1
|
Gao W, Cao J, Xie Y, Sun X, Ma Q, Geng Y, Xu C, Guo Y, Zhang M. Diaporthe species causing shoot dieback of Acer (maple) in Henan Province, China. BMC Microbiol 2024; 24:356. [PMID: 39300361 DOI: 10.1186/s12866-024-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Maple is an important ornamental plant in China. With the increasing use of maple trees in landscaping, a symptom of shoot dieback has been observed in Henan province, China. RESULTS In this study, 28 Diaporthe isolates were obtained from symptomatic shoots of maple trees between 2020 and 2023. Phylogenetic analyses based on five loci (ITS, TEF, CAL, HIS and TUB) coupled with morphology of 12 representative isolates identified three known species (D. eres, D. pescicola and D. spinosa) and one new species, namely D. pseudoacerina sp. nov. Koch's postulates confirmed that all these species were pathogenic. Additionally, D. pseudoacerina was able to infect China wingnut (Pterocarya stenoptera), pear (Pyrus sp.), and black locust (Robinia pseudoacacia). This study marks the first report of Diaporthe spinosa and D. pescicola pathogens infecting maple trees. CONCLUSIONS These findings enhance the existing knowledge of the taxonomy and host diversity of Diaporthe species as, while also providing valuable information for managing of maple shoot dieback in Henan Province, China.
Collapse
Affiliation(s)
- Wenkai Gao
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiayuan Cao
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuxu Xie
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuyuan Sun
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qingzhou Ma
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuehua Geng
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chao Xu
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yashuang Guo
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Meng Zhang
- College of Plant Protection, Institute of Fungi, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Zhu Y, Ma L, Xue H, Li Y, Jiang N. New species of Diaporthe (Diaporthaceae, Diaporthales) from Bauhiniavariegata in China. MycoKeys 2024; 108:317-335. [PMID: 39310741 PMCID: PMC11415621 DOI: 10.3897/mycokeys.108.128983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Diaporthe species are known as endophytes, saprobes and pathogens infecting a wide range of plants and resulting in important crop diseases. In the present study, four strains of Diaporthe were obtained from diseased leaves of Bauhiniavariegata in Guangdong Province, China. Phylogenetic analyses were conducted to identify these strains using five gene regions: internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-α (tef1) and β-tubulin (tub2). The results combined with morphology revealed two new species of Diaporthe named D.bauhiniicola in D.arecae species complex and D.guangzhouensis in D.sojae species complex.
Collapse
Affiliation(s)
- Yaquan Zhu
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Lei Ma
- Forest Pest Control and Quarantine Station of Tonghua County, Tonghua 134001, ChinaForest Pest Control and Quarantine Station of Tonghua CountyTonghuaChina
| | - Han Xue
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Yong Li
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| | - Ning Jiang
- Key Laboratory of Biodiversity Conservation of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, ChinaEcology and Nature Conservation Institute, Chinese Academy of ForestryBeijingChina
| |
Collapse
|
3
|
Jia A, Lin L, Li Y, Fan X. Diversity and Pathogenicity of Six Diaporthe Species from Juglans regia in China. J Fungi (Basel) 2024; 10:583. [PMID: 39194908 DOI: 10.3390/jof10080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Walnut (Juglans regia L.) is cultivated extensively in China for its substantial economic potential as a woody oil species. However, many diseases caused by Diaporthe greatly affect the health of Juglans regia trees. The present study revealed the presence of Diaporthe species from Juglans regia. A total of six species of Diaporthe were isolated from twigs of Juglans regia in three provinces in China, including two known species (Diaporthe gammata and D. tibetensis) and four novel species (D. chaotianensis, D. olivacea, D. shangluoensis and D. shangrilaensis). Phylogenetic relationships of the new species were determined by multilocus phylogenetic analyses based on partial sequences of the internal transcribed spacer (ITS) region, calmodulin (cal) gene, histone H3 (his3) gene, translation elongation factor 1-α (tef1-α) gene and β-tubulin (tub2) gene. Pathogenicity tests indicated that all Diaporthe species obtained in this study were confirmed as pathogens of Juglans regia. This study deepens the understanding of species associated with several disease symptoms in Juglans regia and provides useful information for effective disease control.
Collapse
Affiliation(s)
- Aoli Jia
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lu Lin
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Yixuan Li
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinlei Fan
- The Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Wang D, Deng D, Zhan J, Wu W, Duan C, Sun S, Zhu Z. An Emerging Disease of Chickpea, Basal Stem Rot Caused by Diaporthe aspalathi in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1950. [PMID: 39065477 PMCID: PMC11280406 DOI: 10.3390/plants13141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Chickpea (Cicer arietinum L.) is an important legume crop worldwide. An emerging disease, basal stem rot with obvious wilt symptoms, was observed in the upper part of chickpea plants during the disease survey in Qiubei County of Yunnan Province. Three fungal isolates (ZD36-1, ZD36-2, and ZD36-3) were obtained from the diseased tissue of chickpea plants collected from the field. Those isolates were morphologically found to be similar to Diaporthe aspalathi. Molecular sequence analyses of multiple gene regions (ITS, tef1, tub2, cal, and his3) indicated that the three isolates showed a high identity with D. aspalathi. Pathogenicity and host range tests of the isolates were performed on the original host chickpea and eight other legume crops. The isolates were strongly pathogenic to chickpea and appeared highly pathogenic to soybean, cowpea, and mung bean; moderated or mild pathogenic to adzuki bean and common bean; however, the isolates did not cause symptoms on grass pea (Lathyrus sativus). Diaporthe aspalathi was previously reported as a main pathogen causing the southern stem canker in soybean. To our knowledge, this is the first report of D. aspalathi inducing basal stem rot on chickpea worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Suli Sun
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| | - Zhendong Zhu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.W.); (D.D.); (J.Z.); (W.W.); (C.D.)
| |
Collapse
|
5
|
Wang X, Kotta-Loizou I, Coutts RHA, Deng H, Han Z, Hong N, Shafik K, Wang L, Guo Y, Yang M, Xu W, Wang G. A circular single-stranded DNA mycovirus infects plants and confers broad-spectrum fungal resistance. MOLECULAR PLANT 2024; 17:955-971. [PMID: 38745413 DOI: 10.1016/j.molp.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.
Collapse
Affiliation(s)
- Xianhong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK; Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Robert H A Coutts
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Huifang Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Karim Shafik
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China; Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria 21526, Egypt
| | - Liping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Yashuang Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Mengmeng Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| | - Guoping Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Lab of Plant Pathology of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
6
|
Liu HY, Luo D, Huang HL, Yang Q. Two new species of Diaporthe (Diaporthaceae, Diaporthales) associated with Camelliaoleifera leaf spot disease in Hainan Province, China. MycoKeys 2024; 102:225-243. [PMID: 38449924 PMCID: PMC10915747 DOI: 10.3897/mycokeys.102.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Tea-oil tree (Camelliaoleifera Abel.) is an important edible oil woody plant with a planting area over 3,800,000 hectares in southern China. Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. Here, we conducted an extensive field survey in Hainan Province to identify and characterise Diaporthe species associated with tea-oil leaf spots. As a result, eight isolates of Diaporthe were obtained from symptomatic C.oleifera leaves. These isolates were studied, based on morphological and phylogenetic analyses of partial ITS, cal, his3, tef1 and tub2 gene regions. Two new Diaporthe species (D.hainanensis and D.pseudofoliicola) were proposed and described herein.
Collapse
Affiliation(s)
- Hong Y. Liu
- Forestry Biotechnology Hunan Key Laboratory, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dun Luo
- The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Han L. Huang
- The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qin Yang
- Forestry Biotechnology Hunan Key Laboratory, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
7
|
Cheng J, Luo T, Wu M, Yang L, Chen W, Li G, Zhang J. The Identity, Virulence, and Antifungal Effects of the Didymellacesous Fungi Associated with the Rapeseed Blackleg Pathogen Leptosphaeria biglobosa. J Fungi (Basel) 2023; 9:1167. [PMID: 38132768 PMCID: PMC10744798 DOI: 10.3390/jof9121167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Eight fungal strains (P1 to P8) were isolated from rapeseed stems (Brassica napus) infected with the blackleg pathogen Leptosphaeria biglobosa (Lb). They formed pycnidia with similar morphology to those of Lb, and thus were considered as Lb relatives (LbRs). The species-level identification of these strains was performed. Their virulence on rapeseed and efficacy in the suppression of Lb infection were determined, and the biocontrol potential and biocontrol mechanisms of strain P2 were investigated. The results showed that the LbRs belong to two teleomorphic genera in the family Didymellaceae, Didymella for P1 to P7 and Boeremia for P8. Pathogenicity tests on rapeseed cotyledons and stems indicated the LbRs were weakly virulent compared to L. biglobosa. Co-inoculation assays on rapeseed cotyledons demonstrated that P1 to P7 (especially P1 to P4) had a suppressive effect on Lb infection, whereas P8 had a marginal effect on infection by L. biglobosa. Moreover, D. macrostoma P2 displayed a more aggressive behavior than L. biglobosa in the endophytic colonization of healthy rapeseed cotyledons. Cultures of P2 in potato dextrose broth (PDB) and pycnidiospore mucilages exuded from P2 pycnidia showed antifungal activity to L. biglobosa. Further leaf assays revealed that antifungal metabolites (AM) of strain P2 from PDB cultures effectively suppressed infection by L. biglobosa, Botrytis cinerea (gray mold), and Sclerotinia sclerotiorum (white mold). An antifungal metabolite, namely penicillither, was purified and identified from PDB cultures and detected in pycnidiospore mucilages of strain P2. This study suggests that the LbRs are a repertoire for screening biocontrol agents (BCAs) against rapeseed diseases, and D. macrostoma P2 is a multi-functional BCA, a penicillither producer, and an endophyte.
