1
|
Song B, Raza M, Zhang LJ, Xu BQ, Zhang P, Zhu XF. A new brown rot disease of plum caused by Mucor xinjiangensis sp. nov. and screening of its chemical control. Front Microbiol 2024; 15:1458456. [PMID: 39318429 PMCID: PMC11419995 DOI: 10.3389/fmicb.2024.1458456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
A novel species of Mucor was identified as the causal agent of a brown rot of Prunus domestica (European plum), widely grown in the south of Xinjiang, China. This disease first appears as red spots after the onset of the fruits. With favorable environmental conditions, fruit with infected spots turn brown, sag, expand, wrinkle, and harden, resulting in fruit falling. Fungal species were isolated from infected fruits. A phylogenetic analysis based on internal transcribed spacer (ITS) regions and the large subunit (LSU) of the nuclear ribosomal RNA (rRNA) gene regions strongly supported that these isolates made a distinct evolutionary lineage in Mucor (Mucoromycetes, Mucoraceae) that represents a new taxonomic species, herein named as Mucor xinjiangensis. Microscopic characters confirmed that these strains were morphologically distinct from known Mucor species. The pathogenicity of M. xinjiangensis was confirmed by attaching an agar disk containing mycelium on fruits and re-isolation of the pathogen from symptomatic tissues. Later, fourteen fungicides were selected to determine the inhibitory effect on the pathogen. Further, results showed that difenoconazole had the best effect on the pathogen and the strongest toxicity with the smallest half maximal effective concentration (EC50) value, followed by a compound fungicide composed of difenoconazole with azoxystrobin, mancozeb, prochloraz with iprodione, pyraclostrobin with tebuconazole, and trifloxystrobin with tebuconazole and ethhylicin. Present study provides the basis for the prevention and control of the novel plum disease and its pathogen.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Mubashar Raza
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Li-Juan Zhang
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Bing-Qiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Pan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Xiao-Feng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| |
Collapse
|
2
|
Luo J, Walsh E, Faulborn A, Gao K, White J, Zhang N. Pinibarreniales, a new order of Sordariomycetes from pine barrens ecosystem. Mycologia 2024; 116:835-847. [PMID: 38959129 DOI: 10.1080/00275514.2024.2363084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Pinibarrenia chlamydospora, sp. nov. isolated from the roots of highbush blueberry in the New Jersey Pine Barrens, is described and illustrated. Based on multigene phylogenetic analysis, as well as morphological and ecological characteristics, Pinibarreniales and Pinibarreniaceae are established to accommodate this novel lineage in Sordariomycetidae, Sordariomycetes. Pinibarreniales, Tracyllalales, and Vermiculariopsiellales are proposed to be included in the subclass Sordariomycetidae. Pinibarreniales likely have a wide distribution and forms association with Ericaceae plants that live in acidic and oligotrophic environments because its DNA barcode matches with environmental sequences from other independent ecological studies. The plant-fungal interaction experiment revealed negative impacts on Arabidopsis, indicating its pathogenicity. This uncovered new fungal lineage will contribute to a better understanding of the diversity and systematics of Sordariomycetes.
Collapse
Affiliation(s)
- Jing Luo
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Emily Walsh
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Alexis Faulborn
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Kevin Gao
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - James White
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
| | - Ning Zhang
- Department of Plant Biology, Rutgers University, 59 Dudley Road, New Brunswick, New Jersey 08901
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, New Jersey 08901
| |
Collapse
|
3
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
4
|
Crous PW, Jurjević Ž, Balashov S, De la Peña-Lastra S, Mateos A, Pinruan U, Rigueiro-Rodríguez A, Osieck ER, Altés A, Czachura P, Esteve-Raventós F, Gunaseelan S, Kaliyaperumal M, Larsson E, Luangsa-Ard JJ, Moreno G, Pancorbo F, Piątek M, Sommai S, Somrithipol S, Asif M, Delgado G, Flakus A, Illescas T, Kezo K, Khamsuntorn P, Kubátová A, Labuda R, Lavoise C, Lebel T, Lueangjaroenkit P, Maciá-Vicente JG, Paz A, Saba M, Shivas RG, Tan YP, Wingfield MJ, Aas T, Abramczyk B, Ainsworth AM, Akulov A, Alvarado P, Armada F, Assyov B, Avchar R, Avesani M, Bezerra JL, Bhat JD, Bilański P, Bily DS, Boccardo F, Bozok F, Campos JC, Chaimongkol S, Chellappan N, Costa MM, Dalecká M, Darmostuk V, Daskalopoulos V, Dearnaley J, Dentinger BTM, De Silva NI, Dhotre D, Carlavilla JR, Doungsa-Ard C, Dovana F, Erhard A, Ferro LO, Gallegos SC, Giles CE, Gore G, Gorfer M, Guard FE, Hanson SÅ, Haridev P, Jankowiak R, Jeffers SN, Kandemir H, Karich A, Kisło K, Kiss L, Krisai-Greilhuber I, Latha KPD, Lorenzini M, Lumyong S, Manimohan P, Manjón JL, Maula F, Mazur E, Mesquita NLS, Młynek K, Mongkolsamrit S, Morán P, Murugadoss R, Nagarajan M, Nalumpang S, Noisripoom W, Nosalj S, Novaes QS, Nowak M, Pawłowska J, Peiger M, Pereira OL, Pinto A, Plaza M, Polemis E, Polhorský A, Ramos DO, Raza M, Rivas-Ferreiro M, Rodriguez-Flakus P, Ruszkiewicz-Michalska M, Sánchez A, Santos A, Schüller A, Scott PA, Şen I, Shelke D, Śliwa L, Solheim H, Sonawane H, Strašiftáková D, Stryjak-Bogacka M, Sudsanguan M, Suwannarach N, Suz LM, Syme K, Taşkın H, Tennakoon DS, Tomka P, Vaghefi N, Vasan V, Vauras J, Wiktorowicz D, Villarreal M, Vizzini A, Wrzosek M, Yang X, Yingkunchao W, Zapparoli G, Zervakis GI, Groenewald JZ. Fungal Planet description sheets: 1614-1696. Fungal Syst Evol 2024; 13:183-440. [PMID: 39140100 PMCID: PMC11320056 DOI: 10.3114/fuse.2024.13.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 08/15/2024] Open
Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia, Baobabopsis sabindy in leaves of Eragrostis spartinoides, Cortinarius magentiguttatus among deep leaf litter, Laurobasidium azarandamiae from uredinium of Puccinia alyxiae on Alyxia buxifolia, Marasmius pseudoelegans on well-rotted twigs and litter in mixed wet sclerophyll and subtropical rainforest. Bolivia, Favolaschia luminosa on twigs of Byttneria hirsuta, Lecanora thorstenii on bark, in savannas with shrubs and trees. Brazil, Asterina costamaiae on leaves of Rourea bahiensis, Purimyces orchidacearum (incl. Purimyces gen. nov.) as root endophyte on Cattleya locatellii. Bulgaria, Monosporascus bulgaricus and Monosporascus europaeus isolated from surface-sterilised, asymptomatic roots of Microthlaspi perfoliatum. Finland, Inocybe undatolacera on a lawn, near Betula pendula. France, Inocybe querciphila in humus of mixed forest. Germany, Arrhenia oblongispora on bare soil attached to debris of herbaceous plants and grasses. Greece, Tuber aereum under Quercus coccifera and Acer sempervirens. India, Alfoldia lenyadriensis from the gut of a Platynotus sp. beetle, Fulvifomes subramanianii on living Albizzia amara, Inosperma pavithrum on soil, Phylloporia parvateya on living Lonicera sp., Tropicoporus maritimus on living Peltophorum pterocarpum. Indonesia, Elsinoe atypica on leaf of Eucalyptus pellita. Italy, Apiotrichum vineum from grape wine, Cuphopyllus praecox among grass. Madagascar, Pisolithus madagascariensis on soil under Intsia bijuga. Netherlands, Cytosporella calamagrostidis and Periconia calamagrostidicola on old leaves of Calamagrostis arenaria, Hyaloscypha caricicola on leaves of Carex sp., Neoniesslia phragmiticola (incl. Neoniesslia gen. nov.) on leaf sheaths of standing dead culms of Phragmites australis, Neptunomyces juncicola on culms of Juncus maritimus, Zenophaeosphaeria calamagrostidis (incl. Zenophaeosphaeria gen. nov.) on culms of Calamagrostis arenaria. Norway, Hausneria geniculata (incl. Hausneria gen. nov.) from a gallery of Dryocoetes alni on Alnus incana. Pakistan, Agrocybe auriolus on leaf litter of Eucalyptus camaldulensis, Rhodophana rubrodisca in nutrient-rich loamy soil with Morus alba. Poland, Cladosporium nubilum from hypersaline brine, Entomortierella ferrotolerans from soil at mines and postmining sites, Pseudopezicula epiphylla from sooty mould community on Quercus robur, Quixadomyces sanctacrucensis from resin of Pinus sylvestris, Szafranskia beskidensis (incl. Szafranskia gen. nov.) from resin of Abies alba. Portugal, Ascocoryne laurisilvae on degraded wood of Laurus nobilis, Hygrocybe madeirensis in laurel forests, Hygrocybula terracocta (incl. Hygrocybula gen. nov.) on mossy areas of laurel forests planted with Cryptomeria japonica. Republic of Kenya, Penicillium gorferi from a sterile chicken feather embedded in a soil sample. Slovakia, Cerinomyces tatrensis on bark of Pinus mugo, Metapochonia simonovicovae from soil. South Africa, Acremonium agapanthi on culms of Agapanthus praecox, Alfaria elegiae on culms of Elegia ebracteata, Beaucarneamyces stellenboschensis (incl. Beaucarneamyces gen. nov.) on dead leaves of Beaucarnea stricta, Gardeniomyces kirstenboschensis (incl. Gardeniomyces gen. nov.) rotting fruit of Gardenia thunbergia, Knufia dianellae on dead leaves of Dianella caerulea, Lomaantha quercina on twigs of Quercus suber. Melanina restionis on dead leaves of Restio duthieae, Microdochium buffelskloofinum on seeds of Eragrostis cf. racemosa, Thamnochortomyces kirstenboschensis (incl. Thamnochortomyces gen. nov.) on culms of Thamnochortus fraternus, Tubeufia hagahagana on leaves of Hypoxis angustifolia, Wingfieldomyces cypericola on dead leaves of Cyperus papyrus. Spain, Geastrum federeri in soil under Quercus suber and Q. canariensis, Geastrum nadalii in calcareous soil under Juniperus, Quercus, Cupressus, Pinus and Robinia, Hygrocybe garajonayensis in laurel forests, Inocybe cistophila on acidic soil under Cistus ladanifer, Inocybe sabuligena in a mixed Quercus ilex subsp. ballota/Juniperus thurifera open forest, Mycena calongei on mossy bark base of Juniperus oxycedrus, Rhodophana ulmaria on soil in Ulmus minor forest, Tuber arriacaense in soil under Populus pyramidalis, Volvariella latispora on grassy soils in a Quercus ilex ssp. rotundifolia stand. Sweden, Inocybe iota in alpine heath on calcareous soil. Thailand, Craterellus maerimensis and Craterellus sanbuakwaiensis on laterite and sandy soil, Helicocollum samlanense on scale insects, Leptosporella cassiae on dead twigs of Cassia fistula, Oxydothis coperniciae on dead leaf of Copernicia alba, Russula mukdahanensis on soil, Trechispora sangria on soil, Trechispora sanpatongensis on soil. Türkiye, Amanita corylophila in a plantation of Corylus avellana. Ukraine, Pararthrophiala adonis (incl. Pararthrophiala gen. nov.) on dead stems of Adonis vernalis. USA, Cladorrhinum carnegieae from Carnegiea gigantea, Dematipyriformia americana on swab from basement wall, Dothiora americana from outside air, Dwiroopa aeria from bedroom air, Lithohypha cladosporioides from hospital swab, Macroconia verruculosa on twig of Ilex montana, associated with black destroyed ascomycetous fungus and Biatora sp., Periconia floridana from outside air, Phytophthora fagacearum from necrotic leaves and shoots of Fagus grandifolia, Queenslandipenidiella californica on wood in crawlspace. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Jurjević Z, Balashov S, De la Peña-Lastra S, Mateos A, Pinruan U, Rigueiro-Rodríguez A, Osieck ER, Altés A, Czachura P, Esteve-Raventós F, Gunaseelan S, Kaliyaperumal M, Larsson E, Luangsa-ard JJ, Moreno G, Pancorbo F, Piątek M, Sommai S, Somrithipol S, Asif M, Delgado G, Flakus A, Illescas T, Kezo K, Khamsuntorn P, Kubátová A, Labuda R, Lavoise C, Lebel T, Lueangjaroenkit P, Maciá-Vicente JG, Paz A, Saba M, Shivas RG, Tan YP, Wingfield MJ, Aas T, Abramczyk B, Ainsworth AM, Akulov A, Alvarado P, Armada F, Assyov B, Avchar R, Avesani M, Bezerra JL, Bhat JD, Bilański P, Bily DS, Boccardo F, Bozok F, Campos JC, Chaimongkol S, Chellappan N, Costa MM, Dalecká M, Darmostuk V, Daskalopoulos V, Dearnaley J, Dentinger BTM, De Silva NI, Dhotre D, Carlavilla JR, Doungsa-ard C, Dovana F, Erhard A, Ferro LO, Gallegos SC, Giles CE, Gore G, Gorfer M, Guard FE, Hanson S-A, Haridev P, Jankowiak R, Jeffers SN, Kandemir H, Karich A, Kisło K, Kiss L, Krisai-Greilhuber I, Latha KPD, Lorenzini M, Lumyong S, Manimohan P, Manjón JL, Maula F, Mazur E, Mesquita NLS, Młynek K, Mongkolsamrit S, Morán P, Murugadoss R, Nagarajan M, Nalumpang S, Noisripoom W, Nosalj S, Novaes QS, Nowak M, Pawłowska J, Peiger M, Pereira OL, Pinto A, Plaza M, Polemis E, Polhorský A, Ramos DO, Raza M, Rivas-Ferreiro M, Rodriguez-Flakus P, Ruszkiewicz-Michalska M, Sánchez A, Santos A, Schüller A, Scott PA, Şen İ, Shelke D, Śliwa L, Solheim H, Sonawane H, Strašiftáková D, Stryjak-Bogacka M, Sudsanguan M, Suwannarach N, Suz LM, Syme K, Taşkın H, Tennakoon DS, Tomka P, Vaghefi N, Vasan V, Vauras J, Wiktorowicz D, Villarreal M, Vizzini A, Wrzosek M, Yang X, Yingkunchao W, Zapparoli G, Zervakis GI, Groenewald JZ (2024). Fungal Planet description sheets: 1614-1696. Fungal Systematics and Evolution 13: 183-440. doi: 10.3114/fuse.2024.13.11.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | | | - A Mateos
- Sociedad Micológica Extremeña, C/ Sagitario 14, 10001 Cáceres, Spain
| | - U Pinruan
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | | | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, The Netherlands
| | - A Altés
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - P Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - F Esteve-Raventós
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - S Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - M Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 463, SE40530 Göteborg, Sweden
| | - J J Luangsa-Ard
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G Moreno
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - F Pancorbo
- Sociedad Micológica de Madrid, Real Jardín Botánico. C/ Claudio Moyano 1, 28014 Madrid, Spain
| | - M Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - S Sommai
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - S Somrithipol
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - M Asif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - G Delgado
- Eurofins Built Environment, 6110 W. 34th St, Houston, TX 77092, USA
| | - A Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - T Illescas
- C/ Buenos Aires 3, bajo 1, 14006 Córdoba, Spain
| | - K Kezo
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - P Khamsuntorn
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - A Kubátová
- Department of Botany, Faculty of Science, Culture Collection of Fungi (CCF), Charles University, Benátská 2, 128 00 Prague 2, Czech Republic
| | - R Labuda
- Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health; Unit of Food Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, and Core Facility Bioactive Molecules: Screening and Analysis and Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430 Tulln a.d. Donau, Austria
| | - C Lavoise
- Aptdo. Post Office No. 6, 17455, Caldes de Malavella, Girona, Spain
| | - T Lebel
- State Herbarium of South Australia, Adelaide, South Australia, 5000 Australia
| | - P Lueangjaroenkit
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Biodiversity Center, Kasetsart University (BDCKU), Bangkok, Thailand
| | - J G Maciá-Vicente
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - A Paz
- Aptdo. Post Office No. 6, 17455, Caldes de Malavella, Girona, Spain
| | - M Saba
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - T Aas
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway
| | - B Abramczyk
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - P Alvarado
- ALVALAB, Dr. Fernando Bongera st. Severo Ochoa bldg. S1.04, 33006 Oviedo, Spain
| | - F Armada
- 203 montée Saint-Mamert-le-Haut. F-38138 Les Côtes-d'Arey, France
| | - B Assyov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria
| | - R Avchar
- National Centre for Microbial Resource -National Centre for Cell Science, Pune - 411007, Maharashtra, India
| | - M Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - J L Bezerra
- Programa de Pós-Graduação em Proteção Vegetal, Universidade Estadual de Santa Cruz, Bahia, Brazil
| | - J D Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - D S Bily
- Office of Plant Industry, Virginia Department of Agriculture and Consumer Services, 102 Governor St. 23219, Richmond, Virginia, USA
