroism calculations. Furthermore, compounds 3 and 5 exhibited anti-inflammatory activity by inhibiting the lipopolyssacharide-induced NO production in RAW264.7 macrophages with IC50 values of 6.1 ± 0.8 and 6.8 ± 0.8 μM, respectively. A putative biosynthetic pathway for 1 is proposed. Our results enlarge the chemical space of the drimane-type sesquiterpenoids generated from endophytic fungi.
Collapse
Affiliation(s)
- Guangzhi Dai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Jianpeng Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Xiaoping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao 266071, People's Republic of China
| | - Qiyao Shen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Changzheng Wu
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Zhiheng Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Haiyan Sui
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Xiangmei Ren
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, People's Republic of China
| |
Collapse
|
6
|
Cowled MS, Li H, Gilchrist CLM, Lacey E, Chooi YH, Piggott AM. Stereodivergent Hydroxylation of Berkeleylactones by Penicillium turbatum. JOURNAL OF NATURAL PRODUCTS 2023; 86:541-549. [PMID: 36524608 DOI: 10.1021/acs.jnatprod.2c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Penicillium turbatum has previously been reported to produce A26771B, a 16-membered macrocyclic polyketide with activity against Gram-positive bacteria, mycoplasma, and fungi, as well as the structurally related compounds berkeleylactone E and berkeleylactones I-O. In this work, large-scale cultivation of P. turbatum NRRL 5630 on rice yielded seven new berkeleylactone analogues, berkeleylactone E methyl ester, 14-epi-berkeleylactone F, berkeleylactones P-R, 12-epi-berkeleylactone Q, and 13-epi-berkeleylactone R, and six previously reported analogues, A26771B and berkeleylactones E-G and J-K. The structures of the berkeleylactones were elucidated by detailed analysis of spectroscopic data, molecular modeling, and comparison with literature values. Interestingly, six of the berkeleylactone analogues were isolated as pairs of hydroxy epimers, highlighting how Nature can exploit stereodivergence in biosynthetic pathways to increase chemical diversity. The genome of P. turbatum was sequenced, and a putative gene cluster (bekl) responsible for the biosynthesis of the berkeleylactones was identified. The new berkeleylactone analogues exhibited no significant biological activity against a panel of bacteria, fungi, the parasite Giardia duodenalis, or NS-1 murine myeloma cells, suggesting a hitherto undiscovered biological role.
Collapse
Affiliation(s)
- Michael S Cowled
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Hang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, People's Republic of China
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Ernest Lacey
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Andrew M Piggott
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
7
|
Zhuravleva OI, Belousova EB, Oleinikova GK, Antonov AS, Khudyakova YV, Rasin AB, Popov RS, Menchinskaya ES, Trinh PTH, Yurchenko AN, Yurchenko EA. Cytotoxic Drimane-Type Sesquiterpenes from Co-Culture of the Marine-Derived Fungi Aspergillus carneus KMM 4638 and Beauveria felina (= Isaria felina) KMM 4639. Mar Drugs 2022; 20:md20090584. [PMID: 36135773 PMCID: PMC9504587 DOI: 10.3390/md20090584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Chemical investigation of a coculture of the marine-derived fungi Beauveria felina KMM 4639 and Aspergillus carneus KMM 4638 led to the identification of three new drimane-type sesquiterpenes, asperflavinoids B, D and E (2, 4, 5), and nine previously reported related compounds. The structures of these compounds were established using spectroscopic methods and by comparison with known analogues. We also investigated the cytotoxic activity of the isolated compounds against several cancer and normal cell lines. Asperflavinoid C (3) and ustusolate E (9) exerted a significant effect on human breast cancer MCF-7 cell viability, with IC50 values of 10 µM, and induced in caspase-dependent apoptosis and arrest of the MCF-7 cell cycle in the G2/M phase in these cells.