Collapse
Affiliation(s)
- Junyu Cheng
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Tao Luo
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA;
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| |
Collapse
|
8
|
Pereira DS, Hilário S, Gonçalves MFM, Phillips AJL. Diaporthe Species on Palms: Molecular Re-Assessment and Species Boundaries Delimitation in the D. arecae Species Complex. Microorganisms 2023; 11:2717. [PMID: 38004729 PMCID: PMC10673533 DOI: 10.3390/microorganisms11112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Due to cryptic diversification, phenotypic plasticity and host associations, multilocus phylogenetic analyses have become the most important tool in accurately identifying and circumscribing species in the Diaporthe genus. However, the application of the genealogical concordance criterion has often been overlooked, ultimately leading to an exponential increase in novel Diaporthe spp. Due to the large number of species, many lineages remain poorly understood under the so-called species complexes. For this reason, a robust delimitation of the species boundaries in Diaporthe is still an ongoing challenge. Therefore, the present study aimed to resolve the species boundaries of the Diaporthe arecae species complex (DASC) by implementing an integrative taxonomic approach. The Genealogical Phylogenetic Species Recognition (GCPSR) principle revealed incongruences between the individual gene genealogies. Moreover, the Poisson Tree Processes' (PTPs) coalescent-based species delimitation models identified three well-delimited subclades represented by the species D. arecae, D. chiangmaiensis and D. smilacicola. These results evidence that all species previously described in the D. arecae subclade are conspecific, which is coherent with the morphological indistinctiveness observed and the absence of reproductive isolation and barriers to gene flow. Thus, 52 Diaporthe spp. are reduced to synonymy under D. arecae. Recent population expansion and the possibility of incomplete lineage sorting suggested that the D. arecae subclade may be considered as ongoing evolving lineages under active divergence and speciation. Hence, the genetic diversity and intraspecific variability of D. arecae in the context of current global climate change and the role of D. arecae as a pathogen on palm trees and other hosts are also discussed. This study illustrates that species in Diaporthe are highly overestimated, and highlights the relevance of applying an integrative taxonomic approach to accurately circumscribe the species boundaries in the genus Diaporthe.
Collapse
Affiliation(s)
- Diana S. Pereira
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Sandra Hilário
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Porto, Portugal;
- Faculty of Sciences, Biology Department, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Micael F. M. Gonçalves
- Faculty of Sciences, Biology Department, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
- Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
| |
Collapse
|
9
|
Lambert C, Schweizer L, Matio Kemkuignou B, Anoumedem EGM, Kouam SF, Marin-Felix Y. Four new endophytic species of Diaporthe (Diaporthaceae, Diaporthales) isolated from Cameroon. MycoKeys 2023; 99:319-362. [PMID: 37915461 PMCID: PMC10616871 DOI: 10.3897/mycokeys.99.110043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) is a large group of fungi frequently reported as phytopathogens, with ubiquitous distribution across the globe. Diaporthe have traditionally been characterized by the morphology of their ana- and teleomorphic state, revealing a high degree of heterogeneity as soon as DNA sequencing was utilized across the different members of the group. Their relevance for biotechnology and agriculture attracts the attention of taxonomists and natural product chemists alike in context of plant protection and exploitation for their potential to produce bioactive secondary metabolites. While more than 1000 species are described to date, Africa, as a natural habitat, has so far been under-sampled. Several endophytic fungi belonging to Diaporthe were isolated from different plant hosts in Cameroon over the course of this study. Phylogenetic analyses based on DNA sequence data of the internal transcribed spacer region and intervening 5.8S nrRNA gene, and partial fragments of the calmodulin, beta-tubulin, histone and the translation elongation factor 1-α genes, demonstrated that these isolates represent four new species, i.e. D.brideliae, D.cameroonensis, D.pseudoanacardii and D.rauvolfiae. Moreover, the description of D.isoberliniae is here emended, now incorporating the morphology of beta and gamma conidia produced by two of our endophytic isolates, which had never been documented in previous records. Moreover, the paraphyletic nature of the genus is discussed and suggestions are made for future revision of the genus.
Collapse
Affiliation(s)
- Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, GermanyMolecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI)BraunschweigGermany
| | - Lena Schweizer
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Elodie Gisèle M. Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Simeon F. Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, CameroonUniversity of Yaoundé IYaoundeCameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, GermanyDepartment of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/BraunschweigBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
10
|
Chen H, Song Y, Wang S, Fan K, Wang H, Mao Y, Zhang J, Xu Y, Yin X, Wang Y, Ding Z. Improved phyllosphere microbiome composition of tea plant with the application of small peptides in combination with rhamnolipid. BMC Microbiol 2023; 23:302. [PMID: 37872475 PMCID: PMC10591406 DOI: 10.1186/s12866-023-03043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Small peptides play a crucial role in plant growth and adaptation to the environment. Exogenous small peptides are often applied together with surfactants as foliar fertilizers, but the impact of small peptides and surfactants on the tea phyllosphere microbiome remains unknown. RESULTS In this study, we investigated the effects of small peptides and different surfactants on the tea phyllosphere microbiome using 16S and ITS sequencing. Our results showed that the use of small peptides reduced the bacterial diversity of the tea phyllosphere microbiome and increased the fungal diversity, while the use of surfactants influenced the diversity of bacteria and fungi. Furthermore, the addition of rhamnolipid to small peptides significantly improved the tea phyllosphere microbiome community structure, making beneficial microorganisms such as Pseudomonas, Chryseobacterium, Meyerozyma, and Vishniacozyma dominant populations. CONCLUSION Our study suggests that the combined use of small peptides and surfactants can significantly modify the tea phyllosphere microbiome community structure, particularly for beneficial microorganisms closely related to tea plant health. Thus, this preliminary study offers initial insights that could guide the application of small peptides and surfactants in agricultural production, particularly with respect to their potential for modulating the phyllosphere microbiome community in tea plant management.
Collapse
Affiliation(s)
- Hao Chen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hui Wang
- Rizhao Tea Research Institute, Rizhao, 276827, China
| | - Yilin Mao
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jie Zhang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yang Xu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinyue Yin
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
11
|
Matio Kemkuignou B, Lambert C, Stadler M, Kouam Fogue S, Marin-Felix Y. Unprecedented Antimicrobial and Cytotoxic Polyketides from Cultures of Diaporthe africana sp. nov. J Fungi (Basel) 2023; 9:781. [PMID: 37504769 PMCID: PMC10381184 DOI: 10.3390/jof9070781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Four unprecedented polyketides named isoprenylisobenzofuran B (2), isoprenylisobenzofuran C1/C2 (3), diaporisoindole F1/F2 (4), and isochromophilonol A1/A2 (7) were isolated from ethyl acetate extracts of the newly described endophytic fungus Diaporthe africana. Additionally, the previously reported cyclic depsipeptide eucalactam B (1) was also identified, along with the known compounds diaporisoindole A/B (5), tenellone B (6) and beauvericin (8). The taxonomic identification of the fungus was accomplished using a polyphasic approach combining multi-gene phylogenetic analysis and microscopic morphological characters. The structures 1-8 were determined by a detailed analysis of their spectral data, namely high-resolution electrospray ionization mass spectrometry (HR-ESIMS), 1D/2D nuclear magnetic resonance (NMR) spectroscopy, as well as electronic circular dichroism (ECD) spectra. In addition, chemical methods such as Marfey's analysis were also employed to determine the stereochemistry in compound 1. All the compounds obtained were evaluated for antimicrobial and in vitro cytotoxic properties. Compounds 3-8 were active against certain fungi and Gram-positive bacteria with MIC values of 8.3 to 66.6 µg/mL. In addition, 3-5 displayed cytotoxic effects (22.0 ≤ IC50 ≤ 59.2 µM) against KB3.1 and L929 cell lines, whereas compounds 6-8 inhibited the growth of seven mammalian cancer cell lines with IC50 ranging from 17.7 to 49.5 µM (6), 0.9 to 12.9 µM (7) and 1.9 to 4.3 µM (8).
Collapse
Affiliation(s)
- Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Christopher Lambert
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Simeon Kouam Fogue
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé P.O. Box 47, Cameroon
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Xiao X, Liu Y, Zheng F, Xiong T, Zeng Y, Wang W, Zheng X, Wu Q, Xu J, Crous P, Jiao C, Li H. High species diversity in Diaporthe associated with citrus diseases in China. PERSOONIA 2023; 51:229-256. [PMID: 38665984 PMCID: PMC11041894 DOI: 10.3767/persoonia.2023.51.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/08/2023] [Indexed: 04/28/2024]
Abstract
Species in Diaporthe have broad host ranges and cosmopolitan geographic distributions, occurring as endophytes, saprobes and plant pathogens. Previous studies have indicated that many Diaporthe species are associated with Citrus. To further determine the diversity of Diaporthe species associated with citrus diseases in China, we conducted extensive surveys in major citrus-producing areas from 2017-2020. Diseased tissues were collected from leaves, fruits, twigs, branches and trunks showing a range of symptoms including melanose, dieback, gummosis, wood decay and canker. Based on phylogenetic comparisons of DNA sequences of the internal transcribed spacer regions (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and beta-tubulin (tub2), 393 isolates from 10 provinces were identified as belonging to 36 species of Diaporthe, including 32 known species, namely D. apiculata, D. biconispora, D. biguttulata, D. caryae, D. citri, D. citriasiana, D. compacta, D. discoidispora, D. endophytica, D. eres, D. fusicola, D. fulvicolor, D. guangxiensis, D. hongkongensis, D. hubeiensis, D. limonicola, D. litchii, D. novem, D. passifloricola, D. penetriteum, D. pescicola, D. pometiae, D. sackstonii, D. sennicola, D. sojae, D. spinosa, D. subclavata, D. tectonae, D. tibetensis, D. unshiuensis, D. velutina and D. xishuangbanica, and four new species, namely D. gammata, D. jishouensis, D. ruiliensis and D. sexualispora. Among the 32 known species, 14 are reported for the first time on Citrus, and two are newly reported from China. Among the 36 species, D. citri was the dominant species as exemplified by its high frequency of isolation and virulence. Pathogenicity tests indicated that most Diaporthe species obtained in this study were weakly aggressive or non-pathogenic to the tested citrus varieties. Only D. citri produced the longest lesion lengths on citrus shoots and induced melanose on citrus leaves. These results further demonstrated that a rich diversity of Diaporthe species occupy Citrus, but only a few species are harmful and D. citri is the main pathogen for Citrus in China. The present study provides a basis from which targeted monitoring, prevention and control measures can be developed. Citation: Xiao XE, Liu YD, Zheng F, et al. 2023. High species diversity in Diaporthe associated with citrus diseases in China. Persoonia 51: 229-256. doi: 10.3767/persoonia.2023.51.06.