| | - F Boccardo
- Via Filippo Bettini 14/11, 16162, Genova, Italy
| | - F Bozok
- Department of Biology, Faculty of Arts and Science, Osmaniye Korkut Ata University, 80000 Osmaniye, Türkiye
| | - J C Campos
- Grupo Microscopía Sociedad Micológica Madrid, ETSIAAAB, Avda. Puerta de Hierro 2, 28040, Madrid, Spain
| | - S Chaimongkol
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | - N Chellappan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - M M Costa
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Dalecká
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - V Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - V Daskalopoulos
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - J Dearnaley
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
- School of Agriculture & Environmental Science, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - B T M Dentinger
- Natural History Museum of Utah & School of Biological Sciences, University of Utah, UT 84108, Salt Lake City, Utah, USA
| | - N I De Silva
- Faculty of Science, Department of Biology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - D Dhotre
- National Centre for Microbial Resource -National Centre for Cell Science, Pune - 411007, Maharashtra, India
| | - J R Carlavilla
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - C Doungsa-Ard
- Plant Protection Research and Development Office, Department of Agriculture, Bangkok, Thailand
| | - F Dovana
- Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), Campus Universitario "Ernesto Quagliariello", Università degli Studi di Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - A Erhard
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - L O Ferro
- Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Pernambuco, Brazil
| | - S C Gallegos
- Herbario Nacional de Bolivia (LPB), Instituto de Ecología, Universidad Mayor de San Andrés, Campus Universitario Cota-Cota, calle 27, La Paz, Bolivia
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 79/80, D-06108 Halle, Germany
| | - C E Giles
- Department of Plant and Environmental Sciences, 214 Biosystems Research Complex 29631, Clemson, South Carolina, USA
| | - G Gore
- Research Centre in Botany Prof. Ramakrishna More Arts Commerce and Science College, Akurdi, Pune, affiliated to S.P.P University Pune
| | - M Gorfer
- Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln an der Donau, Austria
| | | | - S-Å Hanson
- Birkagatan 49, 256 55 Helsingborg, Sweden
| | - P Haridev
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - S N Jeffers
- Department of Plant and Environmental Sciences, 214 Biosystems Research Complex 29631, Clemson, South Carolina, USA
| | - H Kandemir
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - A Karich
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - K Kisło
- Botanic Garden, Faculty of Biology, University of Warsaw, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - L Kiss
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - I Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - K P D Latha
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M Lorenzini
- Unione Italiana Vini, Viale del Lavoro 8, 37135 Verona, Italy
| | - S Lumyong
- Faculty of Science, Department of Biology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - P Manimohan
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - J L Manjón
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - F Maula
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - E Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - N L S Mesquita
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Bahia, Brazil
| | - K Młynek
- Faculty of Agrobioengineering and Animal Husbandry, University of Siedlce, Konarskiego 2, 08-110 Siedlce, Poland
| | - S Mongkolsamrit
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - P Morán
- Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310, Vigo, Spain
| | - R Murugadoss
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - M Nagarajan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - S Nalumpang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - W Noisripoom
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - S Nosalj
- Department of Soil Science, Faculty of Natural Sciences, Comenius University, Ilkovičová 6, 842 15 Bratislava, Slovakia
| | - Q S Novaes
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Bahia, Brazil
| | - M Nowak
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - J Pawłowska
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-086 Warsaw, Poland
| | - M Peiger
- Research Station and Museum of TANAP, Tatra National Park Administration, Tatranská Lomnica 14066, 059 60 Vysoké Tatry, Slovakia
| | - O L Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - A Pinto
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - M Plaza
- c/ La Angostura, 20. 11370 Los Barrios, Cádiz, Spain
| | - E Polemis
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | - D O Ramos
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - M Raza
- Key Laboratory of Integrated Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 830091, China
| | - M Rivas-Ferreiro
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, UK
- Centro de Investigación Mariña (CIM), Universidade de Vigo, 36310, Vigo, Spain
| | - P Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Ruszkiewicz-Michalska
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A Sánchez
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - A Santos
- Departamento de Fitotecnia e Zootecnia, Universidade Estadual do Sudoeste da Bahia, Bahia, Brazil
| | - A Schüller
- Fungal Genetics and Genomics Laboratory, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resurces and Life Sciences, Vienna (BOKU); Konrad Lorenz Strasse 24, 3430 Tulln a.d. Donau, Austria
| | - P A Scott
- Friesner Herbarium, Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - I Şen
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye
| | - D Shelke
- Department of Botany, Amruteshwar Arts Commerce and Science College, Vinzar, Pune, affiliated to S.P.P University Pune
| | - L Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - H Solheim
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway
| | - H Sonawane
- Research Centre in Botany Prof. Ramakrishna More Arts Commerce and Science College, Akurdi, Pune, affiliated to S.P.P University Pune
| | - D Strašiftáková
- Slovak National Museum-Natural History Museum, Vajanského náb. 2, P.O.Box 13, 81006 Bratislava, Slovakia
| | - M Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Sudsanguan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - N Suwannarach
- Faculty of Science, Department of Biology, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - L M Suz
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, UK
| | - K Syme
- 24 Offer St, Denmark, Western Australia, 6333 Australia
| | - H Taşkın
- Department of Horticulture, Faculty of Agriculture, Cukurova University, 01330 Adana, Türkiye
| | - D S Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - P Tomka
- ul. 1. mája 2044/179, 03101 Liptovský Mikuláš, Slovakia
| | - N Vaghefi
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville 3010 Victoria, Australia
| | - V Vasan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, 600 025, India
| | - J Vauras
- Biological Collections of Åbo Akademi University, Herbarium, Biodiversity Unit, FI-20014 University of Turku, Finland
| | - D Wiktorowicz
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - M Villarreal
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida (Botánica). 28805 Alcalá de Henares, Madrid, Spain
| | - A Vizzini
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125, Turin, Italy
| | - M Wrzosek
- Botanic Garden, Faculty of Biology, University of Warsaw, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - X Yang
- Department of Plant Industry, Clemson University, 511 Westinghouse Road 29670 Pendleton, South Carolina, USA
| | - W Yingkunchao
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Ladkrabang, Bangkok, Thailand
| | - G Zapparoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - G I Zervakis
- Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
5
|
Armand A, Khodaparast SA, Nazari S, Zibaee A. Morpho-molecular study of entomopathogenic fungi associated with citrus orchard pests in Northern Iran. Arch Microbiol 2024; 206:202. [PMID: 38568380 DOI: 10.1007/s00203-024-03944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Entomopathogenic fungi play a significant role in regulating insect populations in nature and have potential applications in pest management strategies in different regions. Citrus spp. are among the important horticultural products in northern Iran, and the orchards are affected by different insect pests, especially mealybugs. This study aimed to isolate and identify entomopathogenic fungi associated with citrus orchard pests in northern Iran, focusing on Akanthomyces and Lecanicillium species on mealybugs. Through the samples collected from different regions within Guilan province, 12 fungal isolates were collected and identified based on the combination of morphological characteristics and molecular data. Akanthomyces lecanii, A. muscarius, Engyodontium rectidentatum, Lecanicillium aphanocladii and Lecanicillium rasoulzarei sp. nov. were identified. Of these, A. muscarius on Lepidosaphes sp., E. rectidentatum on Coccidae, and L. aphanocladii on Tetranychus urticae are reported as new fungal-host records from Iran. Moreover, a new species, Lecanicillium rasoulzarei, is illustrated, described, and compared with closely related species.
Collapse
Affiliation(s)
- Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | - Saeed Nazari
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Arash Zibaee
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
6
|
Luo X, Hu Y, Xia J, Zhang K, Ma L, Xu Z, Ma J. Morphological and Phylogenetic Analyses Reveal Three New Species of Didymella ( Didymellaceae, Pleosporales) from Jiangxi, China. J Fungi (Basel) 2024; 10:75. [PMID: 38248984 PMCID: PMC10821193 DOI: 10.3390/jof10010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Didymella contains numerous plant pathogenic and saprobic species associated with a wide range of hosts. Over the course of our mycological surveys of plant pathogens from terrestrial plants in Jiangxi Province, China, eight strains isolated from diseased leaves of four host genera represented three new species of Didymella, D. bischofiae sp. nov., D. clerodendri sp. nov., and D. pittospori sp. nov. Phylogenetic analyses of combined ITS, LSU, RPB2, and TUB2 sequence data, using maximum-likelihood (ML) and Bayesian inference (BI), revealed their taxonomic placement within Didymella. Both morphological examinations and molecular phylogenetic analyses supported D. bischofiae, D. clerodendri, and D. pittospori as three new taxa within Didymella. Illustrations and descriptions of these three taxa were provided, along with comparisons with closely related taxa in the genus.
Collapse
Affiliation(s)
- Xingxing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Yafen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Kai Zhang
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Liguo Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Zhaohuan Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (X.L.); (Y.H.); (Z.X.)
| |
Collapse
|
7
|
Dutra YLG, Rosado AWC, Condé TO, Leão AF, Neves SDC, Fraga LMS, Kasuya MCM, Pereira OL. Two new Cladosporium species from a quartzite cave in Brazil. Braz J Microbiol 2023; 54:3021-3031. [PMID: 37880564 PMCID: PMC10689331 DOI: 10.1007/s42770-023-01156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Caves are underground and natural environments mainly found in rocky terrain. Caves have a very specific microclimate, which benefits the occurrence of specific fungi. In recent studies, researchers have observed that caves harbour a great diversity of fungi. However, studies on fungal diversity in Brazilian caves are still incipient. In September 2019, airborne spore and soil samples were collected from the Monte Cristo cave, in the Southern Espinhaço Range, Diamantina, Minas Gerais state, Brazil. Two Cladosporium single-spore isolates, among other genera, were obtained from these samples. This study aimed to characterise these two fungal isolates based on their DNA sequence data and morphology. Phylogenetic analyses of the rDNA-ITS, ACT and TEF1-α loci revealed that the isolates belonged to the Cladosporium cladosporioides species complex. Both isolates did not cluster with any known species and were formally described and named herein as C. diamantinense and C. speluncae. This study presents taxonomic novelties and contributes to the knowledge about the fungal diversity in Brazilian caves.
Collapse
Affiliation(s)
- Yan Lucas Gomes Dutra
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - André Wilson Campos Rosado
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Thiago Oliveira Condé
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ana Flávia Leão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Soraya de Carvalho Neves
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Lucio Mauro Soares Fraga
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | | | - Olinto Liparini Pereira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
8
|
Zhou YM, Xie W, Zhi JR, Zou X. Frankliniella occidentalis pathogenic fungus Lecanicillium interacts with internal microbes and produces sublethal effects. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105679. [PMID: 38072536 DOI: 10.1016/j.pestbp.2023.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Frankliniella occidentalis (Thysanoptera: Thripidae) is a pest that feeds on various crops worldwide. A prior study identified Lecanicillium attenuatum and L. cauligalbarum as pathogens of F. occidentalis. Unfortunately, the potential of these two entomopathogenic fungi for the biocontrol of F. occidentalis has not been effectively evaluated. The internal microbes (endosymbionts and the gut microbiota) of insects, especially gut bacteria, are crucial in regulating the interactions between the host and intestinal pathogens. The role of thrips internal microbes in the infection of these two entomopathogenic fungi is also unknown. Therefore, biological control of thrips is immediately needed, and to accomplish that, an improved understanding of the internal microbes of thrips against Lecanicillium infection is essential. The virulence of the two pathogenic fungi against F. occidentalis increased with the conidia concentration. Overall, the LC50 of L. cauligalbarum was lower than that of L. attenuatum, and the pathogenicity degree was adult > pupa > nymphs. The activities of protective enzymes include superoxide dismutase (SOD), catalase (CAT), peroxidase (POD); detoxification enzymes include polyphenol oxidase (PPO), glutathione s-transferase (GSTs), and carboxylesterase (CarE); hormones include ecdysone and juvenile hormone; and the composition and proportion of microorganisms (fungi and bacteria) in F. occidentalis infected by L. cauligalbarum and L. attenuatum have changed significantly. According to the network correlation results, there was a considerable correlation among the internal microbes (including bacteria and fungi), enzyme activities, and hormones, which indicates that in addition to bacteria, internal fungi of F. occidentalis are also involved in the L. cauligalbarum and L. attenuatum infection process. In addition, the development time of the surviving F. occidentalis exposed to L. cauligalbarum or L. attenuatum was significantly shorter than that of the control group. Furthermore, the intrinsic rate of increase (rm), finite rate of increase (λ), net reproductive rate (R0), mean generation time (T), and gross reproductive rate (GRR) were significantly lower in the treatment groups than in the control group. L. attenuatum and L. cauligalbarum have biocontrol potential against F. occidentalis. In addition to bacteria, internal fungi of F. occidentalis are also involved in the infection process of insect pathogenic fungi. Disruption of the internal microbial balance results in discernible sublethal effects. Such prevention and control potential should not be ignored. These findings provide an improved understanding of physiological responses in thrips with altered immunity against entomopathogenic fungal infections, which can guide us toward the development of novel biocontrol strategies against thrips.
