1
|
He W, Zheng WF, Qian H. Rh-Catalyzed Carbonylative Cyclization of Propargylic Alcohols with Aryl Boronic Acids. Org Lett 2024; 26:6279-6283. [PMID: 39023295 DOI: 10.1021/acs.orglett.4c02364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
2(3H)-Furanones are tremendously important not only because of their wide occurrence in bioactive compounds but also due to their versatility in organic synthesis. Here, a straightforward approach to 2(3H)-furanones from readily available tertiary propargylic alcohols with arylboronic acids in the presence of CO using rhodium as a catalyst has been established. The method exhibits a broad substrate scope tolerating useful functional groups with a moderate to high stereoselectivity.
Collapse
Affiliation(s)
- Wenxiang He
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Wei-Feng Zheng
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Wang GY, Ge Z, Ding K, Wang X. Cooperative Bimetallic Catalysis via One-Metal/Two-Ligands: Mechanistic Insights of Polyfluoroarylation-Allylation of Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202307973. [PMID: 37327073 DOI: 10.1002/anie.202307973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Metal/ligand in situ assembly is crucial for tailoring the reactivity & selectivity in transition metal catalysis. Cooperative catalysis via a single metal/two ligands is still underdeveloped, since it is rather challenging to harness the distinct reactivity profiles of the species generated by self-assembly of a single metal precursor with a mixture of different ligands. Herein, we report a catalytic system composed of a single metal/two ligands for a three-component reaction of polyfluoroarene, α-diazo ester, and allylic electrophile, leading to highly efficient construction of densely functionalized quaternary carbon centers, that are otherwise hardly accessible. Mechanistic studies suggest this reaction follows a cooperative bimetallic pathway via two catalysts with distinct reactivity profiles, which are assembled in situ from a single metal precursor and two ligands and work in concert to escort the transformation.
Collapse
Affiliation(s)
- Gao-Yin Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zhaoliang Ge
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Kuiling Ding
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoming Wang
- State Key Laboratory of Oganometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
3
|
Sun Y, Guo J, Shen X, Lu Z. Ligand relay catalysis for cobalt-catalyzed sequential hydrosilylation and hydrohydrazidation of terminal alkynes. Nat Commun 2022; 13:650. [PMID: 35115508 PMCID: PMC8813943 DOI: 10.1038/s41467-022-28285-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 01/08/2023] Open
Abstract
Sequential double hydrofunctionalizationalization of alkynes is a powerful method to construct useful vicinal compounds. Herein, we report a cobalt-catalyzed sequential hydrosilylation/hydrohydrazidation of alkynes to afford 1,2-N,Si compounds via ligand relay catalysis. A phenomenon of ligand relay is found that the tridentate anionic N-ligand (OPAQ) could capture the cobalt ion from bidentate neutral P-ligand (Xantphos) cobalt complex. This protocol uses three abundant chemical feedstocks, alkynes, silanes, and diazo compounds, and also features operationally simple, mild conditions, low catalyst loading (1 mol%), and excellent functional group tolerance. The 1,2-N,Si compounds can be easily further derivatized to afford various substituted silane derivatives via Si-H functionalization, alcohols via Fleming-Tamao oxidation, free amines and amides via N-N bond cleavage and protection. The asymmetric reaction could also be carried out to afford chiral products with up to 86% ee. The ligand relay has been supported by control experiments and absorption spectra. In organic chemistry, performing sequential catalytic cycles with a single catalyst improves efficiency. Here the authors present a methodology to functionalize alkynes with nitrogen and silicon atoms, through two catalytic cycles with a homogeneous cobalt catalyst, which is bound to different ligands in each cycle.
Collapse
Affiliation(s)
- Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuzhong Shen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China. .,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Kim-Lee SH, Mauleón P, Gómez Arrayás R, Carretero JC. Dynamic multiligand catalysis: A polar to radical crossover strategy expands alkyne carboboration to unactivated secondary alkyl halides. Chem 2021. [DOI: 10.1016/j.chempr.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Ying S, Huang X, Guo X, Yang S. The sequential C–H oxidation/asymmetric phosphonylation of primary alcohols to synthesize α-hydroxy phosphonates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
6
|
Wu P, Ma S. Halogen-Substituted Allenyl Ketones through Ring Opening of Nonstrained Cycloalkanols. Org Lett 2021; 23:2533-2537. [PMID: 33733787 DOI: 10.1021/acs.orglett.1c00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthesis of halogen-substituted allenyl ketones via Ag-catalyzed oxidative ring opening of allenyl cyclic alcohols under mild reaction conditions has been achieved. The reaction features a wide substrate scope and excellent regioselectivity. The synthetic potential of the products has been demonstrated by their conversion to stereodefined alkenes and heterocyclic compounds.