Collapse
Affiliation(s)
- X.E. Xiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.D. Liu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - F. Zheng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - T. Xiong
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Y.T. Zeng
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - W. Wang
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - X.L. Zheng
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - Q. Wu
- Quzhou Academy of Agricultural and Forestry Sciences, Quzhou, 324000, China
| | - J.P. Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - C. Jiao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - H.Y. Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
13
|
Bai Y, Lin L, Pan M, Fan X. Studies of Diaporthe (Diaporthaceae, Diaporthales) species associated with plant cankers in Beijing, China, with three new species described. MycoKeys 2023; 98:59-86. [PMID: 37287769 PMCID: PMC10242526 DOI: 10.3897/mycokeys.98.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Diaporthe (Diaporthaceae, Diaporthales) comprises endophytes, pathogens and saprophytes, inhabiting a wide range of woody hosts and resulting in serious canker disease. To determine the diversity of Diaporthe species associated with canker disease of host plants in Beijing, China, a total of 35 representative strains were isolated from 18 host genera. Three novel species (D.changpingensis, D.diospyrina and D.ulmina) and four known species (D.corylicola, D.donglingensis, D.eres and D.rostrata) were identified, based on morphological comparison and phylogenetic analyses using partial ITS, cal, his3, tef1-α and tub2 loci. These results provide an understanding of the taxonomy of Diaporthe species associated with canker diseases in Beijing, China.
Collapse
Affiliation(s)
- Yukun Bai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, 100083, Beijing, ChinaBeijing Forestry UniversityBeijingChina
| | - Lu Lin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, 100083, Beijing, ChinaBeijing Forestry UniversityBeijingChina
| | - Meng Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, 100083, Beijing, ChinaBeijing Forestry UniversityBeijingChina
| | - Xinlei Fan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, 100083, Beijing, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
14
|
Wan Y, Li DW, Si YZ, Li M, Huang L, Zhu LH. Three New Species of Diaporthe Causing Leaf Blight on Acer palmatum in China. PLANT DISEASE 2023; 107:849-860. [PMID: 35961016 DOI: 10.1094/pdis-06-22-1475-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diaporthe spp. are often reported as plant pathogens, endophytes, and saprobes. In this study, three new species (Diaporthe foliicola, D. monospora, and D. nanjingensis) on Acer palmatum were described and illustrated based on morphological characteristics and phylogenetic analyses. Phylogenetic relationships of the new species were determined by multilocus phylogenetic analyses based on partial sequences of the internal transcribed spacer (ITS) region, translation elongation factor 1-α (TEF), β-tubulin (TUB), histone H3 (HIS), and calmodulin (CAL) genes. Genealogical concordance phylogenetic species recognition with a pairwise homoplasy index test was used to verify the conclusions of the phylogenetic analyses. All species were illustrated and their morphology and phylogenetic relationships with other related Diaporthe spp. are discussed. In addition, the tests of Koch's postulates showed that the three new species were pathogens causing leaf blight on A. palmatum.
Collapse
Affiliation(s)
- Yu Wan
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Min Li
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
15
|
Zhu YQ, Ma CY, Xue H, Piao CG, Li Y, Jiang N. Two new species of Diaporthe (Diaporthaceae, Diaporthales) in China. MycoKeys 2023; 95:209-228. [DOI: 10.3897/mycokeys.95.98969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Species of Diaporthe have been reported as plant endophytes, pathogens and saprobes on a wide range of plant hosts. Strains of Diaporthe were isolated from leaf spots of Smilax glabra and dead culms of Xanthium strumarium in China, and identified based on morphology and molecular phylogenetic analyses of combined internal transcribed spacer region (ITS), calmodulin (cal), histone H3 (his3), translation elongation factor 1-alpha (tef1) and β-tubulin (tub2) loci. As a result, two new species named Diaporthe rizhaoensis and D. smilacicola are identified, described and illustrated in the present study.
Collapse
|
16
|
Abramczyk B, Pecio Ł, Kozachok S, Kowalczyk M, Marzec-Grządziel A, Król E, Gałązka A, Oleszek W. Pioneering Metabolomic Studies on Diaporthe eres Species Complex from Fruit Trees in the South-Eastern Poland. Molecules 2023; 28:molecules28031175. [PMID: 36770841 PMCID: PMC9920373 DOI: 10.3390/molecules28031175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Fungi from the genus Diaporthe have been reported as plant pathogens, endophytes, and saprophytes on a wide range of host plants worldwide. Their precise identification is problematic since many Diaporthe species can colonize a single host plant, whereas the same Diaporthe species can inhabit many hosts. Recently, Diaporthe has been proven to be a rich source of bioactive secondary metabolites. In our initial study, 40 Diaporthe isolates were analyzed for their metabolite production. A total of 153 compounds were identified based on their spectroscopic properties-Ultraviolet-visible and mass spectrometry. From these, 43 fungal metabolites were recognized as potential chemotaxonomic markers, mostly belonging to the drimane sesquiterpenoid-phthalide hybrid class. This group included mainly phytotoxic compounds such as cyclopaldic acid, altiloxin A, B, and their derivatives. To the best of our knowledge, this is the first report on the metabolomic studies on Diaporthe eres species complex from fruit trees in the South-Eastern Poland. The results from our study may provide the basis for the future research on the isolation of identified metabolites and on their bioactive potential for agricultural applications as biopesticides or biofertilizers.
Collapse
Affiliation(s)
- Barbara Abramczyk
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Correspondence:
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Ewa Król
- Department of Plant Protection, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| |
Collapse
|
17
|
Toghueo RMK, Vázquez de Aldana BR, Zabalgogeazcoa I. Diaporthe species associated with the maritime grass Festuca rubra subsp. pruinosa. Front Microbiol 2023; 14:1105299. [PMID: 36876098 PMCID: PMC9978114 DOI: 10.3389/fmicb.2023.1105299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Festuca rubra subsp. pruinosa is a perennial grass growing in sea cliffs where plants are highly exposed to salinity and marine winds, and often grow in rock fissures where soil is absent. Diaporthe species are one of the most abundant components of the root microbiome of this grass and several Diaporthe isolates have been found to produce beneficial effects in their host and other plant species of agronomic importance. In this study, 22 strains of Diaporthe isolated as endophytes from roots of Festuca rubra subsp. pruinosa were characterized by molecular, morphological, and biochemical analyses. Sequences of the nuclear ribosomal internal transcribed spacers (ITS), translation elongation factor 1-α (TEF1), beta-tubulin (TUB), histone-3 (HIS), and calmodulin (CAL) genes were analyzed to identify the isolates. A multi-locus phylogenetic analysis of the combined five gene regions led to the identification of two new species named Diaporthe atlantica and Diaporthe iberica. Diaporthe atlantica is the most abundant Diaporthe species in its host plant, and Diaporthe iberica was also isolated from Celtica gigantea, another grass species growing in semiarid inland habitats. An in vitro biochemical characterization showed that all cultures of D. atlantica produced indole-3-acetic acid and ammonium, and the strains of D. iberica produced indole 3-acetic acid, ammonium, siderophores, and cellulase. Diaporthe atlantica is closely related to D. sclerotioides, a pathogen of cucurbits, and caused a growth reduction when inoculated in cucumber, melon, and watermelon.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Beatriz R Vázquez de Aldana
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| | - Iñigo Zabalgogeazcoa
- Plant-Microorganism Interaction Research Group, Institute of Natural Resources and Agrobiology of Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
18
|
Antifungal Activity and Biocontrol Potential of Simplicillium lamellicola JC-1 against Multiple Fungal Pathogens of Oilseed Rape. J Fungi (Basel) 2022; 9:jof9010057. [PMID: 36675878 PMCID: PMC9860836 DOI: 10.3390/jof9010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
A fungal strain (JC-1) of Simplicillium was isolated from a pod of oilseed rape (Brassica napus) infested with the blackleg pathogen Leptosphaeria biglobosa. This study was done to clarify its taxonomic identity using morphological and molecular approaches, to characterize its antifungal activity through bioassays and genome-based identification of antifungal metabolites, and to determine its efficacy in inducing systemic resistance (ISR) in oilseed rape. The results showed that JC-1 belongs to Simplicillium lamellicola. It displayed a strong antagonistic relationship with L. biglobosa, Botrytis cinerea (gray mold) and Sclerotinia sclerotiorum (stem rot). The cultural filtrates of JC-1 showed a high efficacy in suppressing infection by S. sclerotiorum on detached leaves of oilseed rape. Genome analysis indicated that JC-1 has the capability of producing multiple antifungal metabolites, including aureobasidin A1, squalestatin S1 and verlamelin. Inoculation of JC-1 on seeds of oilseed rape caused a suppressive effect on infection by L. biglobosa on the cotyledons of the resulting seedlings, suggesting that JC-1 can trigger ISR. Endophytic growth, accumulation of anthocyanins, up-regulated expression of CHI (for chalcone isomerase) and PR1 (for pathogenesis-related protein 1), and down-regulated expression of NECD3 (for 9-cis-epoxycarotenoid dioxygenase) were detected to be associated with the ISR. This study provided new insights into the biocontrol potential and modes of action of S. lamellicola.
Collapse
|
19
|
Taxonomy and Multigene Phylogeny of Diaporthales in Guizhou Province, China. J Fungi (Basel) 2022; 8:jof8121301. [PMID: 36547633 PMCID: PMC9785342 DOI: 10.3390/jof8121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In a study of fungi isolated from plant material in Guizhou Province, China, we identified 23 strains of Diaporthales belonging to nine species. These are identified from multigene phylogenetic analyses of ITS, LSU, rpb2, tef1, and tub2 gene sequence data coupled with morphological studies. The fungi include a new genus (Pseudomastigosporella) in Foliocryphiaceae isolated from Acer palmatum and Hypericum patulum, a new species of Chrysofolia isolated from Coriaria nepalensis, and five new species of Diaporthe isolated from Juglans regia, Eucommia ulmoides, and Hypericum patulum. Gnomoniopsis rosae and Coniella quercicola are newly recorded species for China.