Collapse
Affiliation(s)
- Ye-Ming Zhou
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, China; Institute of Fungus Resources, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Wen Xie
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, China
| | - Jun-Rui Zhi
- Institute of Entomology, Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang 550025, Guizhou, China.
| | - Xiao Zou
- Institute of Fungus Resources, Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
9
|
Pereira DS, Phillips AJL. Palm Fungi and Their Key Role in Biodiversity Surveys: A Review. J Fungi (Basel) 2023; 9:1121. [PMID: 37998926 PMCID: PMC10672035 DOI: 10.3390/jof9111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Over the past three decades, a wealth of studies has shown that palm trees (Arecaceae) are a diverse habitat with intense fungal colonisation, making them an important substratum to explore fungal diversity. Palm trees are perennial, monocotyledonous plants mainly restricted to the tropics that include economically important crops and highly valued ornamental plants worldwide. The extensive research conducted in Southeast Asia and Australasia indicates that palm fungi are undoubtedly a taxonomically diverse assemblage from which a remarkable number of new species is continuously being reported. Despite this wealth of data, no recent comprehensive review on palm fungi exists to date. In this regard, we present here a historical account and discussion of the research on the palm fungi to reflect on their importance as a diverse and understudied assemblage. The taxonomic structure of palm fungi is also outlined, along with comments on the need for further studies to place them within modern DNA sequence-based classifications. Palm trees can be considered model plants for studying fungal biodiversity and, therefore, the key role of palm fungi in biodiversity surveys is discussed. The close association and intrinsic relationship between palm hosts and palm fungi, coupled with a high fungal diversity, suggest that the diversity of palm fungi is still far from being fully understood. The figures suggested in the literature for the diversity of palm fungi have been revisited and updated here. As a result, it is estimated that there are about 76,000 species of palm fungi worldwide, of which more than 2500 are currently known. This review emphasises that research on palm fungi may provide answers to a number of current fungal biodiversity challenges.
Collapse
Affiliation(s)
- Diana S. Pereira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alan J. L. Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Song JY, Wu HX, Li JC, Ding WF, Gong CL, Zeng XY, Wijayawardene NN, Yang DX. Taxonomy and evolution history of two new litter-decomposing Ciliochorella (Amphisphaeriales, Sporocadaceae). MycoKeys 2023; 100:95-121. [PMID: 38025587 PMCID: PMC10660159 DOI: 10.3897/mycokeys.100.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The genus Ciliochorella is a group of pestalotioid fungi, which typically occurs in subtropical and tropical areas. Species from the Ciliochorella genus play important roles in the decomposition of litter. In this study, we introduce two new species (Ciliochorellachinensissp. nov. and C.savannicasp. nov.) that were found on leaf litter collected from savanna-like vegetation in hot dry valleys of southwestern China. Phylogenetic analyses of combined LSU, ITS and tub2 sequence datasets indicated that C.chinensis and C.savannica respectively form a distinct clade within the Ciliochorella genus. The comparison of the morphological characteristics indicated that the two new species are well differentiated within this genus species. Analysis of the evolutionary history suggests that Ciliochorella originated from the Eurasian continent during the Paleogene (38 Mya). Further, we find that both new species can produce cellulase and laccase, playing a decomposer role.
Collapse
Affiliation(s)
- Jia-Yu Song
- International Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, ChinaInternational Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Hai-Xia Wu
- International Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, ChinaInternational Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650224, ChinaKey Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland AdministrationKunmingChina
| | - Jin-Chen Li
- International Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, ChinaInternational Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Wei-Feng Ding
- International Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, ChinaInternational Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
- Key Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland Administration, Kunming 650224, ChinaKey Laboratory of Breeding and Utilization of Resource Insects, National Forestry and Grassland AdministrationKunmingChina
| | - Cui-Ling Gong
- International Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, ChinaInternational Fungal Research and Development Centre, Institute of Highland Forest Science, Chinese Academy of ForestryKunmingChina
| | - Xiang-Yu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, ChinaQujing Normal UniversityQujingChina
| | - Da-Xin Yang
- Kunming Branch (KMB), Chinese Academy of Sciences (CAS), Kunming, Yunnan 650204, ChinaKunming Branch (KMB), Chinese Academy of Sciences (CAS)KunmingChina
| |
Collapse
|
11
|
Réblová M, Nekvindová J. New genera and species with chloridium-like morphotype in the Chaetosphaeriales and Vermiculariopsiellales. Stud Mycol 2023; 106:199-258. [PMID: 38298574 PMCID: PMC10825751 DOI: 10.3114/sim.2023.106.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/04/2023] [Indexed: 02/02/2024] Open
Abstract
In this study, we investigated the morphological and genetic variability of selected species belonging to the genus Chloridium sensu lato, some also referred to as chloridium-like asexual morphs and other undescribed morphologically similar fungi. These species do not conform to the revised generic concept and thus necessitate a re-evaluation in terms of taxonomy and phylogeny. The family Chaetosphaeriaceae (Chaetosphaeriales) encompasses a wide range of asexual morphotypes, and among them, the simplest form is represented by Chloridium sect. Chloridium. The morphological simplicity of the Chloridium morphotype has historically led to the amalgamation of numerous unrelated species, thereby creating a heterogeneous genus. By conducting phylogenetic reconstruction of four DNA loci and examining a set of 71 strains, including all available ex-type and other non-type strains as well as holotypes and other herbarium material, we were able to gain new insights into the relationships between these taxa. Phylogenetic analyses revealed that the studied species are distantly related to Chloridium sensu stricto and can be grouped into two orders in the Sordariomycetes. Within the Chaetosphaeriales, they formed nine well-separated genera in four clades, such as Cacumisporium, Caliciastrum gen. nov., Caligospora gen. nov., Capillisphaeria gen. nov., Curvichaeta, Fusichloridium, Geniculoseta gen. nov., Papillospora gen. nov., and Spicatispora gen. nov. We also established Chloridiopsiella gen. nov. and Chloridiopsis gen. nov. in Vermiculariopsiellales. Four new species and eight new combinations are proposed in these genera. Our study provides a clearer understanding of the genus Chloridium, its relationship to other morphologically similar fungi, and a new taxonomic treatment and molecular phylogeny to facilitate their accurate identification and classification in future research. Taxonomic novelties: New genera: Caliciastrum Réblová, Caligospora Réblová, Capillisphaeria Réblová, Chloridiopsiella Réblová, Chloridiopsis Réblová, Geniculoseta Réblová, Papillospora Réblová, Spicatispora Réblová; New species: Caliciastrum bicolor Réblová, Caligospora pannosa Réblová, Chloridiopsis syzygii Réblová, Gongromerizella silvana Réblová; New combinations: Caligospora dilabens (Réblová & W. Gams) Réblová, Capillisphaeria crustacea (Sacc.) Réblová, Chloridiopsiella preussii (W. Gams & Hol.-Jech.) Réblová, Chloridiopsis constrictospora (Crous et al.) Réblová, Geniculoseta preussii (W. Gams & Hol.-Jech.) Réblová, Papillospora hebetiseta (Réblová & W. Gams) Réblová, Spicatispora carpatica (Hol.-Jech. & Révay) Réblová, Spicatispora fennica (P. Karst.) Réblová; Epitypifications (basionyms): Chaetosphaeria dilabens Réblová & W. Gams, Chloridium cylindrosporum W. Gams & Hol.-Jech. Citation: Réblová M, Nekvindová J (2023). New genera and species with chloridium-like morphotype in the Chaetosphaeriales and Vermiculariopsiellales. Studies in Mycology 106: 199-258. doi: 10.3114/sim.2023.106.04.
Collapse
Affiliation(s)
- M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - J. Nekvindová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| |
Collapse
|
12
|
Lambert C, Schweizer L, Matio Kemkuignou B, Anoumedem EGM, Kouam SF, Marin-Felix Y. Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon. MycoKeys 2023; 99:319-362. [PMID: 37915461 PMCID: PMC10616871 DOI: 10.3897/mycokeys.99.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Collapse
Affiliation(s)
- Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, GermanyMolecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
13
|
Shen HW, Bao DF, Boonmee S, Su XJ, Tian XG, Hyde KD, Luo ZL. Lignicolous Freshwater Fungi from Plateau Lakes in China (I): Morphological and Phylogenetic Analyses Reveal Eight Species of Lentitheciaceae, Including New Genus, New Species and New Records. J Fungi (Basel) 2023; 9:962. [PMID: 37888219 PMCID: PMC10607872 DOI: 10.3390/jof9100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
During the investigation of lignicolous freshwater fungi in plateau lakes in Yunnan Province, China, eight Lentitheciaceae species were collected from five lakes viz. Luguhu, Qiluhu, Xingyunhu, Cibihu, and Xihu lake. Based on morphological characters and phylogenetic analysis of combined ITS, LSU, SSU, and tef 1-α sequence data, a new genus Paralentithecium, two new species (Paralentithecium suae, and Setoseptoria suae), three new records (Halobyssothecium phragmitis, H. unicellulare, and Lentithecium yunnanensis) and three known species viz. Halobyssothecium aquifusiforme, Lentithecium pseudoclioninum, and Setoseptoria bambusae are reported.
Collapse
Affiliation(s)
- Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Dan-Feng Bao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xi-Jun Su
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
| | - Xing-Guo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
14
|
Thitla T, Kumla J, Hongsanan S, Senwanna C, Khuna S, Lumyong S, Suwannarach N. Exploring diversity rock-inhabiting fungi from northern Thailand: a new genus and three new species belonged to the family Herpotrichiellaceae. Front Cell Infect Microbiol 2023; 13:1252482. [PMID: 37692164 PMCID: PMC10485699 DOI: 10.3389/fcimb.2023.1252482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Chanokned Senwanna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Vandegrift R, Newman DS, Dentinger BTM, Batallas-Molina R, Dueñas N, Flores J, Goyes P, Jenkinson TS, McAlpine J, Navas D, Policha T, Thomas DC, Roy BA. Richer than Gold: the fungal biodiversity of Reserva Los Cedros, a threatened Andean cloud forest. BOTANICAL STUDIES 2023; 64:17. [PMID: 37410314 DOI: 10.1186/s40529-023-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Globally, many undescribed fungal taxa reside in the hyperdiverse, yet undersampled, tropics. These species are under increasing threat from habitat destruction by expanding extractive industry, in addition to global climate change and other threats. Reserva Los Cedros is a primary cloud forest reserve of ~ 5256 ha, and is among the last unlogged watersheds on the western slope of the Ecuadorian Andes. No major fungal survey has been done there, presenting an opportunity to document fungi in primary forest in an underrepresented habitat and location. Above-ground surveys from 2008 to 2019 resulted in 1760 vouchered collections, cataloged and deposited at QCNE in Ecuador, mostly Agaricales sensu lato and Xylariales. We document diversity using a combination of ITS barcode sequencing and digital photography, and share the information via public repositories (GenBank & iNaturalist). RESULTS Preliminary identifications indicate the presence of at least 727 unique fungal species within the Reserve, representing 4 phyla, 17 classes, 40 orders, 101 families, and 229 genera. Two taxa at Los Cedros have recently been recommended to the IUCN Fungal Red List Initiative (Thamnomyces chocöensis Læssøe and "Lactocollybia" aurantiaca Singer), and we add occurrence data for two others already under consideration (Hygrocybe aphylla Læssøe & Boertm. and Lamelloporus americanus Ryvarden). CONCLUSIONS Plants and animals are known to exhibit exceptionally high diversity and endemism in the Chocó bioregion, as the fungi do as well. Our collections contribute to understanding this important driver of biodiversity in the Neotropics, as well as illustrating the importance and utility of such data to conservation efforts. RESUMEN Antecedentes: A nivel mundial muchos taxones fúngicos no descritos residen en los trópicos hiper diversos aunque continúan submuestreados. Estas especies están cada vez más amenazadas por la destrucción del hábitat debido a la expansión de la industria extractivista además del cambio climático global y otras amenazas. Los Cedros es una reserva de bosque nublado primario de ~ 5256 ha y se encuentra entre las últimas cuencas hidrográficas no explotadas en la vertiente occidental de los Andes ecuatorianos. Nunca antes se ha realizado un estudio de diversidad micológica en el sitio, lo que significa una oportunidad para documentar hongos en el bosque primario, en hábitat y ubicación subrepresentatadas. El presente estudio recopila información entre el 2008 y 2019 muestreando material sobre todos los sustratos, reportando 1760 colecciones catalogadas y depositadas en el Fungario del QCNE de Ecuador, en su mayoría Agaricales sensu lato y Xylariales; además se documenta la diversidad mediante secuenciación de códigos de barras ITS y fotografía digital, la información está disponible en repositorios públicos digitales (GenBank e iNaturalist). RESULTADOS La identificación preliminar indica la presencia de al menos 727 especies únicas de hongos dentro de la Reserva, que representan 4 filos, 17 clases, 40 órdenes, 101 familias y 229 géneros. Recientemente dos taxones en Los Cedros se recomendaron a la Iniciativa de Lista Roja de Hongos de la UICN (Thamnomyces chocöensis Læssøe y "Lactocollybia" aurantiaca Singer) y agregamos datos de presencia de otros dos que ya estaban bajo consideración (Hygrocybe aphylla Læssøe & Boertm. y Lamelloporus americanus Ryvarden). CONCLUSIONES Se sabe que plantas y animales exhiben una diversidad y endemismo excepcionalmente altos en la bioregión del Chocó y los hongos no son la excepción. Nuestras colecciones contribuyen a comprender este importante promotor de la biodiversidad en el Neotrópico además de ilustrar la importancia y utilidad de dichos datos para los esfuerzos de conservación.
Collapse
Affiliation(s)
- R Vandegrift
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA.