Collapse
Affiliation(s)
- Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Elena B. Belousova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Galina K. Oleinikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Yuliya V. Khudyakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Anton B. Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Ekaterina S. Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Phan Thi Hoai Trinh
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
- Correspondence: (A.N.Y.); (E.A.Y.); Tel.: +7-423-231-1168 (A.N.Y. & E.A.Y.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia
- Correspondence: (A.N.Y.); (E.A.Y.); Tel.: +7-423-231-1168 (A.N.Y. & E.A.Y.)
| |
Collapse
|
8
|
Li W, Gao Q, Hu Y, Shi Y, Yan X, Ding L, He S. Dibetanide, a new benzofuran derivative with the rare conjugated triene side chain from a sponge-associated fungus Aspergillus species. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Huang Y, Valiante V. Chemical Diversity and Biosynthesis of Drimane-Type Sesquiterpenes in the Fungal Kingdom. Chembiochem 2022; 23:e202200173. [PMID: 35574818 PMCID: PMC9546479 DOI: 10.1002/cbic.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/09/2022] [Indexed: 11/05/2022]
Abstract
Drimane-type sesquiterpenes are a class of compounds produced by a wide range of organisms, initially isolated and characterized in plants. Meanwhile, in the past 20-30 years, a large number of novel structures from many divergent fungi have been elucidated. Recently, the biosynthesis of drimane-type sesquiter-penes and their esters has been explained in two filamentous fungi, namely Aspergillus oryzae and Aspergillus calidoustus, disclosing the basic biosynthetic principles needed to identify similar pathways in the fungal kingdom.
Collapse
Affiliation(s)
- Ying Huang
- Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute: Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut, Biobricks of Microbial Natural Product Syntheses, GERMANY
| | - Vito Valiante
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie eV Hans-Knöll-Institut, Biobricks of Microbial Natural Product Syntheses, Adolf-Reichwein-Str. 23, 07745, Jena, GERMANY
| |
Collapse
|
10
|
Anticancer Activity of Natural and Semi-Synthetic Drimane and Coloratane Sesquiterpenoids. Molecules 2022; 27:molecules27082501. [PMID: 35458699 PMCID: PMC9031474 DOI: 10.3390/molecules27082501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms, and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and coloratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as novel anticancer agents, the mode of action and structure–activity relationships of drimanes and coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about 40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give a summary about the clinical significance of drimane and coloratane sesquiterpenoids.
Collapse
|
11
|
Yeppoonic acids A - D: 1,2,4-trisubstituted arene carboxylic acid co-metabolites of conglobatin from an Australian Streptomyces sp. J Antibiot (Tokyo) 2021; 75:108-112. [PMID: 34880415 DOI: 10.1038/s41429-021-00493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
Streptomyces sp. MST-91080 was isolated from a soil sample collected in Queensland, Australia. From this strain, yeppoonic acids A - D were purified and spectroscopically characterised. The yeppoonic acids are a family of diene enecarboxylic acids on a 1,2,4-trisubstituted benzene scaffold, structurally related to other Streptomyces secondary metabolites MF-EA-705α/β, NFAT-133 and the lorneic acids. Yeppoonic acids B and C show strong cytotoxicity against the NS-1 mouse myeloma cell line (IC50 2.3 µg ml-1 and 3.8 µg ml-1, respectively) and moderate activity against the DU 145 human prostate cancer cell line (IC50 32.8 µg ml-1 and 49.6 µg ml-1, respectively).
Collapse
|
12
|
Gilchrist CLM, Chooi YH. Synthaser: a CD-Search enabled Python toolkit for analysing domain architecture of fungal secondary metabolite megasynth(et)ases. Fungal Biol Biotechnol 2021; 8:13. [PMID: 34763725 PMCID: PMC8582187 DOI: 10.1186/s40694-021-00120-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungi are prolific producers of secondary metabolites (SMs), which are bioactive small molecules with important applications in medicine, agriculture and other industries. The backbones of a large proportion of fungal SMs are generated through the action of large, multi-domain megasynth(et)ases such as polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The structure of these backbones is determined by the domain architecture of the corresponding megasynth(et)ase, and thus accurate annotation and classification of these architectures is an important step in linking SMs to their biosynthetic origins in the genome. RESULTS Here we report synthaser, a Python package leveraging the NCBI's conserved domain search tool for remote prediction and classification of fungal megasynth(et)ase domain architectures. Synthaser is capable of batch sequence analysis, and produces rich textual output and interactive visualisations which allow for quick assessment of the megasynth(et)ase diversity of a fungal genome. Synthaser uses a hierarchical rule-based classification system, which can be extensively customised by the user through a web application ( http://gamcil.github.io/synthaser ). We show that synthaser provides more accurate domain architecture predictions than comparable tools which rely on curated profile hidden Markov model (pHMM)-based approaches; the utilisation of the NCBI conserved domain database also allows for significantly greater flexibility compared to pHMM approaches. In addition, we demonstrate how synthaser can be applied to large scale genome mining pipelines through the construction of an Aspergillus PKS similarity network. CONCLUSIONS Synthaser is an easy to use tool that represents a significant upgrade to previous domain architecture analysis tools. It is freely available under a MIT license from PyPI ( https://pypi.org/project/synthaser ) and GitHub ( https://github.com/gamcil/synthaser ).