Collapse
|
20
|
Xiao Y, Lai H, Zhou W, Yang C, Cui C. First Report of Diaporthe fusicola Causing Postharvest Fruit Rot of Peach (Prunus persica) in China. PLANT DISEASE 2022; 107:2231. [PMID: 36383985 DOI: 10.1094/pdis-08-22-1841-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In May 2022, rot symptoms were observed on postharvest peach (Prunus persica [L.] Batsch) fruits in a market in Nanchang, Jiangxi province (28°44' N; 115°50' E), China. A total of 80 samples were collected from three different fruit stalls through the market survey. The incidence of this disease was 10 to 15%, and severity varies from approximately 30 to 50% of fruit surface coverage. The symptom of infected fruits was circular, pale brown to brown, rotten, necrotic lesions, covered with white hyphae and small spore masses. Eight symptomatic peach fruits were surface disinfected with 75% ethanol for 30 sec and incisions were made with a sterile scalpel. Small pieces from symptomatic tissues were placed on a potato dextrose agar (PDA) medium and incubated at 25℃ for 7 days. Six isolates were obtained in total. Colonies on PDA were initially white, aerial, fluffy at first, and darkened with age. Alpha conidia were fusoid, hyaline, aseptate, guttulate, tapering towards ends, and ranged in size from 9.8 to 5.1 µm × 3.2 to 2.1 µm (x ̅=7.1 ± 1.0 × 2.6 ± 0.3 µm, n=60). Beta conidia were not seen. For further confirmation, genomic DNA was extracted from three isolates (04-10, 04-11, and 04-12), the internal transcribed spacer (ITS) region, beta-tubulin (TUB), calmodulin (CAL), partial translation elongation factor 1-alpha (TEF1-α) and histone H3 (HIS) genes were amplified by using primers ITS1/ITS4, Bt2a/Bt2b, CAL228F/CAL737R, EF1-728F/EF1-986R, CYLH3F/H3-1b (Udayanga et al. 2015), respectively. Sequences were deposited in GenBank (Accession Nos. ON994257 to ON994259 for ITS, OP076824 to OP076826 for TUB, OP076827 to OP076829 for CAL, OP076821 to OP076823 for TEF1-α, OP076830 to OP076832 for HIS). BLAST results showed that ITS and TEF1-α have 99.8% pairwise identity to Diaporthe fusicola (MN816432, KF576256), and the TUB, CAL, and HIS sequences also have 100% pairwise identity to D. fusicola (KF576287, MT978147, MT978142). Phylogenetic analyses of concatenated sequences using Bayesian inference and the maximum likelihood confirmed the identity. To verify Koch's postulates, the pathogenicity of three isolates was tested on harvested healthy peach fruits. Five surface-sterilized fruits were wounded by a sterile scalpel and inoculated with 5-mm-diameter mycelial plugs from 10-day-old PDA plates. Another set of five fruits was inoculated with sterilized PDA plugs as controls. All fruits were incubated at 26℃ with 80% relative humidity. The experiment was repeated three times. After 5 days, the fruit inoculated with mycelial plugs showed pale brown lesions with whitish mycelium mass, similar to the previous rot symptoms, whereas the control fruit remained symptomless. The same pathogen was reisolated from the inoculated fruit with symptoms and identified as D. fusicola by molecular techniques, but never from the control. Diaporthe fusicola (Diaporthe amygdali complex) was first described on leaves of Lithocarpus glabra in China (Gao et al. 2015) and reported as an agent causing leaf blotch on Osmanthus fragrans (Si et al. 2020) and pear shoot canker (Guo et al. 2020). However, this is the first report of D. fusicola causing postharvest fruit rot on peach. The managers involved must consider the impact of this disease and develop an effective fruit storage strategy.
Collapse
Affiliation(s)
- Yusen Xiao
- Jiangxi Agricultural University, 91595, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| | - Huashan Lai
- Jiangxi Agricultural University, 91595, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| | - Wenjie Zhou
- Jiangxi Agricultural University, 91595, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| | - Chunxi Yang
- Jiangxi Provincial People's Hospital, 159384, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China;
| | - Chaoyu Cui
- Jiangxi Agricultural University, 91595, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| |
Collapse
|
21
|
Zhao X, Li K, Zheng S, Yang J, Chen C, Zheng X, Wang Y, Ye W. Diaporthe Diversity and Pathogenicity Revealed from a Broad Survey of Soybean Stem Blight in China. PLANT DISEASE 2022; 106:2892-2903. [PMID: 35412334 DOI: 10.1094/pdis-12-21-2785-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many species in the fungal Diaporthe (anamorph Phomopsis) genus have become a group of the most important pathogens that cause seed decay, stem and pot blight, and stem canker in soybean production worldwide, resulting in significant yield loss. Due to increased disease prevalence but a lack of research, we performed an extensive field survey to isolate and identify the Diaporthe species associated with soybean stem blight in six provinces of China between 2019 and 2020. A total of 92 Diaporthe isolates were identified based on morphological and multilocus phylogenetic analysis and classified into six species: D. longicolla, D. unshiuensis, D. sojae, D. caulivora, D. tectonigena, and an unknown Diaporthe sp. The most frequently identified species was D. longicolla with 57 isolates. High genetic diversity was observed for the D. longicolla isolates, and haplotype network analysis revealed a mixed structure among the population in the six provinces. In comparative pathogenicity assays, different virulence levels were observed among the 92 Diaporthe isolates. The results of this study provide new insights into the Diaporthe spp. associated with soybean stem blight in China and can help in the development of effective management strategies.
Collapse
Affiliation(s)
- Xiaolin Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sujiao Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jin Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Changjun Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
22
|
Xiao Y, Zou M, Zhou X, Yang C, Cui C. First Report of Postharvest Fruit Brown Rot Disease on Navel Orange Caused by Diaporthe sojae in China. PLANT DISEASE 2022; 107:948. [PMID: 35973079 DOI: 10.1094/pdis-04-22-0922-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In October 2020, a postharvest fruit brown rot symptom was observed on navel orange (Citrus sinensis Osbeck cv. Newhall) fruits in a local fruit market in Ganzhou, Jiangxi Province, China. The disease incidence increased up to 15% in 40 fruits with a 7-day-long storage at room temperature. The disease symptoms on the infected fruit were circular, light brown to brown, slightly sunken lesions, covered with whitish mycelium mass, and brown rot in the center. To isolate the causal organism, infected fruits were surface sterilized with 1% NaClO solution for 30 sec, and rinsed thrice with sterilized water. Symptomatic tissues at the margins were cut into 5-mm2 pieces, placed on potato dextrose agar (PDA) medium and incubated at 25℃ for 5 days. Thirteen morphologically similar single-spore fungal isolates were obtained from the isolation experiment. Fungal colonies were white, fluffy, cottony texture, reverse buff to light yellow, with black stromata at maturity. Alpha conidia were hyaline, aseptate, ellipsoid to clavate, tapering towards the ends, often biguttulate, and ranged in size from 6.8 to 9.8 µm × 2.7 to 4.5 µm (n=50). Beta conidia were hyaline, aseptate, smooth, straight to sinuous, and with size ranging from 12.1 to 21.3 µm × 0.9 to 2.2 µm (n=50). Morphological features were consistent with those of Diaporthe sojae (Dissanayake et al. 2015). For molecular identification, DNA was extracted from the representative isolate JFRL 03-13, the internal transcribed spacer (ITS) region, beta-tubulin (TUB), calmodulin (CAL), partial translation elongation factor 1-alpha (TEF1-α), and histone H3 (HIS) genes were amplified by using primers ITS1/ITS4, Bt2a/Bt2b, CAL228F/CAL737R, EF1-728F/EF1-986R, and CYLH3F/H3-1b (Udayanga et al. 2015), respectively. The resulting sequences were deposited in GenBank (Accession Nos. OM281710 for ITS, OM289961 for TUB, OM289964 for CAL, OM289963 for TEF1-α, and OM289962 for HIS). BLAST analysis revealed that these sequences were 100% similar to the sequences of ITS (MN816426), TUB (MK941336), CAL (MN894375), TEF1-α (MN894447), HIS (MN894409) published for D. sojae. Phylogenetic analysis was conducted based on the concatenated sequences (ITS, TUB, CAL, TEF1-α, and HIS) by Maximum likelihood analysis (ML) and Bayesian inference (BI) using IQtree v.1.6.11 and MrBayes v.3.2.7 (Guo et al. 2020). The phylogenetic tree showed that the isolate clustered with D. sojae. To confirm pathogenicity, mature and healthy harvested fruits of navel orange (Citrus sinensis Osbeck cv. Newhall) were surface sterilized. Ten fruits were wounded by a sterile scalpel and put a 7-mm-diamter agar plug with 7-day-old mycelium of the isolate JFRL03-13 cultured on PDA at 25°C, noncolonized PDA plugs were used as the control. Inoculated fruits were incubated at 25℃ with 80% relative humidity. After 10 days, the similar symptoms were observed on the inoculated sites and spread on the surface of fruits, whereas the control remained symptomless. The pathogen was re-isolated from the lesions of inoculated fruits and confirmed as D. sojae via morphological and molecular analysis. The assays were repeated twice, fulfilling the Koch's postulates. Although D. sojae is known as the major causative agent of pod and stem blight, and has been reported as an endophyte in the twigs and leaves of citrus (Huang et al. 2015; Santos et al. 2011), but to our knowledge, this is the first report of postharvest fruits brown rot disease on navel orange caused by D. sojae in China. However, further investigation of the specific causes of this disease is necessary to help the local fruit farmers develop effective disease management strategies.
Collapse
Affiliation(s)
- Yusen Xiao
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| | - Meiyan Zou
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| | - Xun Zhou
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| | - Chunxi Yang
- Jiangxi Provincial People's Hospital, Institute of Clinical Medicine, Nanchang, Jiangxi, China;
| | - Chaoyu Cui
- Jiangxi Agricultural University, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Nanchang, Jiangxi, China;
| |
Collapse
|
23
|
Hilário S, Gonçalves MFM, Fidalgo C, Tacão M, Alves A. Genome Analyses of Two Blueberry Pathogens: Diaportheamygdali CAA958 and Diaporthe eres CBS 160.32. J Fungi (Basel) 2022; 8:804. [PMID: 36012791 PMCID: PMC9409727 DOI: 10.3390/jof8080804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genus Diaporthe includes pathogenic species distributed worldwide and affecting a wide variety of hosts. Diaporthe amygdali and Diaporthe eres have been found to cause cankers, dieback, or twig blights on economically important crops such as soybean, almond, grapevine, and blueberry. Despite their importance as plant pathogens, the strategies of species of Diaporthe to infect host plants are poorly explored. To provide a genomic basis of pathogenicity, the genomes of D. amygdali CAA958 and D. eres CBS 160.32 were sequenced and analyzed. Cellular transporters involved in the transport of toxins, ions, sugars, effectors, and genes implicated in pathogenicity were detected in both genomes. Hydrolases and oxidoreductases were the most prevalent carbohydrate-active enzymes (CAZymes). However, analyses of the secreted proteins revealed that the secretome of D. eres CBS 160.32 is represented by 5.4% of CAZymes, whereas the secreted CAZymes repertoire of D. amygdali CAA958 represents 29.1% of all secretomes. Biosynthetic gene clusters (BGCs) encoding compounds related to phytotoxins and mycotoxins were detected in D. eres and D. amygdali genomes. The core gene clusters of the phytotoxin Fusicoccin A in D. amygdali are reported here through a genome-scale assembly. Comparative analyses of the genomes from 11 Diaporthe species revealed an average of 874 CAZymes, 101 secondary metabolite BGCs, 1640 secreted proteins per species, and genome sizes ranging from 51.5 to 63.6 Mbp. This study offers insights into the overall features and characteristics of Diaporthe genomes. Our findings enrich the knowledge about D. eres and D. amygdali, which will facilitate further research into the pathogenicity mechanisms of these species.