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador.
| | - D S Newman
- , Glorieta, NM, USA
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - B T M Dentinger
- Biology Department and Natural History Museum, University of Utah, Salt Lake City, Utah, USA
| | - R Batallas-Molina
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - N Dueñas
- Departamento de Investigación de Mycomaker, Quito, Ecuador
| | - J Flores
- Departamento de Investigación de Reino Fungi, Quito, Ecuador
| | - P Goyes
- Microbiology Institute-Universidad San Francisco de Quito, Quito, Ecuador
| | - T S Jenkinson
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA
| | - J McAlpine
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D Navas
- Herbario Nacional del Ecuador (QCNE), sección botánica del Instituto Nacional de Biodiversidad (INABIO), Avenida Río Coca E6-115 e Isla Fernandina, Sector Jipijapa, Quito, Ecuador
| | - T Policha
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| | - D C Thomas
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
- Bayreuth Center of Ecology and Research, University of Bayreuth, Bayreuth, Bayern, DE, Germany
| | - B A Roy
- Inst. of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, OR, 97402, USA
| |
Collapse
|
16
|
Wang XC, Yang ZL, Chen SL, Bau T, Li TH, Li L, Fan L, Zhuang WY. Phylogeny and Taxonomic Revision of the Family Discinaceae ( Pezizales, Ascomycota). Microbiol Spectr 2023; 11:e0020723. [PMID: 37102868 PMCID: PMC10269896 DOI: 10.1128/spectrum.00207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Species of Discinaceae are common macrofungi with a worldwide distribution. Some of them are commercially consumed, while a few others are reported as poisonous. Two genera were accepted in the family: the epigeous Gyromitra with discoid, cerebriform to saddle-shaped ascomata and the hypogeous Hydnotrya with globose or tuberous ascomata. However, due to discrepancies in their ecological behaviors, a comprehensive investigation of their relationship was not thoroughly explored. In this study, phylogenies of Discinaceae were reconstructed using sequence analyses of combined and separate three gene partitions (internal transcribed spacer [ITS], large subunit ribosomal DNA [LSU], and translation elongation factor [TEF]) with a matrix containing 116 samples. As a result, the taxonomy of the family was renewed. Eight genera were recognized: two of them (Gyromitra and Hydnotrya) were retained, three (Discina, Paradiscina, and Pseudorhizina) were revived, and three (Paragyromitra, Pseudodiscina, and Pseudoverpa) were newly established. Nine new combinations were made in four genera. Two new species in Paragyromitra and Pseudodiscina and an un-named taxon of Discina were described and illustrated in detail based on the materials collected from China. Furthermore, a key to the genera of the family was also provided. IMPORTANCE Taxonomy of the fungal family Discinaceae (Pezizales, Ascomycota) was significantly renewed on the basis of sequence analyses of internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU), and translation elongation factor (TEF). Eight genera were accepted, including three new genera; two new species were described; and nine new combinations were made. A key to the accepted genera of the family is provided. The aim of this study is to deepen the understanding of the phylogenetic relationships among genera of the group, as well as the associated generic concepts.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shuang-Lin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tolgor Bau
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, China
| | - Tai-Hui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lin Li
- College of Agronomy and Biosciences, Dali University, Dali, China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Monkai J, Hongsanan S, Bhat DJ, Dawoud TM, Lumyong S. Integrative Taxonomy of Novel Diaporthe Species Associated with Medicinal Plants in Thailand. J Fungi (Basel) 2023; 9:603. [PMID: 37367539 DOI: 10.3390/jof9060603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
During our investigations of the microfungi on medicinal plants in Thailand, five isolates of Diaporthe were obtained. These isolates were identified and described using a multiproxy approach, viz. morphology, cultural characteristics, host association, the multiloci phylogeny of ITS, tef1-α, tub2, cal, and his3, and DNA comparisons. Five new species, Diaporthe afzeliae, D. bombacis, D. careyae, D. globoostiolata, and D. samaneae, are introduced as saprobes from the plant hosts, viz. Afzelia xylocarpa, Bombax ceiba, Careya sphaerica, a member of Fagaceae, and Samanea saman. Interestingly, this is the first report of Diaporthe species on these plants, except on the Fagaceae member. The morphological comparison, updated molecular phylogeny, and pairwise homoplasy index (PHI) analysis strongly support the establishment of novel species. Our phylogeny also revealed the close relationship between D. zhaoqingensis and D. chiangmaiensis; however, the evidence from the PHI test and DNA comparison indicated that they are distinct species. These findings improve the existing knowledge of taxonomy and host diversity of Diaporthe species as well as highlight the untapped potential of these medicinal plants for searching for new fungi.
Collapse
Affiliation(s)
- Jutamart Monkai
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sinang Hongsanan
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Darbhe J Bhat
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Turki M Dawoud
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
18
|
Huang YT, Hung TC, Fan YC, Chen CY, Sun PL. The high diversity of Scedosporium and Lomentospora species and their prevalence in human-disturbed areas in Taiwan. Med Mycol 2023; 61:myad041. [PMID: 37061781 DOI: 10.1093/mmy/myad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 04/17/2023] Open
Abstract
Scedosporium and Lomentospora are important opportunistic pathogens causing localized or disseminated infection in humans. Understanding their environmental distribution is critical for public hygiene and clinical management. We carried out the first environmental survey in urbanized and natural regions in Taiwan. Overall, Scedosporium and Lomentospora species were recovered in 132 out of 273 soil samples (48.4%) across Taiwan. We morphologically and molecularly identified six Scedosporium and one Lomentospora species. All four major clinical relevant species were isolated with high frequency, i.e., Scedosporium apiospermum (42.4%), S. boydii (21.8%), Lomentosporaprolificans (14.5%), S. aurantiacum (8.5%); two clinically minor species, Pseudallescheria angusta (6.7%) and S. dehoogii (5.6%), and a saprobic species, S. haikouense (0.6%), had moderate to rare incidence. These fungal species had high incidence in urban (48.6%) and hospital (67.4%) soil samples, and had limited distribution in samples from natural regions (5%). Multivariate analysis of the fungal composition revealed strong evidence of the preferential distribution of these fungi in urban and hospital regions compared with natural sites. In addition, strong evidence suggested that the distribution and abundance of these fungal species were highly heterogeneous in the environment; samples in vicinity often yielded varied fungal communities. We concluded that these fungal species were prevalent in soil in Taiwan and their occurrences were associated with human activities. Although, hygiene sensitive sites such as hospitals were not harboring heavier fungal burdens than other urban facilities in our survey, still, aware should be taken for the high frequency of these clinical relevant species around hospital regions.
Collapse
Affiliation(s)
- Yin-Tse Huang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical School, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Tsu-Chun Hung
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical School, Kaohsiung, 80708, Taiwan
| | - Yun-Chen Fan
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chun-Hsing University, Taichung, 402202, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| |
Collapse
|
19
|
Si H, Wang Y, Liu Y, Li S, Bose T, Chang R. Fungal Diversity Associated with Thirty-Eight Lichen Species Revealed a New Genus of Endolichenic Fungi, Intumescentia gen. nov. (Teratosphaeriaceae). J Fungi (Basel) 2023; 9:jof9040423. [PMID: 37108878 PMCID: PMC10143819 DOI: 10.3390/jof9040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Fungi from the Teratosphaeriaceae (Mycosphaerellales; Dothideomycetes; Ascomycota) have a wide range of lifestyles. Among these are a few species that are endolichenic fungi. However, the known diversity of endolichenic fungi from Teratosphaeriaceae is far less understood compared to other lineages of Ascomycota. We conducted five surveys from 2020 to 2021 in Yunnan Province of China, to explore the biodiversity of endolichenic fungi. During these surveys, we collected multiple samples of 38 lichen species. We recovered a total of 205 fungal isolates representing 127 species from the medullary tissues of these lichens. Most of these isolates were from Ascomycota (118 species), and the remaining were from Basidiomycota (8 species) and Mucoromycota (1 species). These endolichenic fungi represented a wide variety of guilds, including saprophytes, plant pathogens, human pathogens, as well as entomopathogenic, endolichenic, and symbiotic fungi. Morphological and molecular data indicated that 16 of the 206 fungal isolates belonged to the family Teratosphaeriaceae. Among these were six isolates that had a low sequence similarity with any of the previously described species of Teratosphaeriaceae. For these six isolates, we amplified additional gene regions and conducted phylogenetic analyses. In both single gene and multi-gene phylogenetic analyses using ITS, LSU, SSU, RPB2, TEF1, ACT, and CAL data, these six isolates emerged as a monophyletic lineage within the family Teratosphaeriaceae and sister to a clade that included fungi from the genera Acidiella and Xenopenidiella. The analyses also indicated that these six isolates represented four species. Therefore, we established a new genus, Intumescentia gen. nov., to describe these species as Intumescentia ceratinae, I. tinctorum, I. pseudolivetorum, and I. vitii. These four species are the first endolichenic fungi representing Teratosphaeriaceae from China.
Collapse
Affiliation(s)
- Hongli Si
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yichen Wang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanyu Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiguo Li
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Tanay Bose
- Department of Biochemistry, Genetics & Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
- Correspondence: (T.B.); (R.C.)
| | - Runlei Chang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Correspondence: (T.B.); (R.C.)
| |
Collapse
|
20
|
Zhang ZQ, Li CH, Li L, Shen HW, He J, Su XJ, Luo ZL. Geastrumsuae sp. nov. (Geastraceae, Basidiomycota) a new species from Yunnan Province, China. Biodivers Data J 2023; 11:e99027. [PMID: 38327351 PMCID: PMC10848843 DOI: 10.3897/bdj.11.e99027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Background Geastrum is the largest genus of Geastraceae and is widely distributed all over the world. Four specimens which belong to Geastrum were collected during our scientific expedition to Cangshan Mountain, Yunnan, China. Based on morphological characteristics and phylogenetic analysis, a new species was introduced. New information Geastrumsuae is characterised by its large basidiomata (height 35-70 mm, diameter 18-37 mm) with long stipe (height 10-45 mm), smooth pink exoperidium and sessile globose endoperidial body. Phylogenetic analysis has been carried out, based on the internal transcribed spacer (ITS) and large subunit ribosomal ribonucleic acid (nrLSU) sequence data. The illustration and description for the new taxa are provided.
Collapse
Affiliation(s)
- Zheng-Quan Zhang
- College of Agriculture and Biological Science, Dali University, Dali, ChinaCollege of Agriculture and Biological Science, Dali UniversityDaliChina
| | - Chao-Hai Li
- College of Agriculture and Biological Science, Dali University, Dali, ChinaCollege of Agriculture and Biological Science, Dali UniversityDaliChina
- College of Pharmacy, Dali University, Dali, ChinaCollege of Pharmacy, Dali UniversityDaliChina
| | - Lin Li
- College of Agriculture and Biological Science, Dali University, Dali, ChinaCollege of Agriculture and Biological Science, Dali UniversityDaliChina
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
| | - Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali, ChinaCollege of Agriculture and Biological Science, Dali UniversityDaliChina
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang RaiThailand
- School of Science, Mae Fah Luang University, Chiang Rai, ThailandSchool of Science, Mae Fah Luang UniversityChiang RaiThailand
| | - Jun He
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, ChinaBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| | - Xi-Jun Su
- College of Agriculture and Biological Science, Dali University, Dali, ChinaCollege of Agriculture and Biological Science, Dali UniversityDaliChina
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali, ChinaCollege of Agriculture and Biological Science, Dali UniversityDaliChina
| |
Collapse
|
21
|
The chalara-like anamorphs of Leotiomycetes. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractThe chalara-like anamorphs of Leotiomycetes are phialidic hyphomycetes with cylindrical collarettes and deeply seated sporulating loci, and hyaline, aseptate or septate, cylindrical conidia. They are commonly found on plant litters in both terrestrial and submerged environments, and with broad geographical distribution. This paper reports our research result of diversity, taxonomy and phylogeny of these fungi in China, which is based on a systematic study by using an integrated approach of literature study, morphological observation and phylogenetic analyses of 153 chalara-like fungal species with diversified morphology in conidiomata, setae, conidiophores, phialides and conidia. The phylogenetic analyses employing different datasets of SSU, LSU and ITS sequences of 116 species showed that these chalara-like fungi were paraphyletic and scattered in 20 accepted genera belonging to five families of Leotiomycetes: Arachnopezizaceae, Hamatocanthoscyphaceae, Helotiaceae, Neolauriomycetaceae and Pezizellaceae. Additional six genera, Ascoconidium, Bioscypha, Chalarodendron, Didonia, Phaeoscypha and Tapesina, all reported with chalara-like anamorphs in literatures, are also accepted as members of Pezizellaceae or Leotiomycetes genera incertae sedis. Among of these 26 accepted genera of chalara-like fungi in Leotiomycetes, 17 genera are asexually typified genera (Ascoconidium, Bloxamia, Chalara, Chalarodendron, Constrictochalara, Cylindrochalara, Cylindrocephalum, Leochalara, Lareunionomyces, Minichalara, Neochalara, Neolauriomyces, Nagrajchalara, Parachalara, Stipitochalara, Xenochalara and Zymochalara), and 9 are sexually typified genera (Bioscypha, Bloxamiella, Calycellina, Calycina, Didonia, Hymenoscyphus, Mollisina, Phaeoscypha and Tapesina). The phylogenetic significance of conidial septation in generic delimitation was further confirmed; while other morphologies such as conidiomata, setae, conidiophores, phialides, conidial length, and conidial ornamentation have little phylogenetic significance, but could be used for species delimitation. The polyphyletic genus Chalara s. lat. is revised with monophyletic generic concepts by redelimitation of Chalara s. str. in a narrow concept, adaption of the emended Calycina to also include asexually typified chalara-like fungi, reinstatement of Cylindrocephalum, and introduction of six new genera: Constrictochalara W.P. Wu & Y.Z. Diao, Leochalara W.P. Wu & Y.Z. Diao, Minichalara W.P. Wu & Y.Z. Diao, Nagrajchalara W.P. Wu & Y.Z. Diao, Parachalara W.P. Wu & Y.Z. Diao and Stipitochalara W.P. Wu & Y.Z. Diao. Chaetochalara becomes a synonym of Chalara s. str., and the known species are disassembled into Chalara s. str. and Nagrajchalara. The polyphyletic genus Bloxamia is also redefined by introducing the new genus Bloxamiella W.P. Wu & Y.Z. Diao for B. cyatheicola. Five existing species of Chalara s. lat. were excluded from Leotiomycetes and reclassified: Chalara breviclavata as Chalarosphaeria breviclavata W.P. Wu & Y.Z. Diao gen. et sp. nov. in Chaetosphaeriaceae, C. vaccinii as Sordariochalara vaccinii W.P. Wu & Y.Z. Diao gen. et sp. nov. in Lasiosphaeriaceae, and three other Chalara species with hyaline phialides, C. hyalina, C. schoenoplecti and C. siamense as combinations of Pyxidiophora in Pyxidiophoraceae. For biodiversity of these fungi in China, a total of 80 species in 12 genera, including 60 new species, 17 new records and 1 new name, were discovered and documented in this paper. In addition, five species including three new species are reported from Japan. In connection to this revision, a total of 44 new combinations are made. The identification keys are provided for most of these genera. Future research area of these fungi should be the phylogenetic relationship of several sexually typified genera such as Bioscypha, Calycellina, Calycina, Didonia, Phaeoscypha, Rodwayella and Tapesina, and systematic revision of existing names under the genera Bloxamia, Chaetochalara and Chalara.