Collapse
Affiliation(s)
- Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, 6009, Australia.
| |
Collapse
|
13
|
Roux I, Bowles S, Kalaitzis JA, Vuong D, Lacey E, Chooi YH, Piggott AM. Characterisation and heterologous biosynthesis of burnettiene A, a new polyene-decalin polyketide from Aspergillus burnettii. Org Biomol Chem 2021; 19:9506-9513. [PMID: 34714309 DOI: 10.1039/d1ob01766g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chemical exploration of the recently described Australian fungus, Aspergillus burnettii, uncovered a new metabolite, burnettiene A. Here, we characterise the structure of burnettiene A as a polyene-decalin polyketide. Bioinformatic analysis of the genome of A. burnettii identified a putative biosynthetic gene cluster for burnettiene A (bue), consisting of eight genes and sharing similarity to the fusarielin gene cluster. Introduction of the reassembled bue gene cluster into Aspergillus nidulans for heterologous expression resulted in the production of burnettiene A under native promoters. Omission of bueE encoding a cytochrome P450 led to the production of preburnettiene A, confirming that BueE is responsible for catalysing the regiospecific multi-oxidation of terminal methyl groups to carboxylic acids. Similarly, bueF was shown to encode an ester-forming methyltransferase, with its omission resulting in the production of the tricarboxylic acid, preburnettiene B. Introduction of an additional copy of the transcription factor bueR under the regulation of the gpdA promoter significantly improved the heterologous production of the burnettienes. Burnettiene A displayed strong in vitro cytotoxicity against mouse myeloma NS-1 cells (MIC 0.8 μg mL-1).
Collapse
Affiliation(s)
- Indra Roux
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Simon Bowles
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
| | - John A Kalaitzis
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd, Smithfield, NSW 2164, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
14
|
Huang Y, Hoefgen S, Valiante V. Biosynthesis of Fungal Drimane‐Type Sesquiterpene Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ying Huang
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Sandra Hoefgen
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| | - Vito Valiante
- Independent Junior Research Group Biobricks of Microbial Natural Product Syntheses Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI) Beutenbergstrasse 11a 07745 Jena Germany
| |
Collapse
|
15
|
Huang Y, Hoefgen S, Valiante V. Biosynthesis of Fungal Drimane-Type Sesquiterpene Esters. Angew Chem Int Ed Engl 2021; 60:23763-23770. [PMID: 34468074 PMCID: PMC8596746 DOI: 10.1002/anie.202108970] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 11/24/2022]
Abstract
Drimane-type sesquiterpenes exhibit various biological activities and are widely present in eukaryotes. Here, we completely elucidated the biosynthetic pathway of the drimane-type sesquiterpene esters isolated from Aspergillus calidoustus and we discovered that it involves a drimenol cyclase having the same catalytic function previously only reported in plants. Moreover, since many fungal drimenol derivatives possess a γ-butyrolactone ring, we clarified the functions of the cluster-associated cytochrome P450 and FAD-binding oxidoreductase discovering that these two enzymes are solely responsible for the formation of those structures. Furthermore, swapping of the enoyl reductase domain in the identified polyketide synthase led to the production of metabolites containing various polyketide chains with different levels of saturation. These findings have deepened our understanding of how fungi synthesize drimane-type sesquiterpenes and the corresponding esters.