Collapse
Affiliation(s)
| | | | | | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.); (C.F.); (M.T.)
| |
Collapse
|
24
|
Endophytic Diaporthe Associated with Morinda officinalis in China. J Fungi (Basel) 2022; 8:jof8080806. [PMID: 36012794 PMCID: PMC9410054 DOI: 10.3390/jof8080806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
Diaporthe species are endophytes, pathogens, and saprobes with a wide host range worldwide. However, little is known about endophytic Diaporthe species associated with Morinda officinalis. In the present study, 48 endophytic Diaporthe isolates were obtained from cultivated M. officinalis in Deqing, Guangdong Province, China. The nuclear ribosomal internal transcribed spacer (ITS), partial sequences of translation elongation factor 1-α (tef1-α), partial calmodulin (cal), histone H3 (his), and Beta-tubulin (β-tubulin) gene regions were sequenced and employed to construct phylogenetic trees. Based on morphology and combined multigene phylogeny, 12 Diaporthe species were identified, including five new species of Diaporthe longiconidialis, D. megabiguttulata, D. morindendophytica, D. morindae, and D. zhaoqingensis. This is the first report of Diaporthe chongqingensis, D. guangxiensis, D. heliconiae, D. siamensis, D. unshiuensis, and D. xishuangbanica on M. officinalis. This study provides the first intensive study of endophytic Diaporthe species on M. officinalis in China. These results will improve the current knowledge of Diaporthe species associated with this traditional medicinal plant. Furthermore, results from this study will help to understand the potential pathogens and biocontrol agents from M. officinalis and to develop a disease management platform.
Collapse
|
25
|
Amplicon Sequencing Reveals Novel Fungal Species Responsible for a Controversial Tea Disease. J Fungi (Basel) 2022; 8:jof8080782. [PMID: 35893150 PMCID: PMC9394346 DOI: 10.3390/jof8080782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Amplicon sequencing is a powerful tool for analyzing the fungal composition inside plants, whereas its application for the identification of etiology for plant diseases remains undetermined. Here, we utilize this strategy to clarify the etiology responsible for tea leaf brown-black spot disease (LBSD), a noticeable disease infecting tea plants etiology that remains controversial. Based on the ITS-based amplicon sequencing analysis, Didymella species were identified as separate from Pestalotiopsis spp. and Cercospora sp., which are concluded as the etiological agents. This was further confirmed by the fungal isolation and their specific pathogenicity on diverse tea varieties. Based on the morphologies and phylogenetic analysis constructed with multi-loci (ITS, LSU, tub2, and rpb2), two novel Didymella species—tentatively named D. theae and D. theifolia as reference to their host plants—were proposed and characterized. Here, we present an integrated approach of ITS-based amplicon sequencing in combination with fungal isolation and fulfillment of Koch’s postulates for etiological identification of tea plant disease, revealing new etiology for LBSD. This contributes useful information for further etiological identification of plant disease based on amplicon sequencing, as well as understanding, prevention, and management of this economically important disease.
Collapse
|
26
|
Liao YCZ, Sun JW, Li DW, Nong ML, Zhu LH. First Report of Top Blight of Cunninghamia lanceolata Caused by Diaporthe unshiuensis and Diaporthe hongkongensis in China. PLANT DISEASE 2022; 107:962. [PMID: 35876759 DOI: 10.1094/pdis-06-22-1467-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cunninghamia lanceolata (Lamb.) Hook. is an important conifer species widely planted in southern China. A top blight, with an incidence of 20% (40/200 seedlings), occurred on 1-year-old seedlings of C. lanceolata in a nursery, Luzhai, Guangxi, China in August 2021. The disease mainly occurred on shoot tips. The infected needles and shoots appeared brown to brownish red. White conidial tendrils oozed from pycnidia under wet-weather conditions. Lesion margins from fresh samples were cut into small pieces (n=100), which were sterilized according to Mao et al., and placed on potato dextrose agar (PDA) at 25°C. Three isolates (GXJ2, GXJ4, and GXJ6) were obtained and deposited in The China Forestry Culture Collection Center (CFCC 55717, CFCC 55716, and CFCC 55722). The colony of GXJ2 on PDA was white, with sparse aerial mycelia, and became grey with time. The α conidia were fusiform, hyaline, and aseptate, 6.7±0.6 μm × 2.6±0.2 μm (n=30). The β conidia were filiform, hyaline, and curved, 30.4±2.1 μm × 1.4±0.1 μm (n=30). Colonies of GXJ4 and GXJ6 were white, with moderate aerial mycelia, which collapsed at the center, and the collapsed parts were iron-gray. The α conidia were 7.8±0.8 μm × 2.5±0.2 μm (n=30). The β conidia were absent. Morphological characters of 3 isolates matched those of Diaporthe spp.. The partial sequences of ITS, EF1-α, CAL, β-tub, and HIS genes were amplified with primers ITS1/ITS4, EF1-728F/EF1-986R and CAL228F/CAL737R, βt2a/βt2b and CYLH3F/H3-1b according to Gomes et al. 2013, respectively. The sequences for the five genes of each of 3 isolates were deposited in GenBank (Accession Nos. see Supplementary Table 1). BLAST results showed that the ITS, EF1-α, β-tub, HIS, and CAL sequences of GXJ2 were highly similar (>99%) with sequences of Diaporthe unshiuensis, while sequences of GXJ4 and GXJ6 were highly similar (>99%) to those of D. hongkongensis (Supplementary Table 1). Phylogenetic analyses using concatenated sequences placed GXJ2 in the clade of D. unshiuensis, while GXJ4 and GXJ6 in the clade of D. hongkongensis. Based on the phylogeny and morphology, GXJ2 was identified as D. unshiuensis, GXJ4 and GXJ6 as D. hongkongensis. Pathogenicity tests were performed on nine 1-year-old seedlings of C. lanceolata, and 10 needles at shoot tip per seedling were slightly wounded and inoculated with 5-mm mycelial plugs from one of 3 isolates. Three control seedlings were treated with PDA plugs. Each plant was covered with a plastic bag after inoculation and kept in an air-conditioned nursery at 25°C/16°C (day/night). The symptoms appeared 5-8 days after inoculation and were similar to those observed in the nursery. D. unshiuensis and D. hongkongensis were re-isolated from the inoculated seedlings and were confirmed based on morphology and ITS sequences. The controls were symptomless, and no fungus was isolated from them. D. unshiuensis was first reported as an endophyte on the fruit of Citrus unshiu, and caused peach constriction canker, shoot blight of kiwifruit. D. hongkongensis was first described from fruit of Dichroa febrifuga and caused shoot canker of pear, shoot blight and leaf spot of kiwifruit, and fruit rot of peach. This is the first report of D. unshiuensis and D. hongkongensis causing the top blight of C. lanceolata. This study provides a basis for controlling this newly emerging disease in the nursery.
Collapse
Affiliation(s)
- Yang-Chun-Zi Liao
- Nanjing Forestry University, 159 Longpan Road, Nanjing, Nanjing, United States, 210037;
| | - Jian-Wei Sun
- Nanjing Forestry University, No. 159 Longpan Road, Nanjing, China, 210037;
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station, Valley Laboratory, 153 Cook Hill Road, Windsor, Connecticut, United States, 06095;
| | - Mei-Ling Nong
- State-owned Huangmian Forestry Farm of Guangxi, Luzhai, Guangxi, ChinaLuzhai, China, 545600;
| | - Li-Hua Zhu
- Nanjing Forestry University, College of Forestry, No. 159 Longpan Road, Nanjing, Jiangsu, China, 210037;
| |
Collapse
|
27
|
Cao L, Luo D, Lin W, Yang Q, Deng X. Four new species of Diaporthe (Diaporthaceae, Diaporthales) from forest plants in China. MycoKeys 2022; 91:25-47. [PMID: 36760894 PMCID: PMC9849071 DOI: 10.3897/mycokeys.91.84970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. During trips to collect forest pathogens in Beijing, Jiangxi, Shaanxi and Zhejiang Provinces in China, 16 isolates of Diaporthe were obtained from branch cankers and leaf spots. These isolates were studied by applying a polyphasic approach including morphological, cultural data, and phylogenetic analyses of the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef-1α) and β-tubulin (tub2) loci. Results revealed four new taxa, D.celticola, D.meliae, D.quercicola, D.rhodomyrti spp. nov. and two known species, D.eres and D.multiguttulata.
Collapse
Affiliation(s)
- Lingxue Cao
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dun Luo
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wu Lin
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qin Yang
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaojun Deng
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
28
|
Gomzhina MM, Gannibal PB. Diaporthe species infecting sunflower ( Helianthus annuus) in Russia, with the description of two new species. Mycologia 2022; 114:556-574. [PMID: 35583980 DOI: 10.1080/00275514.2022.2040285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phomopsis stem canker is economically important sunflower disease that caused by multiple Diaporthe species. Recent investigations resulted in the resolution that there are at least 13 Diaporthe species that can infect sunflower. A comprehensive analysis of the biodiversity and geographic distribution of Diaporthe species in Russia, particularly those that infect sunflower, has not been undertaken. For this study, 16 Diaporthe isolates were obtained from samples of stem canker and visually healthy seeds of Helianthus annuus from northwestern, central European, southern European Russia, North Caucasus, and the Urals in 2016-2019. The aim of this study was to identify these Diaporthe isolates based on morphology and sequence analyses of the nuclear ribosomal internal transcribed spacer (ITS) region, partial calmodulin (cal), DNA-lyase (apn2), histone H3 (his3), translation elongation factor-1α gene (tef1), and ß-tubulin (tub2) genes. The phylogenetic reconstruction revealed well-supported monophyletic clades corresponding to six Diaporthe species: D. eres, D. gulyae, D. helianthi, and D. phaseolorum. Two new species were described: Diaporthe monetii sp. nov. and Diaporthe vangoghii sp. nov. The isolates of D. gulyae and D. phaseolorum collected represent the first records of these species in Russia.