Collapse
|
22
|
Perera RH, Hyde KD, Jones EBG, Maharachchikumbura SSN, Bundhun D, Camporesi E, Akulov A, Liu JK, Liu ZY. Profile of Bionectriaceae, Calcarisporiaceae, Hypocreaceae, Nectriaceae, Tilachlidiaceae, Ijuhyaceae fam. nov., Stromatonectriaceae fam. nov. and Xanthonectriaceae fam. nov. FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-022-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
23
|
Morphology and Multigene Phylogeny Revealed Three New Species of Helminthosporium ( Massarinaceae, Pleosporales) from China. J Fungi (Basel) 2023; 9:jof9020280. [PMID: 36836394 PMCID: PMC9964966 DOI: 10.3390/jof9020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Saprobic hyphomycetes are highly diverse on plant debris. Over the course of our mycological surveys in southern China, three new Helminthosporium species, H. guanshanense sp. nov., H. jiulianshanense sp. nov. and H. meilingense sp. nov., collected on dead branches of unidentified plants, were introduced by morphological and molecular phylogenetic analyses. Multi-loci (ITS, LSU, SSU, RPB2 and TEF1) phylogenetic analyses were performed using maximum-likelihood and Bayesian inference to infer their taxonomic positions within Massarinaceae. Both molecular analyses and morphological data supported H. guanshanense, H. jiulianshanense and H. meilingense as three independent taxa within Helminthosporium. A list of accepted Helminthosporium species with major morphological features, host information, locality and sequence data was provided. This work expands our understanding of the diversity of Helminthosporium-like taxa in Jiangxi Province, China.
Collapse
|
24
|
Liu J, Hu Y, Luo X, Castañeda-Ruíz RF, Xia J, Xu Z, Cui R, Shi X, Zhang L, Ma J. Molecular Phylogeny and Morphology Reveal Four Novel Species of Corynespora and Kirschsteiniothelia ( Dothideomycetes, Ascomycota) from China: A Checklist for Corynespora Reported Worldwide. J Fungi (Basel) 2023; 9:jof9010107. [PMID: 36675928 PMCID: PMC9863821 DOI: 10.3390/jof9010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Plant debris are habitats favoring survival and multiplication of various microbial species. During continuing mycological surveys of saprobic microfungi from plant debris in Yunnan Province, China, several Corynespora-like and Dendryphiopsis-like isolates were collected from dead branches of unidentified perennial dicotyledonous plants. Four barcodes, i.e., ITS, LSU, SSU and tef1-α, were amplified and sequenced. Morphological studies and multigene phylogenetic analyses by maximum likelihood and Bayesian inference revealed three new Corynespora species (C. mengsongensis sp. nov., C. nabanheensis sp. nov. and C. yunnanensis sp. nov.) and a new Kirschsteiniothelia species (K. nabanheensis sp. nov.) within Dothideomycetes, Ascomycota. A list of identified and accepted species of Corynespora with major morphological features, host information and locality was compiled. This work improves the knowledge of species diversity of Corynespora and Kirschsteiniothelia in Yunnan Province, China.
Collapse
Affiliation(s)
- Jingwen Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yafen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingxing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rafael F. Castañeda-Ruíz
- Instituto de Investigaciones de Sanidad Vegetal, Calle 110 No. 514 e/5ta B y 5ta F, Playa, Havana 17200, Cuba
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Zhaohuan Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ruqiang Cui
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xugen Shi
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lianhu Zhang
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
25
|
Dirks AC, Mohamed OG, Schultz PJ, Miller AN, Tripathi A, James TY. Not all bad: Gyromitrin has a limited distribution in the false morels as determined by a new ultra high-performance liquid chromatography method. Mycologia 2023; 115:1-15. [PMID: 36541902 DOI: 10.1080/00275514.2022.2146473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) and its homologs are deadly mycotoxins produced most infamously by the lorchel (also known as false morel) Gyromitra esculenta, which is paradoxically consumed as a delicacy in some parts of the world. There is much speculation about the presence of gyromitrin in other species of the lorchel family (Discinaceae), but no studies have broadly assessed its distribution. Given the history of poisonings associated with the consumption of G. esculenta and G. ambigua, we hypothesized that gyromitrin evolved in the last common ancestor of these taxa and would be present in their descendants with adaptive loss of function in the nested truffle clade, Hydnotrya. To test this hypothesis, we developed a sensitive analytical derivatization method for the detection of gyromitrin using 2,4-dinitrobenzaldehyde as the derivatization reagent. In total, we analyzed 66 specimens for the presence of gyromitrin over 105 tests. Moreover, we sequenced the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and nuc 28S rDNA to assist in species identification and to infer a supporting phylogenetic tree. We detected gyromitrin in all tested specimens from the G. esculenta group as well as G. leucoxantha. This distribution is consistent with a model of rapid evolution coupled with horizontal transfer, which is typical for secondary metabolites. We clarified that gyromitrin production in Discinaceae is both discontinuous and more limited than previously thought. Further research is required to elucidate the gyromitrin biosynthesis gene cluster and its evolutionary history in lorchels.
Collapse
Affiliation(s)
- Alden C Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| | - Osama G Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Pamela J Schultz
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103
| | - Andrew N Miller
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, Illinois 61820
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48103.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48103
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48103
| |
Collapse
|
26
|
Liu J, Hu Y, Luo X, Castañeda-Ruíz RF, Ma J. Three novel species of Helminthosporium (Massarinaceae, Pleosporales) from China. MycoKeys 2022; 94:73-89. [PMID: 36760542 PMCID: PMC9836515 DOI: 10.3897/mycokeys.94.95888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Three new species of Helminthosporium, H.nabanhensis, H.sinensis and H.yunnanensis collected on dead branches of unidentified plants in Xishuangbanna, China, were proposed by morphological and molecular phylogenetic analysis. Phylogenetic analysis of the combined data of ITS-SSU-LSU-TEF1-RPB2 sequences was performed using Maximum-Likelihood and Bayesian Inference, although H.nabanhensis and H.sinensis lack the RPB2 sequences. Both molecular analyses and morphological data supported H.nabanhensis, H.sinensis and H.yunnanensis as three independent taxa within the Massarinaceae.
Collapse
Affiliation(s)
- Jingwen Liu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, ChinaJiangxi Agricultural UniversityNanchangChina
| | - Yafen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, ChinaJiangxi Agricultural UniversityNanchangChina
| | - Xingxing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, ChinaJiangxi Agricultural UniversityNanchangChina
| | - Rafael F. Castañeda-Ruíz
- Instituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt” (INIFAT), calle 1, esq. 2, Santiago de Las Vegas, Ciudad de La Habana, C. P. 17200, CubaInstituto de Investigaciones Fundamentales en Agricultura Tropical “Alejandro de Humboldt” (INIFAT)HavanaCuba
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, ChinaJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
27
|
Salvador-Montoya CA, Martínez M, Drechsler-Santos ER. Taxonomic update of species closely related to Fulvifomes robiniae in America. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjević Ž, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ. New and Interesting Fungi. 5. Fungal Syst Evol 2022; 10:19-90. [PMID: 36789279 PMCID: PMC9903348 DOI: 10.3114/fuse.2022.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022] Open
Abstract
Nine new genera, 17 new species, nine new combinations, seven epitypes, three lectotypes, one neotype, and 14 interesting new host and / or geographical records are introduced in this study. New genera: Neobarrmaelia (based on Neobarrmaelia hyphaenes), Neobryochiton (based on Neobryochiton narthecii), Neocamarographium (based on Neocamarographium carpini), Nothocladosporium (based on Nothocladosporium syzygii), Nothopseudocercospora (based on Nothopseudocercospora dictamni), Paracamarographium (based on Paracamarographium koreanum), Pseudohormonema (based on Pseudohormonema sordidus), Quasiphoma (based on Quasiphoma hyphaenes), Rapidomyces (based on Rapidomyces narthecii). New species: Ascocorticium sorbicola (on leaves of Sorbus aucuparia, Belgium), Dactylaria retrophylli (on leaves of Retrophyllum rospigliosii, Colombia), Dactylellina miltoniae (on twigs of Miltonia clowesii, Colombia), Exophiala eucalyptigena (on dead leaves of Eucalyptus viminalis subsp. viminalis supporting Idolothrips spectrum, Australia), Idriellomyces syzygii (on leaves of Syzygium chordatum, South Africa), Microcera lichenicola (on Parmelia sulcata, Netherlands), Neobarrmaelia hyphaenes (on leaves of Hyphaene sp., South Africa), Neobryochiton narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Niesslia pseudoexilis (on dead leaf of Quercus petraea, Serbia), Nothocladosporium syzygii (on leaves of Syzygium chordatum, South Africa), Nothotrimmatostroma corymbiae (on leaves of Corymbia henryi, South Africa), Phaeosphaeria hyphaenes (on leaves of Hyphaene sp., South Africa), Pseudohormonema sordidus (on a from human pacemaker, USA), Quasiphoma hyphaenes (on leaves of Hyphaene sp., South Africa), Rapidomyces narthecii (on dead leaves of Narthecium ossifragum, Netherlands), Reticulascus parahennebertii (on dead culm of Juncus inflexus, Netherlands), Scytalidium philadelphianum (from compressed air in a factory, USA). New combinations: Neobarrmaelia serenoae, Nothopseudocercospora dictamni, Dothiora viticola, Floricola sulcata, Neocamarographium carpini, Paracamarographium koreanum, Rhexocercosporidium bellocense, Russula lilacina. Epitypes: Elsinoe corni (on leaves of Cornus florida, USA), Leptopeltis litigiosa (on dead leaf fronds of Pteridium aquilinum, Netherlands), Nothopseudocercospora dictamni (on living leaves of Dictamnus albus, Russia), Ramularia arvensis (on leaves of Potentilla reptans, Netherlands), Rhexocercosporidium bellocense (on leaves of Verbascum sp., Germany), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Lectotypes: Leptopeltis litigiosa (on Pteridium aquilinum, France), Rhopographus filicinus (on dead leaf fronds of Pteridium aquilinum, Netherlands), Septoria robiniae (on leaves of Robinia pseudoacacia, Belgium). Neotype: Camarographium stephensii (on dead leaf fronds of Pteridium aquilinum, Netherlands). Citation: Crous PW, Begoude BAD, Boers J, Braun U, Declercq B, Dijksterhuis J, Elliott TF, Garay-Rodriguez GA, Jurjević Ž, Kruse J, Linde CC, Loyd A, Mound L, Osieck ER, Rivera-Vargas LI, Quimbita AM, Rodas CA, Roux J, Schumacher RK, Starink-Willemse M, Thangavel R, Trappe JM, van Iperen AL, Van Steenwinkel C, Wells A, Wingfield MJ, Yilmaz N, Groenewald JZ (2022) New and Interesting Fungi. 5. Fungal Systematics and Evolution 10: 19-90. doi: 10.3114/fuse.2022.10.02.
Collapse
Affiliation(s)
- P W Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - B A D Begoude
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
- Institute for Agricultural Research for Development (IRAD), Yaounde, Cameroon
| | - J Boers
- Poststraat 50-104, 6701 AZ, Wageningen, Netherlands
| | - U Braun
- Martin-Luther-Universität, Institut für Biologie, Bereich Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, 06099 Halle (Saale), Germany
| | - B Declercq
- Molenbergstraat 1, B-9190 Stekene, Belgium
| | - J Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - T F Elliott
- Ecosystem Management, University of New England, Armidale, NSW 2351, Australia
| | - G A Garay-Rodriguez
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - J Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - C C Linde
- Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, ACT, 2600, Australia
| | - A Loyd
- Bartlett Tree Experts, 13768 Hamilton Rd, Charlotte, NC 28278, USA
| | - L Mound
- Australian National Insect Collection, CSIRO, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - E R Osieck
- Jkvr. C.M. van Asch van Wijcklaan 19, 3972 ST Driebergen-Rijsenburg, Netherlands Forestry Health Protection Programme Smurfit Kappa - Colombia Calle 15#18-109 Yumbo, Colombia
| | - L I Rivera-Vargas
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - A M Quimbita
- Department Agro-Environmental Sciences, College of Agricultural Sciences, University of Puerto Rico-Mayaguez Campus, Mayaguez, P.R. 00680, Puerto Rico
| | - C A Rodas
- Forestry Health Protection Programme Smurfit Kappa - Colombia Calle 15#18-109 Yumbo, Colombia
| | - J Roux
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | | | - M Starink-Willemse
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - R Thangavel
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - J M Trappe
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon 97331-5752, USA
- U.S. Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 Jefferson Way, Corvallis, Oregon 97331-8550, USA
| | - A L van Iperen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | - A Wells
- Australian National Insect Collection, CSIRO, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - N Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - J Z Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
29
|
Sun B, Luo C, Bills GF, Li J, Huang P, Wang L, Jiang X, Chen AJ. Four New Species of Aspergillus Subgenus Nidulantes from China. J Fungi (Basel) 2022; 8:1205. [PMID: 36422028 PMCID: PMC9697824 DOI: 10.3390/jof8111205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 10/28/2023] Open
Abstract
Aspergillus subgenus Nidulantes includes species with emericella-like ascomata and asexual species. Subgenus Nidulantes is the second largest subgenus of Aspergillus and consists of nine sections. In this study, agricultural soils were sampled from 12 provinces and autonomous regions in China. Based on primary BLAST analyses, seven of 445 Aspergillus isolates showed low similarity with existing species. A polyphasic investigation, including phylogenetic analysis of partial ITS, β-tubulin, calmodulin, and RNA polymerase II second largest subunit genes, provided evidence that these isolates were distributed among four new species (Aspergillus guangdongensis, A. guangxiensis, A. sichuanensis and A. tibetensis) in sections Aenei, Ochraceorosei, and Sparsi of subgenus Nidulantes. Illustrated morphological descriptions are provided for each new taxon.
Collapse
Affiliation(s)
- Bingda Sun
- China General Microbiological Culture Collection Centre, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gerald F. Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Panpan Huang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou 510535, China
| | - Lin Wang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou 510535, China
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou 510535, China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou 510535, China
| |
Collapse
|
30
|
Arenas F, Morte A, Navarro-Ródenas A. Design and Validation of qPCR-Specific Primers for Quantification of the Marketed Terfezia claveryi and Terfezia crassiverrucosa in Soil. J Fungi (Basel) 2022; 8:1095. [PMID: 36294660 PMCID: PMC9605127 DOI: 10.3390/jof8101095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Desert truffle crop is a pioneer in southeastern Spain, a region where native edible hypogeous fungi are adapted to the semiarid areas with low annual rainfall. Terfezia claveryi Chatin was the first species of desert truffle to be cultivated, and has been increasing in recent years as an alternative rainfed crop in the Iberian Peninsula. However, its behaviour in the field has yet not been investigated. For this purpose, specific primers were designed for the soil DNA quantification of both T. claveryi and Terfezia crassiverrucosa and a real-time qPCR protocol was developed, using the ITS rDNA region as a target. Moreover, a young desert truffle orchard was sampled for environmental validation. The results showed the highest efficiency for the TerclaF3/TerclaR1 primers pair, 89%, and the minimal fungal biomass that could be reliable detected was set at 4.23 µg mycelium/g soil. The spatial distribution of fungal biomass was heterogeneous, and there was not a direct relationship between the quantity of winter soil mycelium and the location/productivity of desert truffles. This protocol could be applied to tracking these species in soil and understand their mycelial dynamics in plantations and wild areas.