Collapse
Affiliation(s)
- Ying Huang
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Sandra Hoefgen
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| | - Vito Valiante
- Independent Junior Research Group Biobricks of Microbial Natural Product SynthesesLeibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
16
|
Gilchrist CLM, Booth TJ, van Wersch B, van Grieken L, Medema MH, Chooi YH. cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters. BIOINFORMATICS ADVANCES 2021; 1:vbab016. [PMID: 36700093 PMCID: PMC9710679 DOI: 10.1093/bioadv/vbab016] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/28/2023]
Abstract
Motivation Genes involved in coordinated biological pathways, including metabolism, drug resistance and virulence, are often collocalized as gene clusters. Identifying homologous gene clusters aids in the study of their function and evolution, however, existing tools are limited to searching local sequence databases. Tools for remotely searching public databases are necessary to keep pace with the rapid growth of online genomic data. Results Here, we present cblaster, a Python-based tool to rapidly detect collocated genes in local and remote databases. cblaster is easy to use, offering both a command line and a user-friendly graphical user interface. It generates outputs that enable intuitive visualizations of large datasets and can be readily incorporated into larger bioinformatic pipelines. cblaster is a significant update to the comparative genomics toolbox. Availability and implementation cblaster source code and documentation is freely available from GitHub under the MIT license (github.com/gamcil/cblaster). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia,To whom correspondence should be addressed. or or
| | - Thomas J Booth
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bram van Wersch
- Bioinformatics Group, Wageningen University, Wageningen 6708PB, The Netherlands
| | - Liana van Grieken
- Bioinformatics Group, Wageningen University, Wageningen 6708PB, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen 6708PB, The Netherlands,To whom correspondence should be addressed. or or
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia,To whom correspondence should be addressed. or or
| |
Collapse
|
17
|
Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem 2021; 13:2095-2116. [PMID: 34335987 PMCID: PMC8320681 DOI: 10.1002/cctc.202001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (CT) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (RD), thioesterase-like Dieckmann cyclases, trans-acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.
Collapse
Affiliation(s)
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| |
Collapse
|
18
|
Li H, Lacey AE, Shu S, Kalaitzis JA, Vuong D, Crombie A, Hu J, Gilchrist CLM, Lacey E, Piggott AM, Chooi YH. Hancockiamides: phenylpropanoid piperazines from Aspergillus hancockii are biosynthesised by a versatile dual single-module NRPS pathway. Org Biomol Chem 2021; 19:587-595. [DOI: 10.1039/d0ob02243h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The hancockiamides are an unusual new family of N-cinnamoylated piperazines from the Australian soil fungus Aspergillus hancockii, originating from mixed nonribosomal peptide and phenylpropanoid pathways.
Collapse
Affiliation(s)
- Hang Li
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | | | - Si Shu
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | | | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
| | - Jinyu Hu
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| | | | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
- Department of Molecular Sciences
- Macquarie University
| | | | - Yit-Heng Chooi
- School of Molecular Sciences
- The University of Western Australia
- Perth
- Australia
| |
Collapse
|
19
|
Morshed MT, Nguyen HT, Vuong D, Crombie A, Lacey E, Ogunniyi AD, Page SW, Trott DJ, Piggott AM. Semisynthesis and biological evaluation of a focused library of unguinol derivatives as next-generation antibiotics. Org Biomol Chem 2021; 19:1022-1036. [DOI: 10.1039/d0ob02460k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Semisynthetic unguinol derivatives showed potent activity against a panel of methicillin-resistant Staphylococcus aureus strains and are promising candidates for further development.