Collapse
Affiliation(s)
- Maria M Gomzhina
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| | - Philipp B Gannibal
- A. A. Jaczewskii Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection, Shosse Podbelskogo 3, Pushkin, Saint Petersburg, 196608, Russia
| |
Collapse
|
29
|
Si YZ, Li DW, Zhong J, Huang L, Zhu LH. Diaporthe sapindicola sp. nov. Causes Leaf Spots of Sapindus mukorossi in China. PLANT DISEASE 2022; 106:1105-1113. [PMID: 34752121 DOI: 10.1094/pdis-04-21-0777-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sapindus mukorossi Gaertn. (Sapindaceae), or soapberry, is an important biodiesel tree in southern China. In recent years, leaf spot disease on soapberry has been observed frequently in a soapberry germplasm repository in Jianning County, Sanming City, Fujian province, China. The symptoms initially appeared as irregular, small, yellow spots, and the centers of the lesions became dark brown with time. Three fungal isolates from lesions were collected. Koch's postulates were performed, and their pathogenicity was confirmed. Morphologically, α-conidia from diseased tissues were single-celled, hyaline, smooth, clavate or ellipsoidal, and biguttulate, measuring 6.2 to 7.2 × 2.3 to 2.7 μm. In addition, the three isolates in this study developed three types (α, β, and γ) of conidia on potato dextrose agar, and their morphological characteristics matched those of Diaporthe. A phylogenetic analysis based on internal transcribed spacer, TEF, TUB, HIS, and CAL sequence data determined that the three isolates are a new species of Diaporthe. Based on both morphological and phylogenetic analyses, the causal fungus, Diaporthe sapindicola sp. nov., was described and illustrated.
Collapse
Affiliation(s)
- Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Jing Zhong
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
30
|
Wan Y, Si YZ, Li DW, Huang L, Zhu LH. First Report of Diaporthe cercidis Causing Leaf Blotch of Acer pictum subsp. mono in China. PLANT DISEASE 2022; 106:1296. [PMID: 34569828 DOI: 10.1094/pdis-04-21-0744-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Yu Wan
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; and Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, Jiangsu 210037, China
| | - Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; and Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li-Hua Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
31
|
Forecasting the number of species of asexually reproducing fungi (Ascomycota and Basidiomycota). FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Yang Y, Yao X, Xhang X, Zou H, Chen J, Fang B, Huang L. Draft Genome Sequence of Diaporthe batatatis Causing Dry Rot Disease in Sweetpotato. PLANT DISEASE 2022; 106:737-740. [PMID: 34633230 DOI: 10.1094/pdis-07-21-1530-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dry rot caused by Diaporthe batatatis leads to the serious decay of sweetpotato storage roots during postharvest storage, which can result in considerable economic loss. Genomic research of the pathogen could provide a basis for study and prevention of sweetpotato dry rot. Herein, we report a high-quality draft genome sequence of D. batatatis CRI 302-4 isolated from infected sweetpotato storage roots in Taizhou City, Zhejiang Province, China. The size of the genome was 54.38 Mb and consisted of 36 scaffolds with a G+C content of 50.56% and an N50 of 2,950,914 bp. The information provided in this genome sequence will be an invaluable resource for molecular genetic research and disease control in sweetpotato production.
Collapse
Affiliation(s)
- Yiling Yang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xiaojian Yao
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinxin Xhang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - JingYi Chen
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Boping Fang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lifei Huang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
33
|
Liu M, Zhu L, Ma Y, Zhang Y, Xu L, Wang M, Liu C. Response of species abundance distribution pattern of alpine meadow community to sampling scales. RANGELAND JOURNAL 2022. [DOI: 10.1071/rj21034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Jiang N, Voglmayr H, Piao CG, Li Y. Two new species of Diaporthe ( Diaporthaceae, Diaporthales) associated with tree cankers in the Netherlands. MycoKeys 2021; 85:31-56. [PMID: 34934385 PMCID: PMC8648711 DOI: 10.3897/mycokeys.85.73107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Diaporthe (Diaporthaceae, Diaporthales) is a common fungal genus inhabiting plant tissues as endophytes, pathogens and saprobes. Some species are reported from tree branches associated with canker diseases. In the present study, Diaporthe samples were collected from Alnusglutinosa, Fraxinusexcelsior and Quercusrobur in Utrecht, the Netherlands. They were identified to species based on a polyphasic approach including morphology, pure culture characters, and phylogenetic analyses of a combined matrix of partial ITS, cal, his3, tef1 and tub2 gene regions. As a result, four species (viz. Diaporthepseudoalnea sp. nov. from Alnusglutinosa, Diaporthesilvicola sp. nov. from Fraxinusexcelsior, D.foeniculacea and D.rudis from Quercusrobur) were revealed from tree branches in the Netherlands. Diaporthepseudoalnea differs from D.eres (syn. D.alnea) by its longer conidiophores. Diaporthesilvicola is distinguished from D.fraxinicola and D.fraxini-angustifoliae by larger alpha conidia.
Collapse
Affiliation(s)
- Ning Jiang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China Environment and Nature Conservation, Chinese Academy of Forestry Beijing China.,The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China University of Vienna Vienna Austria
| | - Hermann Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria Beijing Forestry University Beijing China
| | - Chun-Gen Piao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China Environment and Nature Conservation, Chinese Academy of Forestry Beijing China
| | - Yong Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China Environment and Nature Conservation, Chinese Academy of Forestry Beijing China
| |
Collapse
|
35
|
Hilário S, Santos L, Phillips AJL, Alves A. Caveats of the internal transcribed spacer region as a barcode to resolve species boundaries in Diaporthe. Fungal Biol 2021; 126:54-74. [PMID: 34930559 DOI: 10.1016/j.funbio.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 01/03/2023]
Abstract
Species in Diaporthe are largely reported as important plant pathogens. Identification of species in this genus has been complemented by morphological and molecular features. However, one important factor delaying this process is the struggle to formulate robust species concepts to create adequate international phytosanitary measures. Regardless of the wide use of the internal transcribed spacer (ITS) rDNA region, established as the primary DNA barcode for fungi, the tendency for intraspecific variation has been reported, misleading interpretation of phylogenetic analyses. Therefore, the present study aimed to illustrate, using specific examples, how the ITS region may be problematic for species delimitation. We showed that the ITS region is highly variable, with strains of Diaporthe malorum and Diaporthe novem falling into more than one clade, which if analyzed on their own, would be likely recognized as distinct taxa. Divergent ITS paralogs were also proven to coexist within the genome of D. novem. We also suggest that ITS may have escaped from concerted evolution or has undergone a duplication event. Furthermore, this study reports for the first time the existence of a putative hybrid in the genus Diaporthe. Our findings offer new clues towards the intraspecific and intragenomic variation in the ITS region, raising questions about its value for barcoding, i.e., identifying species in the genus Diaporthe. Therefore, we recommend that the ITS region be analyzed cautiously and always compared for congruence prior to description of novel taxa.
Collapse
Affiliation(s)
- Sandra Hilário
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Liliana Santos
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Alan J L Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Artur Alves
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
36
|
Yang Q, Tang J, Zhou GY. Characterization of Diaporthe species on Camelliaoleifera in Hunan Province, with descriptions of two new species. MycoKeys 2021; 84:15-33. [PMID: 34720645 PMCID: PMC8545784 DOI: 10.3897/mycokeys.84.71701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/14/2021] [Indexed: 11/27/2022] Open
Abstract
Tea-oil tree (Camelliaoleifera Abel.) is an important edible oil woody plant with a planting area over 3,800,000 hectares in southern China. Species of Diaporthe inhabit a wide range of plant hosts as plant pathogens, endophytes and saprobes. At present, relatively little is known about the taxonomy and genetic diversity of Diaporthe on C.oleifera. Here, we conducted an extensive field survey in Hunan Province in China to identify and characterise Diaporthe species associated with tea-oil leaf spots. As a result, eleven isolates of Diaporthe were obtained from symptomatic C.oleifera leaves. These isolates were studied by applying a polyphasic approach including morphological and phylogenetic analyses of partial ITS, cal, his3, tef1 and tub2 gene regions. Two new Diaporthe species (D.camelliae-oleiferae and D.hunanensis) were proposed and described herein, and C.oleifera was revealed to be new host records of D.hubeiensis and D.sojae. This study indicated there is a potential of more undiscovered Diaporthe species from C.oleifera in China.
Collapse
Affiliation(s)
- Qin Yang
- Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Changsha China.,The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Cahngsha China
| | - Jie Tang
- Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Changsha China
| | - Guo Y Zhou
- Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Changsha China.,The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China Central South University of Forestry and Technology Cahngsha China
| |
Collapse
|
37
|
Iantas J, Savi DC, Schibelbein RDS, Noriler SA, Assad BM, Dilarri G, Ferreira H, Rohr J, Thorson JS, Shaaban KA, Glienke C. Endophytes of Brazilian Medicinal Plants With Activity Against Phytopathogens. Front Microbiol 2021; 12:714750. [PMID: 34539608 PMCID: PMC8442585 DOI: 10.3389/fmicb.2021.714750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum, Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum. The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 μg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 μg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis, reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential.
Collapse
Affiliation(s)
- Jucélia Iantas
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Daiani Cristina Savi
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil
- Postgraduate Program of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Renata da Silva Schibelbein
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Sandriele Aparecida Noriler
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
| | | | - Guilherme Dilarri
- Department of General and Applied Biology, Biosciences Institute, State University of São Paulo, Rio Claro, Brazil
| | - Henrique Ferreira
- Department of General and Applied Biology, Biosciences Institute, State University of São Paulo, Rio Claro, Brazil
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Chirlei Glienke
- Postgraduate Program of Microbiology, Parasitology and Pathology, Department of Pathology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
38
|
|
39
|
Ariyawansa HA, Tsai I, Wang JY, Withee P, Tanjira M, Lin SR, Suwannarach N, Kumla J, Elgorban AM, Cheewangkoon R. Molecular Phylogenetic Diversity and Biological Characterization of Diaporthe Species Associated with Leaf Spots of Camellia sinensis in Taiwan. PLANTS (BASEL, SWITZERLAND) 2021; 10:1434. [PMID: 34371637 PMCID: PMC8309328 DOI: 10.3390/plants10071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
Camellia sinensis is one of the major crops grown in Taiwan and has been widely cultivated around the island. Tea leaves are prone to various fungal infections, and leaf spot is considered one of the major diseases in Taiwan tea fields. As part of a survey on fungal species causing leaf spots on tea leaves in Taiwan, 19 fungal strains morphologically similar to the genus Diaporthe were collected. ITS (internal transcribed spacer), tef1-α (translation elongation factor 1-α), tub2 (beta-tubulin), and cal (calmodulin) gene regions were used to construct phylogenetic trees and determine the evolutionary relationships among the collected strains. In total, six Diaporthe species, including one new species, Diaporthe hsinchuensis, were identified as linked with leaf spot of C. sinensis in Taiwan based on both phenotypic characters and phylogeny. These species were further characterized in terms of their pathogenicity, temperature, and pH requirements under laboratory conditions. Diaporthe tulliensis, D. passiflorae, and D. perseae were isolated from C. sinensis for the first time. Furthermore, pathogenicity tests revealed that, with wound inoculation, only D. hongkongensis was pathogenic on tea leaves. This investigation delivers the first assessment of Diaporthe taxa related to leaf spots on tea in Taiwan.
