1
|
Bojorge MA, Cicconi NS, Cebrón JR, Fang Y, Lamb CA, Bartke A, Miquet JG, González L. Morphological and molecular effects of overexpressed GH on mice mammary gland. Mol Cell Endocrinol 2021; 538:111465. [PMID: 34597725 DOI: 10.1016/j.mce.2021.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022]
Abstract
Growth Hormone (GH) plays crucial roles in mammary gland development and growth, and its upregulation has been associated with breast cancer promotion and/or progression. To ascertain how high GH levels could promote mammary tissue oncogenic transformation, morphological characteristics and the expression of receptors involved in mammary growth, development and cancer, and of mitogenic mediators were analyzed in the mammary gland of virgin adult transgenic mice that overexpress GH. Whole mounting and histologic analysis evidenced that transgenic mice exhibit increased epithelial ductal elongation and enlarged ducts along with deficient branching and reduced number of alveolar structures compared to wild type mice. The number of differentiated alveolar structures was diminished in transgenic mice while the amount of terminal end buds (TEBs) did not differ between both groups of mice. GH, insulin-like growth factor 1 (IGF1) and GH receptor mRNA levels were augmented in GH-overexpressing mice breast tissue, as well as IGF1 receptor protein content. However, GH receptor protein levels were decreased in transgenic mice. Fundamental receptors for breast growth and development like progesterone receptor and epidermal growth factor receptor were also increased in mammary tissue from transgenic animals. In turn, the levels of the proliferation marker Ki67, cFOS and Cyclin D1 were increased in GH-overexpressing mice, while cJUN expression was decreased and cMYC did not vary. In conclusion, prolonged exposure to high GH levels induces morphological and molecular alterations in the mammary gland that affects its normal development. While these effects would not be tumorigenic per se, they might predispose to oncogenic transformation.
Collapse
Affiliation(s)
- Mariana A Bojorge
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Nadia S Cicconi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Julieta R Cebrón
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Yimin Fang
- Department of Neurology, School of Medicine, Southern Illinois University, Springfield, IL, 62794, USA
| | - Caroline A Lamb
- Laboratorio de Carcinogénesis Hormonal, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado, 2490 1428, Buenos Aires, Argentina
| | - Andrzej Bartke
- Geriatrics Research, Departments of Internal Medicine and Physiology, School of Medicine, Southern Illinois University, Springfield, IL, 62794, USA
| | - Johanna G Miquet
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Lorena González
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Santiano FE, Campo Verde Arboccó F, Bruna FA, Zyla LE, Sasso CV, Gómez S, Pistone-Creydt V, López-Fontana CM, Carón RW. The epigenetic role of breastfeeding in mammary differentiation. J Dev Orig Health Dis 2021; 12:578-586. [PMID: 33023719 DOI: 10.1017/s2040174420000902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal milk consumption can cause changes in the mammary epithelium of the offspring that result in the expression of molecules involved in the induction of differentiation, reducing the risk of developing mammary cancer later in life. We previously showed that animals that maintained a higher intake of maternal milk had a lower incidence of mammary cancer. In the present study, we evaluated one of the possible mechanisms by which the consumption of maternal milk could modify the susceptibility to mammary carcinogenesis. We used Sprague Dawley rats reared in litters of 3 (L3), 8 (L8), or 12 (L12) pups per mother in order to generate a differential consumption of milk. Whole mounts of mammary glands were performed to analyze the changes in morphology. Using real-time polymerase chain reaction (PCR), we analyzed the expression of mammary Pinc, Tbx3, Stat6, and Gata3 genes. We use the real-time methylation-specific polymerase chain reaction method to assess the methylation status of Stat6 and Gata3 CpG sites. Our findings show an increase in the size of the epithelial tree and a smaller number of ducts called terminal end buds in L3 vs. L12. We observed an increased expression of mRNA of Stat6, Gata3, Tbx3, and a lower expression of Pinc in L3 with respect to L12. Stat6 and Gata3 are more methylated in the CpG islands of the promoter analyzed in L12 vs. L3. In conclusion, the increased consumption of maternal milk during the postnatal stage generates epigenetic and morphological changes associated with the differentiation of the mammary gland.