Collapse
Affiliation(s)
- Francisco Arenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), Carretera de Sant Llorenç de Morunys, Km 2, 25280 Solsona, Spain
| | - Asunción Morte
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| | - Alfonso Navarro-Ródenas
- Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
31
|
Wu W, Diao Y. Anamorphic chaetosphaeriaceous fungi from China. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractChaetosphaeriaceae is one of the largest families in Sordariomycetes with its members commonly found on decaying leaf, fruit, branch, bark and wood in both terrestrial and submerged environment in nature. This paper reports our research result of diversity, taxonomy and phylogeny of anamorphic Chaetosphaeriaceae in China, which is based on a systematic study with an integrated approach of morphological observation and phylogenetic analysis for a large collection (> 1300 herbarium specimens and 1100 living strains). The family Chaetosphaeriaceae is expanded to accommodate 89 accepted genera, including 22 new genera and 10 newly assigned genera. Most of these genera (except for Chaetosphaeria and several other relatively large genera) are delimitated as monophyletic genera with well-defined diagnostic characters in morphology. The phylogenetic connection of non-phialidic Sporidesmium-like fungi is further confirmed and expanded to 10 different genera. The polyphyletic Codinaea/Dictyochaeta/Tainosphaeria complex is further resolved with a taxonomic framework of 28 monophyletic genera by redelimitation of Codinaea and Dictyochaeta with narrower concept, acceptance of the 16 established genera, and finally introduction of 10 new genera. Chloridium is phylogenetically redefined as monophyletic genus with narrower concept as typified by the type species, but a systematic review in both generic and species level is still needed. For biodiversity of chaetosphaeriaceous fungi, a total of 369 species in 76 genera, including 119 new species, 47 new combinations, and one new name, are documented. The identification keys are provided for most genera, especially the large genera such as Codinaea s. str., Codinaeella, Stilbochaeta, Cryptophiale, Thozetella, Dinemasporium and Pseudolachnella. In addition, ten known species were excluded from the family and reclassified. Systematic revision of several relatively large polyphyletic genera should be conducted in future studies, including Bahusutrabeeja, Ellisembia, Stanjehughesia, Cacumisporium, Chaetosphaeria, Chloridium, Craspedodidymum, Cryptophiale, Cryptophialoidea, Dictyochaetopsis, Minimidochium, and many published species of Codinaea and Dictyochaeta.
Collapse
|
32
|
Chaiwan N, Jeewon R, Pem D, Jayawardena RS, Nazurally N, Mapook A, Promputtha I, Hyde KD. New Species of Discosia rhododendricola, Neopestalotiopsis rhododendricola and New Geographical Record of Diaporthe nobilis from Rhododendron sp. J Fungi (Basel) 2022; 8:jof8090907. [PMID: 36135632 PMCID: PMC9504118 DOI: 10.3390/jof8090907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
In the present study, we report two new asexual fungal species (i.e., Discosia rhododendricola, Neopestalotiopsis rhododendricola (Sporocadaceae) and a new host for a previously described species (i.e., Diaporthe nobilis; Diaporthaceae). All species were isolated from Rhododendron spp. in Kunming, Yunnan Province, China. All taxa are described based on morphology, and phylogenetic relationships were inferred using a multigenic approach (LSU, ITS, RPB2, TEF1 and TUB2). The phylogenetic analyses indicated that D. rhododendronicola sp. nov. is phylogenetically related to D. muscicola, and N. rhododendricola sp. nov is related to N. sonnaratae. Diaporthe nobilis is reported herein as a new host record from Rhododendron sp. for China, and its phylogeny is depicted based on ITS, TEF1 and TUB2 sequence data.
Collapse
Affiliation(s)
- Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Nadeem Nazurally
- Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Reduit 80837, Mauritius
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
- Correspondence:
| |
Collapse
|
33
|
Thitla T, Kumla J, Khuna S, Lumyong S, Suwannarach N. Species Diversity, Distribution, and Phylogeny of Exophiala with the Addition of Four New Species from Thailand. J Fungi (Basel) 2022; 8:766. [PMID: 35893134 PMCID: PMC9331753 DOI: 10.3390/jof8080766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The genus Exophiala is an anamorphic ascomycete fungus in the family Herpotrichiellaceae of the order Chaetothyriales. Exophiala species have been classified as polymorphic black yeast-like fungi. Prior to this study, 63 species had been validated, published, and accepted into this genus. Exophiala species are known to be distributed worldwide and have been isolated in various habitats around the world. Several Exophiala species have been identified as potential agents of human and animal mycoses. However, in some studies, Exophiala species have been used in agriculture and biotechnological applications. Here, we provide a brief review of the diversity, distribution, and taxonomy of Exophiala through an overview of the recently published literature. Moreover, four new Exophiala species were isolated from rocks that were collected from natural forests located in northern Thailand. Herein, we introduce these species as E. lamphunensis, E. lapidea, E. saxicola, and E. siamensis. The identification of these species was based on a combination of morphological characteristics and molecular analyses. Multi-gene phylogenetic analyses of a combination of the internal transcribed spacer (ITS) and small subunit (nrSSU) of ribosomal DNA, along with the translation elongation factor (tef), partial β-tubulin (tub), and actin (act) genes support that these four new species are distinct from previously known species of Exophiala. A full description, illustrations, and a phylogenetic tree showing the position of four new species are provided.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
34
|
Ullah T, Saba M, Syed MF. Coprinopsis afrocinerea (Agaricales, Psathyrellaceae): First record from Asia (Pakistan). Microsc Res Tech 2022; 85:3374-3381. [PMID: 35789140 DOI: 10.1002/jemt.24192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/12/2022]
Abstract
In this work, we introduced a new report, Coprinopsis afrocinerea, a coprinoid mushroom from Pakistan. This species was collected several times during the monsoon season; it was found growing on animal dung and on sandy soil mixed with wood chips and leaf litter. This taxon was identified through morphological (macro- and micromorphology) techniques and molecular (ITS-region) markers. Results showed that Pakistani collection's macro- and micro-morphological characters match the type specimen of Coprinopsis afrocinerea. In the phylogenetic tree, sequences of our collections fall within section Cinereae and are clustered with type sequences of Coprinopsis afrocinerea with strong statistical support. This species has already been reported from Africa and is described here for the first time from Asia. Previously, only seven species of Coprinopsis have been reported from Pakistan, and in this study, the number of known taxa has increased to eight. This paper provides a detailed morphological and molecular analysis of this species to differentiate it from closely related taxa.
Collapse
Affiliation(s)
- Tauseef Ullah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Malka Saba
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mahrukh Farid Syed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
35
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
36
|
Wang X, Han P, Bai F, Luo A, Bensch K, Meijer M, B. K, Han D, Sun B, Crous P, Houbraken J. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud Mycol 2022; 101:121-243. [PMID: 36059895 PMCID: PMC9365047 DOI: 10.3114/sim.2022.101.03] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/16/2022] [Indexed: 11/07/2022] Open
Abstract
Chaetomiaceae comprises phenotypically diverse species, which impact biotechnology, the indoor environment and human health. Recent studies showed that most of the traditionally defined genera in Chaetomiaceae are highly polyphyletic. Many of these morphology-based genera, such as Chaetomium, Thielavia and Humicola, have been redefined using multigene phylogenetic analysis combined with morphology; however, a comprehensive taxonomic overview of the family is lacking. In addition, the phylogenetic relationship of thermophilic Chaetomiaceae species with non-thermophilic taxa in the family is largely unclear due to limited taxon sampling in previous studies. In this study, we provide an up-to-date overview on the taxonomy and phylogeny of genera and species belonging to Chaetomiaceae, including an extensive taxon sampling of thermophiles. A multigene phylogenetic analysis based on the ITS (internal transcribed spacers 1 and 2 including the 5.8S nrDNA), LSU (D1/D2 domains of the 28S nrDNA), rpb2 (partial RNA polymerase II second largest subunit gene) and tub2 (β-tubulin gene) sequences was performed on 345 strains representing Chaetomiaceae and 58 strains of other families in Sordariales. Divergence times based on the multi-gene phylogeny were estimated as aid to determine the genera in the family. Genera were delimited following the criteria that a genus must be a statistically well-supported monophyletic clade in both the multigene phylogeny and molecular dating analysis, fall within a divergence time of over 27 million years ago, and be supported by ecological preference or phenotypic traits. Based on the results of the phylogeny and molecular dating analyses, combined with morphological characters and temperature-growth characteristics, 50 genera and 275 species are accepted in Chaetomiaceae. Among them, six new genera, six new species, 45 new combinations and three new names are proposed. The results demonstrate that the thermophilic species fall into seven genera (Melanocarpus, Mycothermus, Remersonia, Thermocarpiscus gen. nov., Thermochaetoides gen. nov., Thermothelomyces and Thermothielavioides). These genera cluster in six separate lineages, suggesting that thermophiles independently evolved at least six times within the family. A list of accepted genera and species in Chaetomiaceae, together with information on their MycoBank numbers, living ex-type strains and GenBank accession numbers to ITS, LSU, rpb2 and tub2 sequences is provided. Furthermore, we provide suggestions how to describe and identify Chaetomiaceae species. Taxonomic novelties: new genera: Parvomelanocarpus X.Wei Wang & Houbraken, Pseudohumicola X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Tengochaeta X.Wei Wang & Houbraken, Thermocarpiscus X.Wei Wang & Houbraken, Thermochaetoides X.Wei Wang & Houbraken, Xanthiomyces X.Wei Wang & Houbraken; New species: Botryotrichum geniculatum X.Wei Wang, P.J. Han & F.Y. Bai, Chaetomium subaffine Sergejeva ex X.Wei Wang & Houbraken, Humicola hirsuta X.Wei Wang, P.J. Han & F.Y. Bai, Subramaniula latifusispora X.Wei Wang, P.J. Han & F.Y. Bai, Tengochaeta nigropilosa X.Wei Wang & Houbraken, Trichocladium tomentosum X.Wei Wang, P.J. Han & F.Y. Bai; New combinations: Achaetomiella gracilis (Udagawa) Houbraken, X.Wei Wang, P.J. Han & F.Y. Bai, Allocanariomyces americanus (Cañete-Gibas et al.) Cañete-Gibas, Wiederhold, X.Wei Wang & Houbraken, Amesia dreyfussii (Arx) X.Wei Wang & Houbraken, Amesia raii (G. Malhotra & Mukerji) X.Wei Wang & Houbraken, Arcopilus macrostiolatus (Stchigel et al.) X.Wei Wang & Houbraken, Arcopilus megasporus (Sörgel ex Seth) X.Wei Wang & Houbraken, Arcopilus purpurascens (Udagawa & Y. Sugiy.) X.Wei Wang & Houbraken, Arxotrichum deceptivum (Malloch & Benny) X.Wei Wang & Houbraken, Arxotrichum gangligerum (L.M. Ames) X.Wei Wang & Houbraken, Arxotrichum officinarum (M. Raza & L. Cai) X.Wei Wang & Houbraken, Arxotrichum piluliferoides (Udagawa & Y. Horie) X.Wei Wang & Houbraken, Arxotrichum repens (Guarro & Figueras) X.Wei Wang & Houbraken, Arxotrichum sinense (K.T. Chen) X.Wei Wang & Houbraken, Botryotrichum inquinatum (Udagawa & S. Ueda) X.Wei Wang & Houbraken, Botryotrichum retardatum (A. Carter & R.S. Khan) X.Wei Wang & Houbraken, Botryotrichum trichorobustum (Seth) X.Wei Wang & Houbraken, Botryotrichum vitellinum (A. Carter) X.Wei Wang & Houbraken, Collariella anguipilia (L.M. Ames) X.Wei Wang & Houbraken, Collariella hexagonospora (A. Carter & Malloch) X.Wei Wang & Houbraken, Collariella pachypodioides (L.M. Ames) X.Wei Wang & Houbraken, Ovatospora amygdalispora (Udagawa & T. Muroi) X.Wei Wang & Houbraken, Ovatospora angularis (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, Parachaetomium biporatum (Cano & Guarro) X.Wei Wang & Houbraken, Parachaetomium hispanicum (Guarro & Arx) X.Wei Wang & Houbraken, Parachaetomium inaequale (Pidopl. et al.) X.Wei Wang & Houbraken, Parachaetomium longiciliatum (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, Parachaetomium mareoticum (Besada & Yusef) X.Wei Wang & Houbraken, Parachaetomium muelleri (Arx) X.Wei Wang & Houbraken, Parachaetomium multispirale (A. Carter et al.) X.Wei Wang & Houbraken, Parachaetomium perlucidum (Sergejeva) X.Wei Wang & Houbraken, Parachaetomium subspirilliferum (Sergejeva) X.Wei Wang & Houbraken, Parathielavia coactilis (Nicot) X.Wei Wang & Houbraken, Parvomelanocarpus tardus (X.Wei Wang & Samson) X.Wei Wang & Houbraken, Parvomelanocarpus thermophilus (Abdullah & Al-Bader) X.Wei Wang & Houbraken, Pseudohumicola atrobrunnea (X.Wei Wang et al.) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Pseudohumicola pulvericola (X.Wei Wang et al.) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Pseudohumicola semispiralis (Udagawa & Cain) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Pseudohumicola subspiralis (Chivers) X.Wei Wang, P.J. Han, F.Y. Bai & Houbraken, Staphylotrichum koreanum (Hyang B. Lee & T.T.T. Nguyen) X.Wei Wang & Houbraken, Staphylotrichum limonisporum (Z.F. Zhang & L. Cai) X.Wei Wang & Houbraken, Subramaniula lateralis (Yu Zhang & L. Cai) X.Wei Wang & Houbraken, Thermocarpiscus australiensis (Tansey & M.A. Jack) X.Wei Wang & Houbraken, Thermochaetoides dissita (Cooney & R. Emers.) X.Wei Wang & Houbraken, Thermochaetoides thermophila (La Touche) X.Wei Wang & Houbraken, Xanthiomyces spinosus (Chivers) X.Wei Wang & Houbraken; New names: Chaetomium neoglobosporum X.Wei Wang & Houbraken, Thermothelomyces fergusii X.Wei Wang & Houbraken, Thermothelomyces myriococcoides X.Wei Wang & Houbraken; Lecto- and / or epi-typifications (basionyms): Botryoderma rostratum Papendorf & H.P. Upadhyay, Botryotrichum piluliferum Sacc. & Marchal, Chaetomium carinthiacum Sörgel, Thielavia heterothallica Klopotek. Citation: Wang XW, Han PJ, Bai FY, Luo A, Bensch K, Meijer M, Kraak B, Han DY, Sun BD, Crous PW, Houbraken J (2022). Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Studies in Mycology 101: 121-243. doi: 10.3114/sim.2022.101.03.
Collapse
Affiliation(s)
- X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - P.J. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - A. Luo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - M. Meijer
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Kraak B.