Collapse
Affiliation(s)
- Hiran A. Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
| | - Ichen Tsai
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
- Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt am Main, Germany
- Department of Biological Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jian-Yuan Wang
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei 10617, Taiwan; (I.T.); (J.-Y.W.)
| | - Patchareeya Withee
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
| | - Medsaii Tanjira
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
| | - Shiou-Ruei Lin
- Department of Tea Agronomy, Tea Research and Extension Station, Taoyuan 32654, Taiwan;
| | - Nakarin Suwannarach
- Research Centre of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Centre of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ratchadawan Cheewangkoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.W.); (M.T.)
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
40
|
Hilário S, Gonçalves MFM, Alves A. Using Genealogical Concordance and Coalescent-Based Species Delimitation to Assess Species Boundaries in the Diaporthe eres Complex. J Fungi (Basel) 2021; 7:507. [PMID: 34202282 PMCID: PMC8307253 DOI: 10.3390/jof7070507] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
DNA sequence analysis has been of the utmost importance to delimit species boundaries in the genus Diaporthe. However, the common practice of combining multiple genes, without applying the genealogical concordance criterion has complicated the robust delimitation of species, given that phylogenetic incongruence between loci has been disregarded. Despite the several attempts to delineate the species boundaries in the D. eres complex, the phylogenetic limits within this complex remain unclear. In order to bridge this gap, we employed the Genealogical Phylogenetic Species Recognition principle (GCPSR) and the coalescent-based model Poisson Tree Processes (PTPs) and evaluated the presence of recombination within the D. eres complex. Based on the GCPSR principle, presence of incongruence between individual gene genealogies, i.e., conflicting nodes and branches lacking phylogenetic support, was evident. Moreover, the results of the coalescent model identified D. eres complex as a single species, which was not consistent with the current large number of species within the complex recognized in phylogenetic analyses. The absence of reproductive isolation and barriers to gene flow as well as the high haplotype and low nucleotide diversity indices within the above-mentioned complex suggest that D. eres constitutes a population rather than different lineages. Therefore, we argue that a cohesive approach comprising genealogical concordance criteria and methods to detect recombination must be implemented in future studies to circumscribe species in the genus Diaporthe.
Collapse
Affiliation(s)
| | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.)
| |
Collapse
|
41
|
Petrović K, Skaltsas D, Castlebury LA, Kontz B, Allen TW, Chilvers MI, Gregory N, Kelly HM, Koehler AM, Kleczewski NM, Mueller DS, Price PP, Smith DL, Mathew FM. Diaporthe Seed Decay of Soybean [ Glycine max (L.) Merr.] Is Endemic in the United States, But New Fungi Are Involved. PLANT DISEASE 2021; 105:1621-1629. [PMID: 33231523 DOI: 10.1094/pdis-03-20-0604-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaporthe seed decay can compromise seed quality in soybean [Glycine max (L.) Merr.] in the warm and humid production areas of the United States during crop maturation. In the current study, 45 isolates of Diaporthe were recovered from seed sampled from soybean fields affected by Diaporthe-associated diseases in eight U.S. states in 2017. The isolates obtained belonged to 10 species of Diaporthe based on morphology and phylogenetic analyses of the internal transcribed spacer, partial translation elongation factor 1-α, and β-tubulin gene sequences. The associated species included D. aspalathi, D. caulivora, D. kongii, D. longicolla, D. sojae, D. ueckerae, D. unshiuensis, and three novel fungi, D. bacilloides, D. flavescens, and D. insulistroma. One isolate each of the 10 species was examined for pathogenicity on seed of cultivar Sava under controlled conditions. Seven days postinoculation, significant differences in the percentages of decayed seeds and seedling necrosis were observed among the isolates and the noninoculated control (P < 0.0001). While the isolates of D. bacilloides, D. longicolla, and D. ueckerae caused a significantly greater percentage of decayed seeds (P < 0.0001), the isolate of D. aspalathi caused the greatest seedling necrosis (P < 0.0001). The observation of new fungi causing Diaporthe seed decay suggests the need for a more comprehensive survey in U.S. soybean producing areas since members of the genus Diaporthe appear to form a complex that causes seed decay.
Collapse
Affiliation(s)
- Kristina Petrović
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, U.S.A
- Department of Soybean, Institute of Field and Vegetable Crops, Novi Sad 21000, Serbia
| | - Demetra Skaltsas
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Lisa A Castlebury
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Brian Kontz
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, U.S.A
| | - Tom W Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, U.S.A
| | - Martin I Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Nancy Gregory
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, U.S.A
| | - Heather M Kelly
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Alyssa M Koehler
- Department of Plant and Soil Sciences, University of Delaware, Georgetown, DE 19947, U.S.A
| | - Nathan M Kleczewski
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL 61820, U.S.A
| | - Daren S Mueller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Paul P Price
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Winnsboro, LA 71295, U.S.A
| | - Damon L Smith
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, U.S.A
| | - Febina M Mathew
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, U.S.A
| |
Collapse
|
42
|
Wang X, Guo Y, Du Y, Yang Z, Huang X, Hong N, Xu W, Wang G. Characterization of Diaporthe species associated with peach constriction canker, with two novel species from China. MycoKeys 2021; 80:77-90. [PMID: 34054325 PMCID: PMC8149378 DOI: 10.3897/mycokeys.80.63816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/29/2021] [Indexed: 12/03/2022] Open
Abstract
Species of Diaporthe infect a wide range of plants and live in vivo as endophytes, saprobes or pathogens. However, those in peach plants are poorly characterized. In this study, 52 Diaporthe strains were isolated from peach branches with buds, showing constriction canker symptoms. Phylogenetic analyses were conducted using five gene regions: internal transcribed spacer of the ribosomal DNA (ITS), translation elongation factor 1-α (TEF), ß-tubulin (TUB), histone (HIS), and calmodulin (CAL). These results coupled with morphology revealed seven species of Diaporthe, including five known species (D. caryae, D. cercidis, D. eres, D. hongkongensis, and D. unshiuensis). In addition, two novel species D. jinxiu and D. zaofenghuang are introduced. Except for the previously reported D. eres, this study represents the first characterization of Diaporthe species associated with peach constriction canker in China, and contributes useful data for practicable disease management.
Collapse
Affiliation(s)
- Xianhong Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Yashuang Guo
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Yamin Du
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Ziling Yang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
| | - Xinzhong Huang
- Research Institute of Pomology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, 350013, ChinaKey Laboratory of Horticultural Crop Biology and Germplasm Creation of the Ministry of AgricultureWuhanChina
| | - Ni Hong
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, Hubei, 430070, ChinaResearch Institute of Pomology, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Wenxing Xu
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, Hubei, 430070, ChinaResearch Institute of Pomology, Fujian Academy of Agricultural SciencesFuzhouChina
| | - Guoping Wang
- Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, ChinaHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of Agriculture, Wuhan, Hubei, 430070, ChinaResearch Institute of Pomology, Fujian Academy of Agricultural SciencesFuzhouChina
| |
Collapse
|
43
|
Cui MJ, Wei X, Xia PL, Yi JP, Yu ZH, Deng JX, Li QL. Diaporthe taoicola and D. siamensis, Two New Records on Citrus sinensis in China. MYCOBIOLOGY 2021; 49:267-274. [PMID: 34290550 PMCID: PMC8259869 DOI: 10.1080/12298093.2021.1912254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/21/2021] [Accepted: 03/30/2021] [Indexed: 06/13/2023]
Abstract
Two Diaporthe species isolated from fruit of Citrus sinensis in China were characterized based on morphology and multilocus phylogeny of ITS, tef1, and tub2 gene sequences. The phylogeny indicated that the two species match Diaporthe taoicola and D. siamensis. A critical examination of phenotypic characteristics confirmed the phylogenetic results. Diaporthe taoicola was morphologically characterized by producing Alpha conidia with tapering toward both ends. Meanwhile, D. siamensis produced cylindrical or ellipsoidal Alpha conidia with two oil drops. Pathogenicity tests revealed that both species were pathogenic to fruit of C. sinensis. To our knowledge, the two species were firstly reported on Citrus sinensis in China.
Collapse
Affiliation(s)
- Meng Jiao Cui
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xin Wei
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | | | - Ji Ping Yi
- Zigui Plant Protection Station, Yichang, China
| | - Zhi He Yu
- Department of Applied Microbiology, College of Life Sciences, Yangtze University, Jingzhou, China
| | - Jian Xin Deng
- Department of Plant Protection, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qi Li Li
- Institute of Plant Protection, Guangxi Academy of Agricultural Sciences and Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Nanning, China
| |
Collapse
|
44
|
Chaisiri C, Liu X, Lin Y, Fu Y, Zhu F, Luo C. Phylogenetic and Haplotype Network Analyses of Diaporthe eres Species in China Based on Sequences of Multiple Loci. BIOLOGY 2021; 10:179. [PMID: 33804529 PMCID: PMC8000818 DOI: 10.3390/biology10030179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
Diaporthe eres is considered one of the most important causal agents of many plant diseases, with a broad host range worldwide. In this study, multiple sequences of ribosomal internal transcribed spacer region (ITS), translation elongation factor 1-α gene (EF1-α), beta-tubulin gene (TUB2), calmodulin gene (CAL), and histone-3 gene (HIS) were used for multi-locus phylogenetic analysis. For phylogenetic analysis, maximum likelihood (ML), maximum parsimony (MP), and Bayesian inferred (BI) approaches were performed to investigate relationships of D. eres with closely related species. The results strongly support that the D. eres species falls into a monophyletic lineage, with the characteristics of a species complex. Phylogenetic informativeness (PI) analysis showed that clear boundaries could be proposed by using EF1-α, whereas ITS showed an ineffective reconstruction and, thus, was unsuitable for speciating boundaries for Diaporthe species. A combined dataset of EF1-α, CAL, TUB2, and HIS showed strong resolution for Diaporthe species, providing insights for the D. eres complex. Accordingly, besides D. biguttusis, D. camptothecicola, D. castaneae-mollissimae, D. cotoneastri, D. ellipicola, D. longicicola, D. mahothocarpus, D. momicola, D. nobilis, and Phomopsis fukushii, which have already been previously considered the synonymous species of D. eres, another three species, D. henanensis, D. lonicerae and D. rosicola, were further revealed to be synonyms of D. eres in this study. In order to demonstrate the genetic diversity of D. eres species in China, 138 D. eres isolates were randomly selected from previous studies in 16 provinces. These isolates were obtained from different major plant species from 2006 to 2020. The genetic distance was estimated with phylogenetic analysis and haplotype networks, and it was revealed that two major haplotypes existed in the Chinese populations of D. eres. The haplotype networks were widely dispersed and not uniquely correlated to specific populations. Overall, our analyses evaluated the phylogenetic identification for D. eres species and demonstrated the population diversity of D. eres in China.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.L.)