Collapse
Affiliation(s)
- Flavia E Santiano
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| | - Fiorella Campo Verde Arboccó
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
- Physiology Department, School of Medicine, University of Mendoza, Mendoza, Argentina
| | - Flavia A Bruna
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| | - Leila E Zyla
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
- Physiology Department, School of Medicine, University of Mendoza, Mendoza, Argentina
| | - Corina V Sasso
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| | - Silvina Gómez
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| | - Virginia Pistone-Creydt
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| | - Constanza M López-Fontana
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| | - Rubén W Carón
- Laboratory of Hormones and Cancer Biology, Institute of Medicine and Experimental Biology of Cuyo, IMBECU, CONICET UNCuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Systemic alterations play a dominant role in epigenetic predisposition to breast cancer in offspring of obese fathers and is transmitted to a second generation. Sci Rep 2021; 11:7317. [PMID: 33795711 PMCID: PMC8016877 DOI: 10.1038/s41598-021-86548-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
We previously showed that environmentally-induced epigenetic inheritance of cancer occurs in rodent models. For instance, we reported that paternal consumption of an obesity-inducing diet (OID) increased breast cancer susceptibility in the offspring (F1). Nevertheless, it is still unclear whether programming of breast cancer in daughters is due to systemic alterations or mammary epithelium-specific factors and whether the breast cancer predisposition in F1 progeny can be transmitted to subsequent generations. In this study, we show that mammary glands from F1 control (CO) female offspring exhibit enhanced growth when transplanted into OID females compared to CO mammary glands transplanted into CO females. Similarly, carcinogen-induced mammary tumors from F1 CO female offspring transplanted into OID females has a higher proliferation/apoptosis rate. Further, we show that granddaughters (F2) from the OID grand-paternal germline have accelerated tumor growth compared to CO granddaughters. This between-generation transmission of cancer predisposition is associated with changes in sperm tRNA fragments in OID males. Our findings indicate that systemic and mammary stromal alterations are significant contributors to programming of mammary development and likely cancer predisposition in OID daughters. Our data also show that breast cancer predisposition is transmitted to subsequent generations and may explain some familial cancers, if confirmed in humans.
Collapse
|
4
|
Mei Y, Wang M, Lu G, Li J, Peng L, Lang Y, Yang M, Jiang L, Li C, Zheng L, Liu Z, Xie D, Guo L, Huang B, Zeng M, Shi Y, Qian C. Postponing tumor onset and tumor progression can be achieved by alteration of local tumor immunity. Cancer Cell Int 2021; 21:97. [PMID: 33568170 PMCID: PMC7874464 DOI: 10.1186/s12935-021-01765-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Background It has been known for years that the same genetic defects drive breast cancer formation, yet, the onset of breast cancer in different individuals among the same population differs greatly in their life spans with unknown mechanisms. Methods We used a MMTV-PyMT mouse model with different genetic backgrounds (FVB/NJ vs. C57BL/6J) to generate different cancer onset phenotypes, then profiled and analyzed the gene expression of three tumor stages in both Fvb.B6 and Fvb mice to explore the underlying mechanisms. Results We found that in contrast with the FVB/N-Tg (MMTV-PyMT) 634Mul mice (Fvb mice), mammary tumor initiation was significantly delayed and tumor progression was significantly suppressed in the Fvb.B6 mice (generated by crossing FVB/NJ with C57BL/6J mice). Transcriptome sequencing and analysis revealed that the differentially expressed genes were enriched in immune-related pathways. Flow cytometry analysis showed a higher proportion of matured dendritic cells in the Fvb.B6 mice. The plasma levels of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) were significantly reduced in the Fvb.B6 mice. IL-6 also impaired the maturation of bone marrow dendritic cells (BMDCs) of the Fvb mice in vitro. Conclusion All these findings suggest that immunity levels (characterized by a reduced IL-6 level and intact DC maturation in Fvb.B6 mice) are the key factors affecting tumor onset in a murine mammary cancer model.
Collapse
Affiliation(s)
- Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Mingdian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, 533000, China
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lixia Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Yanhong Lang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Mingming Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Lingbi Jiang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Changzhi Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Lisheng Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Zhijie Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Dehuan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Lingling Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Musheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China
| | - Yanxia Shi
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chaonan Qian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, Guangdong, China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Pal AK, Nandave M, Kaithwas G. Chemoprophylactic activity of nitazoxanide in experimental model of mammary gland carcinoma in rats. 3 Biotech 2020; 10:338. [PMID: 32670738 PMCID: PMC7343672 DOI: 10.1007/s13205-020-02332-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The current study focuses on the evaluation of the chemoprophylactic activity of nitazoxanide against the mammary gland carcinoma in experimental rats. The experimental protocol involves total 50 female Wistar albino rats of body weight 120-150 g, which were randomly categorized into five groups; Normal control (1% w/v carboxymethyl cellulose, p.o.); Toxic control (N-methyl-N-nitrosourea, MNU, 47 mg/kg i.v.); Standard (MNU, 47 mg/kg i.v. + tamoxifen, 1 mg/kg p.o.); Treatment 1 (MNU, 47 mg/kg i.v. + NTZ low-dose, 25 mg/kg p.o.); and Treatment 2 (MNU, 47 mg/kg, i.v. + NTZ high-dose, 50 mg/kg p.o.). The mammary gland carcinoma was induced by a single tail vein intravenous injection of MNU at a 47 mg/kg dose. Seven days after MNU administration, daily dosing of nitazoxanide and tamoxifen was initiated till 110th day in respective groups. The MNU toxicity was apparent with the altered electrocardiogram and heart rate variability, increased number of alveolar bud count, differentiation score, and upregulated antioxidant parameters. Nitazoxanide treatment restored the histological architecture in rats along with the reduction of alveolar buds and downregulation of oxidative stress markers as well as inflammatory markers. Therefore, nitazoxanide can be utilized as a potential chemoprophylactic agent against mammary gland carcinoma induced by MNU.