Collapse
Affiliation(s)
| | - Hang T. Nguyen
- Australian Centre for Antimicrobial Resistance Ecology
- School of Animal and Veterinary Sciences
- The University of Adelaide
- Roseworthy
- Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
| | - Andrew Crombie
- Microbial Screening Technologies Pty. Ltd
- Smithfield
- Australia
| | - Ernest Lacey
- Department of Molecular Sciences
- Macquarie University
- Australia
- Microbial Screening Technologies Pty. Ltd
- Smithfield
| | - Abiodun D. Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology
- School of Animal and Veterinary Sciences
- The University of Adelaide
- Roseworthy
- Australia
| | | | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology
- School of Animal and Veterinary Sciences
- The University of Adelaide
- Roseworthy
- Australia
| | | |
Collapse
|
20
|
New antifungal tetrahydrofuran derivatives from a marine sponge-associated fungus Aspergillus sp. LS78. Fitoterapia 2020; 146:104677. [DOI: 10.1016/j.fitote.2020.104677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
|
21
|
Fungal Planet description sheets: 1042-1111. Persoonia - Molecular Phylogeny and Evolution of Fungi 2020; 44:301-459. [PMID: 33116344 PMCID: PMC7567971 DOI: 10.3767/persoonia.2020.44.11] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natalensis, Neopestalotiopsis nebuloides from leaves of Sporobolus elongatus, Pestalotiopsis etonensis from leaves of Sporobolus jacquemontii, Phytophthora personensis from soil associated with dying Grevillea mccutcheonii.Brazil, Aspergillus oxumiae from soil, Calvatia baixaverdensis on soil, Geastrum calycicoriaceum on leaf litter, Greeneria kielmeyerae on leaf spots of Kielmeyera coriacea. Chile, Phytophthora aysenensis on collar rot and stem of Aristotelia chilensis.Croatia, Mollisia gibbospora on fallen branch of Fagus sylvatica.Czech Republic, Neosetophoma hnaniceana from Buxus sempervirens.Ecuador, Exophiala frigidotolerans from soil. Estonia, Elaphomyces bucholtzii in soil. France, Venturia paralias from leaves of Euphorbia paralias.India, Cortinarius balteatoindicus and Cortinarius ulkhagarhiensis on leaf litter. Indonesia, Hymenotorrendiella indonesiana on Eucalyptus urophylla leaf litter. Italy, Penicillium taurinense from indoor chestnut mill. Malaysia, Hemileucoglossum kelabitense on soil, Satchmopsis pini on dead needles of Pinus tecunumanii.Poland, Lecanicillium praecognitum on insects’ frass. Portugal, Neodevriesia aestuarina from saline water. Republic of Korea, Gongronella namwonensis from freshwater. Russia, Candida pellucida from Exomias pellucidus, Heterocephalacria septentrionalis as endophyte from Cladonia rangiferina, Vishniacozyma phoenicis from dates fruit, Volvariella paludosa from swamp. Slovenia, Mallocybe crassivelata on soil. South Africa, Beltraniella podocarpi, Hamatocanthoscypha podocarpi, Coleophoma podocarpi and Nothoseiridium podocarpi (incl. Nothoseiridium gen. nov.) from leaves of Podocarpus latifolius, Gyrothrix encephalarti from leaves of Encephalartos sp., Paraphyton cutaneum from skin of human patient, Phacidiella alsophilae from leaves of Alsophila capensis, and Satchmopsis metrosideri on leaf litter of Metrosideros excelsa.Spain, Cladophialophora cabanerensis from soil, Cortinarius paezii on soil, Cylindrium magnoliae from leaves of Magnolia grandiflora, Trichophoma cylindrospora (incl. Trichophoma gen. nov.) from plant debris, Tuber alcaracense in calcareus soil, Tuber buendiae in calcareus soil. Thailand, Annulohypoxylon spougei on corticated wood, Poaceascoma filiforme from leaves of unknown Poaceae.UK, Dendrostoma luteum on branch lesions of Castanea sativa, Ypsilina buttingtonensis from heartwood of Quercus sp. Ukraine, Myrmecridium phragmiticola from leaves of Phragmites australis.USA, Absidia pararepens from air, Juncomyces californiensis (incl. Juncomyces gen. nov.) from leaves of Juncus effusus, Montagnula cylindrospora from a human skin sample, Muriphila oklahomaensis (incl. Muriphila gen. nov.) on outside wall of alcohol distillery, Neofabraea eucalyptorum from leaves of Eucalyptus macrandra, Diabolocovidia claustri (incl. Diabolocovidia gen. nov.) from leaves of Serenoa repens, Paecilomyces penicilliformis from air, Pseudopezicula betulae from leaves of leaf spots of Populus tremuloides. Vietnam, Diaporthe durionigena on branches of Durio zibethinus and Roridomyces pseudoirritans on rotten wood. Morphological and culture characteristics are supported by DNA barcodes.