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - D.Y. Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - B.D. Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Road, Chaoyang District, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
37
|
Lee JH, Ten LN, Lim SK, Ryu JJ, Avalos-Ruiz D, Lee SY, Jung HY. Molecular and Morphological Characteristics of a New Species Collected from an Insect ( Cicindela transbaicalica) in Korea. MYCOBIOLOGY 2022; 50:181-187. [PMID: 37969691 PMCID: PMC10635233 DOI: 10.1080/12298093.2022.2080333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/04/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2023]
Abstract
To exploit insect-derived fungi, insects were collected from seven different regions in Korea, including Gyeongbuk, Goryeong, and several fungi were isolated from them. A fungal strain designated 21-64-D was isolated from riparian tiger beetle (Cicindela transbaicalica) and morphologically identified as a species belonging to the genus Oidiodendron. Phylogenetic analysis using the nucleotide sequences of internal transcribed spacer (ITS) regions and the partial sequence of the large subunit of the nuclear ribosomal RNA (LSU) gene revealed the distinct phylogenetic position of the isolate among recognized Oidiodendron species including its closest neighbors O. chlamydosporicum, O. citrinum, O. maius, and O. pilicola. The hyphal and conidial morphology of the strain, particularly club-shaped hyphae, clearly differentiated it from its close relatives. Results indicated that 21-64-D is a novel species in the genus Oidiodendron, for which the name Oidiodendron clavatum sp. nov. is proposed.
Collapse
Affiliation(s)
- Ju-Heon Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Leonid N. Ten
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seong-Keun Lim
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Joo Ryu
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Diane Avalos-Ruiz
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Félix CR, Nascimento BEDS, Valente P, Landell MF. Different plant compartments, different yeasts: the example of the bromeliad phyllosphere. Yeast 2022; 39:363-400. [PMID: 35715939 DOI: 10.1002/yea.3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
The plant phyllosphere is one of the largest sources of microorganisms, including yeasts. In bromeliads, the knowledge of yeasts is dispersed and still incipient. To understand the extent of our knowledge on the subject, this review proposes to compile and synthesize existing knowledge, elucidating possible patterns, biotechnological and taxonomic potentials, bringing to light new knowledge, and identifying information gaps. For such, we systematically review scientific production on yeasts in bromeliads using various databases. The results indicated that the plant compartments flowers, fruits, leaves, and water tank (phytotelma) have been studied when focusing on the yeast community in the bromeliad phyllosphere. More than 180 species of yeasts and yeast-like fungi were recorded from the phyllosphere, 70% were exclusively found in one of these four compartments and only 2% were shared among all. In addition, most of the community had a low frequency of occurrence, and approximately half of the species had a single record. Variables such as bromeliad subfamilies and functional types, as well as plant compartments, were statistically significant, though inconclusive and with low explanatory power. At least 50 yeast species with some biotechnological potentials have been isolated from bromeliads. More than 90% of these species were able to produce extracellular enzymes. In addition, other biotechnological applications have also been recorded. Moreover, new species have been described, though yeasts were only exploited in approximately 1% of the existing bromeliads species, which highlights that there is still much to be explored. Nevertheless, it appears that we are still far from recovering the completeness of the diversity of yeasts in this host. Furthermore, bromeliads proved to be a good ecological model for prospecting new yeasts and for studies on the interaction between plants and yeasts. In addition, the yeast community diverged among plant compartments, establishing bromeliads as a microbiologically complex and heterogeneous mosaic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ciro Ramon Félix
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil.,Programa de Pós-graduação em Diversidade Biológica e Conservação nos Trópicos, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | | | - Patrícia Valente
- Universidade Federal do Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brazil
| | - Melissa Fontes Landell
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, AL, Brazil
| |
Collapse
|
39
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Ferreira-Sá AS, Leonardo-Silva L, Silva LB, Xavier-Santos S. Stinkorns fungi in Central Brazil: expanding the geographic distribution of phalloid species (Phallales, Basidiomycota). BRAZ J BIOL 2022; 84:e257122. [PMID: 35416852 DOI: 10.1590/1519-6984.257122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- A S Ferreira-Sá
- Universidade Estadual de Goiás - UEG, Laboratório de Micologia Básica, Aplicada e Divulgação Científica - FungiLab, Anápolis, GO, Brasil
| | - L Leonardo-Silva
- Universidade Estadual de Goiás - UEG, Laboratório de Micologia Básica, Aplicada e Divulgação Científica - FungiLab, Anápolis, GO, Brasil
| | - L B Silva
- Universidade Estadual de Goiás - UEG, Laboratório de Micologia Básica, Aplicada e Divulgação Científica - FungiLab, Anápolis, GO, Brasil
| | - S Xavier-Santos
- Universidade Estadual de Goiás - UEG, Laboratório de Micologia Básica, Aplicada e Divulgação Científica - FungiLab, Anápolis, GO, Brasil
| |
Collapse
|
41
|
Sun XR, Xu MY, Kong WL, Wu F, Zhang Y, Xie XL, Li DW, Wu XQ. Fine Identification and Classification of a Novel Beneficial Talaromyces Fungal Species from Masson Pine Rhizosphere Soil. J Fungi (Basel) 2022; 8:jof8020155. [PMID: 35205909 PMCID: PMC8877249 DOI: 10.3390/jof8020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere fungi have the beneficial functions of promoting plant growth and protecting plants from pests and pathogens. In our preliminary study, rhizosphere fungus JP-NJ4 was obtained from the soil rhizosphere of Pinus massoniana and selected for further analyses to confirm its functions of phosphate solubilization and plant growth promotion. In order to comprehensively investigate the function of this strain, it is necessary to ascertain its taxonomic position. With the help of genealogical concordance phylogenetic species recognition (GCPSR) using five genes/regions (ITS, BenA, CaM, RPB1, and RPB2) as well as macro-morphological and micro-morphological characters, we accurately determined the classification status of strain JP-NJ4. The concatenated phylogenies of five (or four) gene regions and single gene phylogenetic trees (ITS, BenA, CaM, RPB1, and RPB2 genes) all show that strain JP-NJ4 clustered together with Talaromyces brevis and Talaromyces liani, but differ markedly in the genetic distance (in BenA gene) from type strain and multiple collections of T. brevis and T. liani. The morphology of JP-NJ4 largely matches the characteristics of genes Talaromyces, and the rich and specific morphological information provided by its colonies was different from that of T. brevis and T. liani. In addition, strain JP-NJ4 could produce reduced conidiophores consisting of solitary phialides. From molecular and phenotypic data, strain JP-NJ4 was identified as a putative novel Talaromyces fungal species, designated T. nanjingensis.
Collapse
Affiliation(s)
- Xiao-Rui Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Ming-Ye Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Fei Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - Xing-Li Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
| | - De-Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA;
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (X.-R.S.); (M.-Y.X.); (W.-L.K.); (F.W.); (Y.Z.); (X.-L.X.)
- Correspondence:
| |
Collapse
|
42
|
Magaña-Dueñas V, Cano-Lira JF, Stchigel AM. New Dothideomycetes from Freshwater Habitats in Spain. J Fungi (Basel) 2021; 7:1102. [PMID: 34947084 PMCID: PMC8705806 DOI: 10.3390/jof7121102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/23/2023] Open
Abstract
The Dothideomycetes are a class of cosmopolitan fungi that are present principally in terrestrial environments, but which have also been found in freshwater and marine habitats. In the present study, more than a hundred samples of plant debris were collected from various freshwater locations in Spain. Its incubation in wet chambers allowed us to detect and to isolate in pure culture numerous fungi producing asexual reproductive fruiting bodies (conidiomata). Thanks to a morphological comparison and to a phylogenetic analysis that combined the internal transcribed spacer (ITS) region of the nrDNA with fragments of the RNA polymerase II subunit 2 (rpb2), beta tubulin (tub2), and the translation elongation factor 1-alpha (tef-1) genes, six of those strains were identified as new species to science. Three belong to the family Didymellaceae: Didymella brevipilosa, Heterophoma polypusiformis and Paraboeremia clausa; and three belong to the family Phaeosphaeriaceae:Paraphoma aquatica, Phaeosphaeria fructigena and Xenophoma microspora. The finding of these new taxa significantly increases the number of the coelomycetous fungi that have been described from freshwater habitats.
Collapse
Affiliation(s)
| | - José Francisco Cano-Lira
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Tarragona, Spain; (V.M.-D.); (A.M.S.)
| | | |
Collapse
|
43
|
Comparative Mitogenomics of Fungal Species in Stachybotryaceae Provides Evolutionary Insights into Hypocreales. Int J Mol Sci 2021; 22:ijms222413341. [PMID: 34948138 PMCID: PMC8706829 DOI: 10.3390/ijms222413341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 01/03/2023] Open
Abstract
Stachybotrys chartarum is one of the world’s ten most feared fungi within the family Stachybotryaceae, although to date, not a single mitogenome has been documented for Stachybotryaceae. Herein, six mitogenomes of four different species in Stachybotryaceae are newly reported. The S. chartarum mitogenome was 30.7 kb in length and contained two introns (one each in rnl and cox1). A comparison of the mitogenomes of three different individuals of S. chartarum showed few nucleotide variations and conservation of gene content/order and intron insertion. A comparison of the mitogenomes of four different Stachybotryaceae species (Memnoniella echinata, Myrothecium inundatum, S. chartarum, and S. chlorohalonata), however, revealed variations in intron insertion, gene order/content, and nad2/nad3 joining pattern. Further investigations on all Hypocreales species with available mitogenomes showed greater variabilities in gene order (six patterns) and nad2/nad3 joining pattern (five patterns) although a dominant pattern always existed in each case. Ancestral state estimation showed that in each case the dominant pattern was always more ancestral than those rare patterns. Phylogenetic analyses based on mitochondrion-encoded genes supported the placement of Stachybotryaceae in Hypocreales. The crown age of Stachybotryaceae was estimated to be approximately the Early Cretaceous (141–142 Mya). This study greatly promotes our understanding of the evolution of fungal species in Hypocreales.
Collapse
|
44
|
Boonmee S, Wanasinghe DN, Calabon MS, Huanraluek N, Chandrasiri SKU, Jones GEB, Rossi W, Leonardi M, Singh SK, Rana S, Singh PN, Maurya DK, Lagashetti AC, Choudhary D, Dai YC, Zhao CL, Mu YH, Yuan HS, He SH, Phookamsak R, Jiang HB, Martín MP, Dueñas M, Telleria MT, Kałucka IL, Jagodziński AM, Liimatainen K, Pereira DS, Phillips AJL, Suwannarach N, Kumla J, Khuna S, Lumyong S, Potter TB, Shivas RG, Sparks AH, Vaghefi N, Abdel-Wahab MA, Abdel-Aziz FA, Li GJ, Lin WF, Singh U, Bhatt RP, Lee HB, Nguyen TTT, Kirk PM, Dutta AK, Acharya K, Sarma VV, Niranjan M, Rajeshkumar KC, Ashtekar N, Lad S, Wijayawardene NN, Bhat DJ, Xu RJ, Wijesinghe SN, Shen HW, Luo ZL, Zhang JY, Sysouphanthong P, Thongklang N, Bao DF, Aluthmuhandiram JVS, Abdollahzadeh J, Javadi A, Dovana F, Usman M, Khalid AN, Dissanayake AJ, Telagathoti A, Probst M, Peintner U, Garrido-Benavent I, Bóna L, Merényi Z, Boros L, Zoltán B, Stielow JB, Jiang N, Tian CM, Shams E, Dehghanizadeh F, Pordel A, Javan-Nikkhah M, Denchev TT, Denchev CM, Kemler M, Begerow D, Deng CY, Harrower E, Bozorov T, Kholmuradova T, Gafforov Y, Abdurazakov A, Xu JC, Mortimer PE, Ren GC, Jeewon R, Maharachchikumbura SSN, Phukhamsakda C, Mapook A, Hyde KD. Fungal diversity notes 1387-1511: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2021; 111:1-335. [PMID: 34899100 PMCID: PMC8648402 DOI: 10.1007/s13225-021-00489-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023]
Abstract
This article is the 13th contribution in the Fungal Diversity Notes series, wherein 125 taxa from four phyla, ten classes, 31 orders, 69 families, 92 genera and three genera incertae sedis are treated, demonstrating worldwide and geographic distribution. Fungal taxa described and illustrated in the present study include three new genera, 69 new species, one new combination, one reference specimen and 51 new records on new hosts and new geographical distributions. Three new genera, Cylindrotorula (Torulaceae), Scolecoleotia (Leotiales genus incertae sedis) and Xenovaginatispora (Lindomycetaceae) are introduced based on distinct phylogenetic lineages and unique morphologies. Newly described species are Aspergillus lannaensis, Cercophora dulciaquae, Cladophialophora aquatica, Coprinellus punjabensis, Cortinarius alutarius, C. mammillatus, C. quercoflocculosus, Coryneum fagi, Cruentomycena uttarakhandina, Cryptocoryneum rosae, Cyathus uniperidiolus, Cylindrotorula indica, Diaporthe chamaeropicola, Didymella azollae, Diplodia alanphillipsii, Dothiora coronicola, Efibula rodriguezarmasiae, Erysiphe salicicola, Fusarium queenslandicum, Geastrum gorgonicum, G. hansagiense, Helicosporium sexualis, Helminthosporium chiangraiensis, Hongkongmyces kokensis, Hydrophilomyces hydraenae, Hygrocybe boertmannii, Hyphoderma australosetigerum, Hyphodontia yunnanensis, Khaleijomyces umikazeana, Laboulbenia divisa, Laboulbenia triarthronis, Laccaria populina, Lactarius pallidozonarius, Lepidosphaeria strobelii, Longipedicellata megafusiformis, Lophiotrema lincangensis, Marasmius benghalensis, M. jinfoshanensis, M. subtropicus, Mariannaea camelliae, Melanographium smilaxii, Microbotryum polycnemoides, Mimeomyces digitatus, Minutisphaera thailandensis, Mortierella solitaria, Mucor harpali, Nigrograna jinghongensis, Odontia huanrenensis, O. parvispina, Paraconiothyrium ajrekarii, Parafuscosporella niloticus, Phaeocytostroma yomensis, Phaeoisaria synnematicus, Phanerochaete hainanensis, Pleopunctum thailandicum, Pleurotheciella dimorphospora, Pseudochaetosphaeronema chiangraiense, Pseudodactylaria albicolonia, Rhexoacrodictys nigrospora, Russula paravioleipes, Scolecoleotia eriocamporesi, Seriascoma honghense, Synandromyces makranczyi, Thyridaria aureobrunnea, Torula lancangjiangensis, Tubeufia longihelicospora, Wicklowia fusiformispora, Xenovaginatispora phichaiensis and Xylaria apiospora. One new combination, Pseudobactrodesmium stilboideus is proposed. A reference specimen of Comoclathris permunda is designated. New host or distribution records are provided for Acrocalymma fici, Aliquandostipite khaoyaiensis, Camarosporidiella laburni, Canalisporium caribense, Chaetoscutula juniperi, Chlorophyllum demangei, C. globosum, C. hortense, Cladophialophora abundans, Dendryphion hydei, Diaporthe foeniculina, D. pseudophoenicicola, D. pyracanthae, Dictyosporium pandanicola, Dyfrolomyces distoseptatus, Ernakulamia tanakae, Eutypa flavovirens, E. lata, Favolus septatus, Fusarium atrovinosum, F. clavum, Helicosporium luteosporum, Hermatomyces nabanheensis, Hermatomyces sphaericoides, Longipedicellata aquatica, Lophiostoma caudata, L. clematidis-vitalbae, Lophiotrema hydei, L. neoarundinaria, Marasmiellus palmivorus, Megacapitula villosa, Micropsalliota globocystis, M. gracilis, Montagnula thailandica, Neohelicosporium irregulare, N. parisporum, Paradictyoarthrinium diffractum, Phaeoisaria aquatica, Poaceascoma taiwanense, Saproamanita manicata, Spegazzinia camelliae, Submersispora variabilis, Thyronectria caudata, T. mackenziei, Tubeufia chiangmaiensis, T. roseohelicospora, Vaginatispora nypae, Wicklowia submersa, Xanthagaricus necopinatus and Xylaria haemorrhoidalis. The data presented herein are based on morphological examination of fresh specimens, coupled with analysis of phylogenetic sequence data to better integrate taxa into appropriate taxonomic ranks and infer their evolutionary relationships.