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xiangyu Liu
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.L.)
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yang Lin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yanping Fu
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Fuxing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.L.)
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (Y.L.); (Y.F.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
45
|
Huang S, Xia J, Zhang X, Sun W. Morphological and phylogenetic analyses reveal three new species of Diaporthe from Yunnan, China. MycoKeys 2021; 78:49-77. [PMID: 33664613 PMCID: PMC7910272 DOI: 10.3897/mycokeys.78.60878] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022] Open
Abstract
Species of Diaporthe have often been reported as plant pathogens, endophytes or saprobes, commonly isolated from a wide range of plant hosts. Sixteen strains isolated from species of ten host genera in Yunnan Province, China, represented three new species of Diaporthe, D. chrysalidocarpi, D. machili and D. pometiae as well as five known species D. arecae, D. hongkongensis, D. middletonii, D. osmanthi and D. pandanicola. Morphological comparisons with known species and DNA-based phylogenies based on the analysis of a multigene (ITS, TUB, TEF, CAL and HIS) dataset support the establishment of the new species. This study reveals that a high species diversity of Diaporthe with wide host ranges occur in tropical rainforest in Yunnan Province, China.
Collapse
Affiliation(s)
- Shengting Huang
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Jiwen Xia
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| |
Collapse
|
46
|
Huda-Shakirah AR, Kee YJ, Wong KL, Zakaria L, Mohd MH. Diaporthe species causing stem gray blight of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia. Sci Rep 2021; 11:3907. [PMID: 33594187 PMCID: PMC7887222 DOI: 10.1038/s41598-021-83551-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
This study aimed to characterize the new fungal disease on the stem of red-fleshed dragon fruit (Hylocereus polyrhizus) in Malaysia, which is known as gray blight through morphological, molecular and pathogenicity analyses. Nine fungal isolates were isolated from nine blighted stems of H. polyrhizus. Based on morphological characteristics, DNA sequences and phylogeny (ITS, TEF1-α, and β-tubulin), the fungal isolates were identified as Diaporthe arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica. Six isolates recovered from the Cameron Highlands, Pahang belonged to D. eugeniae (DF1 and DF3), D. hongkongensis (DF9), D. phaseolorum (DF2 and DF12), and D. tectonendophytica (DF7), whereas three isolates from Bukit Kor, Terengganu were recognized as D. arecae (DFP3), D. eugeniae (DFP4), and D. tectonendophytica (DFP2). Diaporthe eugeniae and D. tectonendophytica were found in both Pahang and Terengganu, D. phaseolorum and D. hongkongensis in Pahang, whereas D. arecae only in Terengganu. The role of the Diaporthe isolates in causing stem gray blight of H. polyrhizus was confirmed. To date, only D. phaseolorum has been previously reported on Hylocereus undatus. This is the first report on D. arecae, D. eugeniae, D. hongkongensis, D. phaseolorum, and D. tectonendophytica causing stem gray blight of H. polyrhizus worldwide.
Collapse
Affiliation(s)
| | - Yee Jia Kee
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Kak Leong Wong
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Masratul Hawa Mohd
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
47
|
Hilário S, Santos L, Alves A. Diaporthe amygdali, a species complex or a complex species? Fungal Biol 2021; 125:505-518. [PMID: 34140147 DOI: 10.1016/j.funbio.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/25/2021] [Indexed: 11/29/2022]
Abstract
Delimitation of species boundaries within the fungal genus Diaporthe has been challenging, but the analyses of combined multilocus DNA sequences has become an important tool to infer phylogenetic relationships and to circumscribe species. However, analyses of congruence between individual gene genealogies and the application of the genealogical concordance principle have been somehow overlooked. We noted that a group of species including D. amygdali, D. garethjonesii, D. sterilis, D. kadsurae, D. ternstroemia, D. ovoicicola, D. fusicola, D. chongqingensis and D. mediterranea, commonly known as D. amygdali complex, occupy a monophyletic clade in Diaporthe phylogenies but the limits of all species within the complex are not entirely clear. To assess the boundaries of species within this complex we employed the Genealogical Concordance Phylogenetic Species Recognition principle (GCPSR) and coalescence-based models: General Mixed Yule-Coalescent (GMYC) and Poisson Tree Processes (PTP). The incongruence detected between individual gene phylogenies, as well as the results of coalescent methods do not support the recognition of lineages within the complex as distinct species. Moreover, results support the absence of reproductive isolation and barriers to gene flow in this complex, thus providing further evidence that the D. amygdali species complex constitutes a single species. This study highlights the relevance of the application of the GCPSR principle, showing that concatenation analysis of multilocus DNA sequences, although being a powerful tool, might lead to an erroneous definition of species limits. Additionally, it further shows that coalescent methods are useful tools to assist in a more robust delimitation of species boundaries in the genus Diaporthe.
Collapse
Affiliation(s)
- Sandra Hilário
- Departamento de Biologia, CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Liliana Santos
- Departamento de Biologia, CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Artur Alves
- Departamento de Biologia, CESAM (Centro de Estudos do Ambiente e do Mar), Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
48
|
Chaisiri C, Liu XY, Yin WX, Luo CX, Lin Y. Morphology Characterization, Molecular Phylogeny, and Pathogenicity of Diaporthe passifloricola on Citrus reticulata cv. Nanfengmiju in Jiangxi Province, China. PLANTS (BASEL, SWITZERLAND) 2021; 10:218. [PMID: 33498730 PMCID: PMC7911537 DOI: 10.3390/plants10020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/24/2022]
Abstract
The Nanfengmiju (Citrus reticulata cv. Nanfengmiju), a high-quality local variety of mandarin, is one of the major fruit crops in Jiangxi Province, China. Citrus melanose and stem-end rot, two common fungal diseases of Nanfengmiju, are both caused by Diaporthe spp. (syn. Phomopsis spp.). Identification of the Diaporthe species is essential for epidemiological studies, quarantine measures, and management of diseases caused by these fungi. Melanose disease was observed on Nanfengmiju fruit in Jiangxi Province of China in 2016. Based on morphological characterization and multi-locus phylogenetic analyses, three out of 39 isolates from diseased samples were identified as D. passifloricola. Since these three isolates did not cause melanose on citrus fruit in the pathogenicity tests, they were presumed to be endophytic fungi present in the diseased tissues. However, our results indicate that D. passifloricola may persist as a symptom-less endophyte in the peel of citrus fruit, yet it may cause stem-end if it invades the stem end during fruit storage. To the best of our knowledge, this is the first report of D. passifloricola as the causal agent of the stem-end rot disease in Citrus reticulata cv. Nanfengmiju.
Collapse
Affiliation(s)
- Chingchai Chaisiri
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang-Yu Liu
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
| | - Chao-Xi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; (C.C.); (X.-Y.L.); (W.-X.Y.); (C.-X.L.)
| |
Collapse
|
49
|
Sun W, Huang S, Xia J, Zhang X, Li Z. Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys 2021; 77:65-95. [PMID: 33519269 PMCID: PMC7819953 DOI: 10.3897/mycokeys.77.59852] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Diaporthe species have often been reported as plant pathogens, endophytes and saprophytes, commonly isolated from a wide range of infected plant hosts. In the present study, twenty strains obtained from leaf spots of twelve host plants in Yunnan Province of China were isolated. Based on a combination of morphology, culture characteristics and multilocus sequence analysis of the rDNA internal transcribed spacer region (ITS), translation elongation factor 1-α (TEF), β-tubulin (TUB), calmodulin (CAL), and histone (HIS) genes, these strains were identified as eight new species: Diaporthe camelliae-sinensis, D. grandiflori, D. heliconiae, D. heterostemmatis, D. litchii, D. lutescens, D. melastomatis, D. pungensis and two previously described species, D. subclavata and D. tectonendophytica. This study showed high species diversity of Diaporthe in tropical rain forests and its hosts in south-western China.
Collapse
Affiliation(s)
- Wenxiu Sun
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Shengting Huang
- College of Life Sciences, Yangtze University, Jingzhou 434025, Hubei, ChinaYangtze UniversityJingzhouChina
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, ChinaShandong Agricultural UniversityTaianChina
| |
Collapse
|
50
|
Dissanayake AJ, Chen YY, Liu JK(J. Unravelling Diaporthe Species Associated with Woody Hosts from Karst Formations (Guizhou) in China. J Fungi (Basel) 2020; 6:E251. [PMID: 33121032 PMCID: PMC7712415 DOI: 10.3390/jof6040251] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Though several Diaporthe species have been reported in China, little is known about the species associated with nature reserves in Guizhou province. During a survey of fungi in six nature reserves in Guizhou province of China, thirty-one Diaporthe isolates were collected from different woody hosts. Based on morphology, culture characteristics and molecular phylogenetic analysis, these isolates were characterized and identified. Phylogenetic analysis of internal transcribed spacer region (ITS), combined with translation elongation factor 1-alpha (tef), β-tubulin (tub), calmodulin (cal) and histone H3 (his) gene regions identified five known Diaporthe species and seven distinct lineages representing novel Diaporthe species. The details of five known species: Diaporthe cercidis, D. cinnamomi, D. conica, D. nobilis and D. sackstonii are given and the seven new species D. constrictospora, D. ellipsospora, D. guttulata, D. irregularis, D. lenispora, D. minima, and D. minusculata are introduced with detailed descriptions and illustrations. This study revealed a high diversity of previously undescribed Diaporthe species associated with woody hosts in various nature reserves of Guizhou province, indicating that there is a potential of Diaporthe species remains to be discovered in this unique landform (Karst formations) in China. Interestingly, the five known Diaporthe species have been reported as pathogens of various hosts, and this could indicate that those newly introduced species in this study could be potentially pathogenic pending further studies to confirm.
Collapse
Affiliation(s)
- Asha J. Dissanayake
- Fungal Research Laboratory, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Ya-Ya Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China;
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jian-Kui (Jack) Liu
- Fungal Research Laboratory, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China;
| |
Collapse
|