Collapse
|
22
|
Lacey HJ, Booth TJ, Vuong D, Rutledge PJ, Lacey E, Chooi YH, Piggott AM. Conglobatins B-E: cytotoxic analogues of the C 2-symmetric macrodiolide conglobatin. J Antibiot (Tokyo) 2020; 73:756-765. [PMID: 32555501 DOI: 10.1038/s41429-020-0332-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 01/19/2023]
Abstract
Chemical investigation of a previously unreported indigenous Australian Streptomyces strain MST-91080 has identified six novel analogues related to the oxazole-pendanted macrodiolide, conglobatin. Phylogenetic analysis of the 16S rRNA gene sequence identified MST-91080 as a species of Streptomyces, distinct from reported conglobatin producer, Streptomyces conglobatus ATCC 31005. Conglobatins B-E diverge from conglobatin through differing patterns of methylation on the macrodiolide skeleton. The altered methyl positions suggest a deviation from the published biosynthetic pathway, which proposed three successive methylmalonyl-CoA extender unit additions to the conglobatin monomer. Conglobatins B1, C1 and C2 exhibited more potent cytotoxic activity selectively against the NS-1 myeloma cell line (IC50 0.084, 1.05 and 0.45 µg ml-1, respectively) compared with conglobatin (IC50 1.39 µg ml-1).
Collapse
Affiliation(s)
- Heather J Lacey
- Microbial Screening Technologies, Smithfield, Sydney, NSW, 2164, Australia. .,School of Chemistry, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia.
| | - Thomas J Booth
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, Sydney, NSW, 2164, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, Camperdown, Sydney, NSW, 2006, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, Sydney, NSW, 2164, Australia.,Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| |
Collapse
|
23
|
Li H, Gilchrist CLM, Phan CS, Lacey HJ, Vuong D, Moggach SA, Lacey E, Piggott AM, Chooi YH. Biosynthesis of a New Benzazepine Alkaloid Nanangelenin A from Aspergillus nanangensis Involves an Unusual l-Kynurenine-Incorporating NRPS Catalyzing Regioselective Lactamization. J Am Chem Soc 2020; 142:7145-7152. [PMID: 32182055 DOI: 10.1021/jacs.0c01605] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1-Benzazepine is a pharmaceutically important scaffold but is rare among natural products. Nanangelenin A (1), containing an unprecedented 3,4-dihydro-1-benzazepine-2,5-dione-N-prenyl-N-acetoxy-anthranilamide scaffold, was isolated from a novel species of Australian fungus, Aspergillus nanangensis. Genomic and retrobiosynthetic analyses identified a putative nonribosomal peptide synthetase (NRPS) gene cluster (nan). The detailed biosynthetic pathway to 1 was established by heterologous pathway reconstitution in A. nidulans, which led to biosynthesis of intermediates nanagelenin B-F (2-5 and 7). We demonstrated that the NRPS NanA incorporates anthranilic acid (Ant) and l-kynurenine (l-Kyn), which is supplied by a dedicated indoleamine-2,3-dioxygenase NanC encoded in the gene cluster. Using heterologous in vivo assays and mutagenesis, we demonstrated that the C-terminal condensation (CT) and thiolation (T3) domains of NanA are responsible for the regioselective cyclization of the tethered Ant-l-Kyn dipeptide to form the unusual benzazepine scaffold in 1. We also showed that NanA-CT catalyzes the regioselective cyclization of a surrogate synthetic substrate, Ant-l-Kyn-N-acetylcysteamine, to give the benzazepine scaffold, while spontaneous cyclization of the dipeptide yielded the alternative kinetically favored benzodiazepine scaffold. The discovery of 1 and the characterization of NanA have expanded the chemical and functional diversities of fungal NRPSs.
Collapse
Affiliation(s)
| | | | | | - Heather J Lacey
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | - Daniel Vuong
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia
| | | | - Ernest Lacey
- Microbial Screening Technologies Pty. Ltd., Smithfield, NSW 2164, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | |
Collapse
|