Collapse
Affiliation(s)
- Penglin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Zaky M, Li Z, Morgan TDR, LeFort FM, Boyd RJ, Burnell DJ. Lewis Acid-Mediated Cyclization of Allenyl Aryl Ketones. J Org Chem 2019; 84:13665-13675. [PMID: 31553185 DOI: 10.1021/acs.joc.9b01900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyclization of a series of nonheterocyclic allenyl aryl ketones was examined using boron trifluoride etherate and indium triflate to mediate the reaction. Yields with BF3 were low in most instances due mainly to competitive destruction of the substrates. With In(OTf)3, there was less decomposition, and the yields of the cyclized product were much higher, but only for substrates with electron-donating substituents. Cyclization did not occur without those substituents. A computational study using the ωB97X-D/6-311+G(2d,p)//ωB97X-D/6-31+G(d,p) method confirmed better stability of the σ-complexed substrate by indium(III) and that meta-substituents on the phenyl ring of the substrate significantly influenced the activation barrier of the cyclization, whereas the effect of para-substituents was almost negligible. The computational results supported the idea that the cyclization is a 4π-electrocyclization and not a 5-endo-dig ring closure as had been proposed in the literature.
Collapse
Affiliation(s)
- Mariam Zaky
- Department of Chemistry , Dalhousie University , P.O. Box 15000 Halifax , Nova Scotia B3H 4R2 , Canada
| | - Zhe Li
- Department of Chemistry , Dalhousie University , P.O. Box 15000 Halifax , Nova Scotia B3H 4R2 , Canada
| | - Timothy D R Morgan
- Department of Chemistry , Dalhousie University , P.O. Box 15000 Halifax , Nova Scotia B3H 4R2 , Canada
| | - François M LeFort
- Department of Chemistry , Dalhousie University , P.O. Box 15000 Halifax , Nova Scotia B3H 4R2 , Canada
| | - Russell J Boyd
- Department of Chemistry , Dalhousie University , P.O. Box 15000 Halifax , Nova Scotia B3H 4R2 , Canada
| | - D Jean Burnell
- Department of Chemistry , Dalhousie University , P.O. Box 15000 Halifax , Nova Scotia B3H 4R2 , Canada
| |
Collapse
|
8
|
Zhai D, Ma S. Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Org Chem Front 2019. [DOI: 10.1039/c9qo00740g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical room temperature aerobic oxidation of different types of alcohols using Cu(NO3)2·3H2O and TEMPO or 4-HO-TEMPO as the catalysts forming aldehydes or ketones with an excellent selectivity has been developed.
Collapse
Affiliation(s)
- Di Zhai
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis
- Department of Chemistry
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
9
|
Guo C, Janssen-Müller D, Fleige M, Lerchen A, Daniliuc CG, Glorius F. Mechanistic Studies on a Cooperative NHC Organocatalysis/Palladium Catalysis System: Uncovering Significant Lessons for Mixed Chiral Pd(NHC)(PR3) Catalyst Design. J Am Chem Soc 2017; 139:4443-4451. [DOI: 10.1021/jacs.7b00462] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chang Guo
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Daniel Janssen-Müller
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Mirco Fleige
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Andreas Lerchen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
10
|
Das OINDRILA, Paine TAPANKANTI. Copper Catalysts for Aerobic Oxidation of Alcohols. TRANSITION METAL CATALYSIS IN AEROBIC ALCOHOL OXIDATION 2014. [DOI: 10.1039/9781782621652-00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Inspired by reactions catalyzed by galactose oxidase, a copper-containing enzyme, extensive studies were carried out on copper-based catalysts for alcohol oxidation using O2 as the terminal oxidant. Significant advances have been made towards the development of homogeneous and heterogeneous copper catalysts. These advances over the past decades are reviewed.
Collapse
Affiliation(s)
- OINDRILA Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science 2A&2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - TAPAN KANTI Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science 2A&2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
11
|
Zeng R, Ma Z, Fu C, Ma S. Sodium Iodide/tert-Butyl(dimethyl)silyl Chloride-Induced Isomerization of 2,3-Allenols to 2(E)-Enals. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Fan Y, Cong M, Peng L. Mixed-Ligand Catalysts: A Powerful Tool in Transition-Metal-Catalyzed Cross-Coupling Reactions. Chemistry 2014; 20:2698-702. [DOI: 10.1002/chem.201304715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Aerobic copper-catalyzed organic reactions. Chem Rev 2013; 113:6234-458. [PMID: 23786461 PMCID: PMC3818381 DOI: 10.1021/cr300527g] [Citation(s) in RCA: 1238] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Scott E. Allen
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan R. Walvoord
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rosaura Padilla-Salinas
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Affiliation(s)
- Annette D. Allen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Thomas T. Tidwell
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Zhang J, Jiang Z, Zhao D, He G, Zhou S, Han S. Transition-Metal-Free TEMPO Catalyzed Aerobic Oxidation of Alcohols to Carbonyls Using an Efficient Br2Equivalent under Mild Conditions. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Wang Q, Xu Z, Fan X. Selective synthesis of oxygen-containing heterocycles via tandem reactions of 1,2-allenic ketones with ethyl 4-chloroacetoacetate. RSC Adv 2013. [DOI: 10.1039/c3ra23432k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Liu Y, Ma S. CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1:1 Combination of Phenanthroline and Bipyridine as the Ligands. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201100476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|