Collapse
Affiliation(s)
- Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sajini K. U. Chandrasiri
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Gareth E. B. Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Walter Rossi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Marco Leonardi
- Section Environmental Sciences, Department MeSVA, University of L’Aquila, 67100 Coppito, AQ Italy
| | - Sanjay K. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Shiwali Rana
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Paras N. Singh
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepak K. Maurya
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Ajay C. Lagashetti
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Deepika Choudhary
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Yu-Cheng Dai
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Chang-Lin Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming, 650224 People’s Republic of China
| | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 People’s Republic of China
| | - Shuang-Hui He
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Rungtiwa Phookamsak
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Hong-Bo Jiang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - María P. Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Margarita Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - M. Teresa Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Izabela L. Kałucka
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Łódź, Poland
| | | | - Kare Liimatainen
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS Surrey UK
| | - Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, 10300 Bangkok, Thailand
| | - Tarynn B. Potter
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Agriculture and Fisheries, Dutton Park, QLD 4102 Australia
| | - Adam H. Sparks
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
- Department of Primary Industries and Regional Development, Bentley Delivery Centre, Locked Bag 4, Bentley, WA 6983 Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, No 2596 South Lekai Rd, Lianchi District, Baoding, 071001 Hebei China
| | - Wen-Fei Lin
- Institute of Edible and Medicinal Fungi, College of Life Science, Zhejiang University, 866 Yuhangtang Rd, Xihu District, Hangzhou, 310058 Zhejiang China
| | - Upendra Singh
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Rajendra P. Bhatt
- Department of Botany & Microbiology, HNB Garhwal University, Uttarakhand 246174 Srinagar, Garhwal, India
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, 61186 Korea
| | - Paul M. Kirk
- Biodiversity Informatics and Spatial Analysis, Royal Botanic Gardens Kew, Richmond, TW9 3DS Surrey UK
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, North-24-Parganas, Barasat, West Bengal PIN- 700126 India
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - V. Venkateswara Sarma
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
| | - M. Niranjan
- Fungal Biotechnology Laboratory, Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Itanagar, Arunachal Pradesh 791112 India
| | - Kunhiraman C. Rajeshkumar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nikhil Ashtekar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Sneha Lad
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004 India
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan People’s Republic of China
| | - Darbe J. Bhat
- Azad Housing Society, No. 128/1-J, Goa Velha, Curca, Goa India
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hong-Wei Shen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
| | - Jing-Yi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 People’s Republic of China
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O. Box: 811, Vientiane Capital, Lao People’s Democratic Republic
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 People’s Republic of China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Janith V. S. Aluthmuhandiram
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management On Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 People’s Republic of China
| | - Jafar Abdollahzadeh
- Department of Plant Protection, Agriculture Faculty, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Alireza Javadi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 1454, 19395 Tehran, Iran
| | | | - Muhammad Usman
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Abdul Nasir Khalid
- Fungal Biology and Systematics Research Laboratory, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590 Pakistan
| | - Asha J. Dissanayake
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Anusha Telagathoti
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Maraike Probst
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - Isaac Garrido-Benavent
- Department of Botany and Geology (Fac. CC. Biológicas) & Institut Cavanilles de Biodiversitat I Biologia Evolutiva (ICBIBE), Universitat de València, C/ Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Lilla Bóna
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - Zsolt Merényi
- Institute of Biochemistry, Synthetic and Systems Biology Unit, Biological Research Centre, Szeged, 6726 Hungary
| | | | - Bratek Zoltán
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest, 1117 Hungary
| | - J. Benjamin Stielow
- Centre of Expertise in Mycology of Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Thermo Fisher Diagnostics, Specialty Diagnostics Group, Landsmeer, The Netherlands
| | - Ning Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Esmaeil Shams
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Farzaneh Dehghanizadeh
- Department of Agricultural Biotechnology, College of Agriculture Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - Martin Kemler
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Dominik Begerow
- Evolution der Pflanzen und Pilze, Ruhr-Universität Bochum, ND 03, Universitätsstraße 150, 44801 Bochum, Germany
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan district, 550001 Guiyang, People’s Republic of China
| | | | - Tohir Bozorov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Republic of Uzbekistan, Yukori-Yuz, Kubray Ds, Tashkent, Uzbekistan 111226
| | - Tutigul Kholmuradova
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
| | - Aziz Abdurazakov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- Department of Ecology and Botany, Faculty of Natural Sciences, Andijan State University, 12 University Street, Andijan, Uzbekistan 170100
| | - Jian-Chu Xu
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Honghe County, Kunming, 654400 Yunnan People’s Republic of China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, 650201 Yunnan People’s Republic of China
| | - Peter E. Mortimer
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, 650201 Yunnan People’s Republic of China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Republic of Mauritius
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731 People’s Republic of China
| | - Chayanard Phukhamsakda
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan People’s Republic of China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 People’s Republic of China
| |
Collapse
|
45
|
Wei DP, Wanasinghe DN, Gentekaki E, Thiyagaraja V, Lumyong S, Hyde KD. Morphological and Phylogenetic Appraisal of Novel and Extant Taxa of Stictidaceae from Northern Thailand. J Fungi (Basel) 2021; 7:880. [PMID: 34682300 PMCID: PMC8537192 DOI: 10.3390/jof7100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/26/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Stictidaceae comprises taxa with diverse lifestyles. Many species in this family are drought resistant and important for studying fungal adaptation and evolution. Stictidaceae comprises 32 genera, but many of them have been neglected for decades due to the lack of field collections and molecular data. In this study, we introduce a new species Fitzroyomyces hyaloseptisporus and a new combination Fitzroyomycespandanicola. We also provide additional morphological and molecular data for Ostropomyces pruinosellus and O. thailandicus based on new collections isolated from an unidentified woody dicotyledonous host in Chiang Rai, Thailand. Taxonomic conclusions are made with the aid of morphological evidence and phylogenetic analysis of combined LSU, ITS and mtSSU sequence data. Characteristics such as the shape and septation of ascospores and conidia as well as lifestyles among genera of Stictidaceae are discussed.
Collapse
Affiliation(s)
- De-Ping Wei
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.-P.W.); (D.N.W.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (E.G.); (V.T.)
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.-P.W.); (D.N.W.)
- World Agroforestry Centre, East and Central Asia, Kunming 650201, China
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming 650201, China
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (E.G.); (V.T.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Vinodhini Thiyagaraja
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (E.G.); (V.T.)
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, CHiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.-P.W.); (D.N.W.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (E.G.); (V.T.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
| |
Collapse
|
46
|
Haelewaters D, Park D, Johnston PR. Multilocus phylogenetic analysis reveals that Cyttariales is a synonym of Helotiales. Mycol Prog 2021. [DOI: 10.1007/s11557-021-01736-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Colletotrichum species and complexes: geographic distribution, host range and conservation status. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00491-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Discovery and Extrolite Production of Three New Species of Talaromyces Belonging to Sections Helici and Purpurei from Freshwater in Korea. J Fungi (Basel) 2021; 7:jof7090722. [PMID: 34575760 PMCID: PMC8471979 DOI: 10.3390/jof7090722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Three novel fungal species, Talaromyces gwangjuensis, T. koreana, and T. teleomorpha were found in Korea during an investigation of fungi in freshwater. The new species are described here using morphological characters, a multi-gene phylogenetic analysis of the ITS, BenA, CaM, RPB2 regions, and extrolite data. Talaromyces gwangjuensis is characterized by restricted growth on CYA, YES, monoverticillate and biverticillate conidiophores, and globose smooth-walled conidia. Talaromyces koreana is characterized by fast growth on MEA, biverticillate conidiophores, or sometimes with additional branches and the production of acid on CREA. Talaromyces teleomorpha is characterized by producing creamish-white or yellow ascomata on OA and MEA, restricted growth on CREA, and no asexual morph observed in the culture. A phylogenetic analysis of the ITS, BenA, CaM, and RPB2 sequences showed that the three new taxa form distinct monophyletic clades. Detailed descriptions, illustrations, and phylogenetic trees are provided.
Collapse
|
49
|
Khuna S, Suwannarach N, Kumla J, Frisvad JC, Matsui K, Nuangmek W, Lumyong S. Growth Enhancement of Arabidopsis ( Arabidopsis thaliana) and Onion ( Allium cepa) With Inoculation of Three Newly Identified Mineral-Solubilizing Fungi in the Genus Aspergillus Section Nigri. Front Microbiol 2021; 12:705896. [PMID: 34456888 PMCID: PMC8397495 DOI: 10.3389/fmicb.2021.705896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Some soil fungi play an important role in supplying elements to plants by the solubilizing of insoluble minerals in the soil. The present study was conducted to isolate the mineral-solubilizing fungi from rhizosphere soil in some agricultural areas in northern Thailand. Seven fungal strains were obtained and identified using a polyphasic taxonomic approach with multilocus phylogenetic and phenotypic (morphology and extrolite profile) analyses. All obtained fungal strains were newly identified in the genus Aspergillus section Nigri, Aspergillus chiangmaiensis (SDBR-CMUI4 and SDBR-CMU15), Aspergillus pseudopiperis (SDBR-CMUI1 and SDBR-CMUI7), and Aspergillus pseudotubingensis (SDBR-CMUO2, SDBR-CMUO8, and SDBR-CMU20). All fungal strains were able to solubilize the insoluble mineral form of calcium, copper, cobalt, iron, manganese, magnesium, zinc, phosphorus, feldspar, and kaolin in the agar plate assay. Consequently, the highest phosphate solubilization strains (SDBR-CMUI1, SDBR-CMUI4, and SDBR-CMUO2) of each fungal species were selected for evaluation of their plant growth enhancement ability on Arabidopsis and onion in laboratory and greenhouse experiments, respectively. Plant disease symptoms were not found in any treatment of fungal inoculation and control. All selected fungal strains significantly increased the leaf number, leaf length, dried biomass of shoot and root, chlorophyll content, and cellular inorganic phosphate content in both Arabidopsis and onion plants under supplementation with insoluble mineral phosphate. Additionally, the inoculation of selected fungal strains also improved the yield and quercetin content of onion bulb. Thus, the selected strains reveal the potential in plant growth promotion agents that can be applied as a biofertilizer in the future.
Collapse
Affiliation(s)
- Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jens Christian Frisvad
- Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Wipornpan Nuangmek
- Faculty of Agriculture and Natural Resources, University of Phayao, Phayao, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
50
|
Melanda GCS, Silva-Filho AGS, Lenz AR, Menolli N, de Lima ADA, Ferreira RJ, de Assis NM, Cabral TS, Martín MP, Baseia IG. An Overview of 24 Years of Molecular Phylogenetic Studies in Phallales ( Basidiomycota) With Notes on Systematics, Geographic Distribution, Lifestyle, and Edibility. Front Microbiol 2021; 12:689374. [PMID: 34305850 PMCID: PMC8299787 DOI: 10.3389/fmicb.2021.689374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
The order Phallales (Basidiomycota) is represented by gasteroid fungi with expanded and sequestrate basidiomata, known as stinkhorns and false truffles. In phalloids, the first DNA sequence was published in 1997, and after that, some studies aimed to resolve phylogenetic conflicts and propose new species based on DNA markers; however, the number of families and genera in the order still generates controversies among researchers. Thus, this work aims to provide an overview of Phallales diversity represented by selected DNA markers available in public databases. We retrieved Phallales sequences from DNA databases (GenBank and UNITE) of seven markers: ITS (internal transcribed spacer), nuc-LSU (nuclear large subunit rDNA), nuc-SSU (nuclear small subunit rDNA), mt-SSU (mitochondrial small subunit rDNA), ATP6 (ATPase subunit 6), RPB2 (nuclear protein-coding second largest subunit of RNA polymerase), and TEF1-α (translation elongation factor subunit 1α). To compose our final dataset, all ITS sequences retrieved were subjected to BLASTn searches to identify additional ITS sequences not classified as Phallales. Phylogenetic analyses based on Bayesian and maximum likelihood approaches using single and combined markers were conducted. All ITS sequences were clustered with a cutoff of 98% in order to maximize the number of species hypotheses. The geographic origin of sequences was retrieved, as well as additional information on species lifestyle and edibility. We obtained a total of 1,149 sequences, representing 664 individuals. Sequences of 41 individuals were unidentified at genus level and were assigned to five distinct families. We recognize seven families and 22 genera in Phallales, although the delimitation of some genera must be further revisited in order to recognize only monophyletic groups. Many inconsistencies in species identification are discussed, and the positioning of genera in each family is shown. The clustering revealed 118 species hypotheses, meaning that approximately 20% of all described species in Phallales have DNA sequences available. Information related to geographic distribution represents 462 individuals distributed in 46 countries on all continents, except Antarctica. Most genera are saprotrophic with only one putative ectomycorrhizal genus, and 2.1% of the legitimate specific names recognized in Phallales are confirmed edible species. Great progress in the molecular analyses of phalloids has already been made over these years, but it is still necessary to solve some taxonomic inconsistencies, mainly at genus level, and generate new data to expand knowledge of the group.
Collapse
Affiliation(s)
- Gislaine C. S. Melanda
- Centro de Biociências, Departamento de Micologia, Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Alexandre G. S. Silva-Filho
- Centro de Biociências, Departamento de Botânica e Zoologia, Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Alexandre Rafael Lenz
- Departamento de Ciências Exatas e da Terra, Colegiado de Sistemas de Informação, Universidade do Estado da Bahia (UNEB), Salvador, Brazil
| | - Nelson Menolli
- Departamento de Ciências e Matemática, Subárea de Biologia, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil
- Núcleo de Pesquisa em Micologia, Instituto de Botânica (IBt), São Paulo, Brazil
| | - Alexandro de Andrade de Lima
- Centro de Biociências, Departamento de Micologia, Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | - Nathalia Mendonça de Assis
- Centro de Biociências, Departamento de Botânica e Zoologia, Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| | - Tiara S. Cabral
- Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - María P. Martín
- Departamento de Micología, Real Jardín Botánico – CSIC, Madrid, Spain
| | - Iuri Goulart Baseia
- Centro de Biociências, Departamento de Micologia, Programa de Pós-Graduação em Biologia de Fungos, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
- Centro de Biociências, Departamento de Botânica e Zoologia, Programa de Pós-Graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Brazil
| |
Collapse
|