Collapse
Affiliation(s)
- Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, MB Road, New Delhi, 110017 India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3, MB Road, New Delhi, 110017 India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Rae Bareli Road, Lucknow, 226025 India
| |
Collapse
|
6
|
Singh M, Kasna S, Roy S, Aldosary S, Saeedan AS, Ansari MN, Kaithwas G. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer 2019; 19:996. [PMID: 31651285 PMCID: PMC6814136 DOI: 10.1186/s12885-019-6152-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study evaluates the anti-cancer effects of Tadalafil (potent PDE-5 inhibitor) in female albino wistar rats against n-methyl n-nitrosourea induced mammary gland carcinogenesis. METHODS The animals were selected and randomly divided among four groups and each group contains six animals per group. The animal tissue and serum samples were evaluated for the presence of antioxidant parameters and the cellular morphology was studied using carminic staining, haematoxylin staining and scanning electron microscopy followed by immunoblotting analysis. RESULTS On the grounds of hemodynamic recordings and morphology, n-methyl n-nitrosourea treated group showed distorted changes along with distorted morphological parameters. For morphological analysis, the mammary gland tissues were evaluated using scanning electron microscopy, whole mount carmine staining, haematoxylin and eosin staining. The serum samples were evaluated for the evaluation of oxidative stress markers and inflammatory markers. The level of caspase 3 and 8 were also evaluated for the estimation of apoptosis. The fatty acid profiling of mammary gland tissue was evaluated using fatty acid methyl esters formation. The mitochondrial mediated apoptosis and inflammatory markers were evaluated using immunoblotting assay. CONCLUSION The results confirm that Tadalafil treatment restored all the biological markers to the normal and its involvement in mitochondrial mediated death apoptosis pathway along with inhibition of inflammatory markers.
Collapse
Affiliation(s)
- Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sweta Kasna
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| | - Sara Aldosary
- Department of Pharmaceutical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Mohd. Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Vidya Vihar, Raebareli road, Lucknow, UP 226 025 India
| |
Collapse
|
7
|
Devi U, Singh M, Roy S, Tripathi AC, Gupta PS, Saraf SK, Ansari MN, Saeedan AS, Kaithwas G. PHD-2 activation: a novel strategy to control HIF-1α and mitochondrial stress to modulate mammary gland pathophysiology in ER+ subtype. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1239-1256. [PMID: 31154466 DOI: 10.1007/s00210-019-01658-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022]
Abstract
Estrogen receptor-positive mammary gland carcinoma and its involvement in regulation of overexpressed hypoxia-inducible factor-1α and fatty acid synthase level in hypoxia influenced cancer cells are the present molecular crosstalk of this entire study. To test the hypothesis, we have proceed our study through chemical activation of prolyl hydroxylase 2 which leads to inhibition of hypoxia-inducible factor-1α and fatty acid synthase in ER+MCF-7 cancer cell line and n-methyl-n-nitrosourea induced mammary gland carcinoma rat model. ER+MCF-7 cells were evident with array of nuclear changes when stained through acridine orange/ethidium bromide. Afterward, JC-1 staining of the cells was evident in mitochondrial depolarization. The cells were arrested in G2/M phase when analyzed with flow cytometry. The morphological analysis of rat mammary gland tissue revealed decrease in alveolar buds, restoration of histopathological features along with intra-arterial cushion. The western blotting and fold change expressions of the genes validating the anticancer efficacy of BBAPH-1 is mediated through mitochondria-mediated apoptosis pathway. BBAPH-1 also modulates the expression of prolyl hydroxylase-2 with significant curtailment of hypoxia-inducible factor-1α, fatty acid synthase expression, and their respective downstream markers. These finding suggest that the BBAP-1-mediated activation of prolyl hydroxylase-2 significantly decreased the level of hypoxia-inducible factor-1α and fatty acid synthase. BBAPH-1 also activates the mitochondria-mediated death apoptosis pathway.
Collapse
Affiliation(s)
- Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India
| | - Avinash C Tripathi
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, Sam Higginbottom Institute of Agricultural Sciences and Technology, Naini, Allahabad, UP, India
| | - Shailendra K Saraf
- Faculty of Pharmacy, Babu Banarsi Das Northern India Institute of Technology, Babu Banarsi Das University, Faizabad Road, Lucknow, UP, India
| | - Md Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow, UP, 226025, India.
| |
Collapse
|
8
|
da Cruz RS, Carney EJ, Clarke J, Cao H, Cruz MI, Benitez C, Jin L, Fu Y, Cheng Z, Wang Y, de Assis S. Paternal malnutrition programs breast cancer risk and tumor metabolism in offspring. Breast Cancer Res 2018; 20:99. [PMID: 30165877 PMCID: PMC6117960 DOI: 10.1186/s13058-018-1034-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Background While many studies have shown that maternal factors in pregnancy affect the cancer risk for offspring, few studies have investigated the impact of paternal exposures on their progeny’s risk of this disease. Population studies generally show a U-shaped association between birthweight and breast cancer risk, with both high and low birthweight increasing the risk compared with average birthweight. Here, we investigated whether paternal malnutrition would modulate the birthweight and later breast cancer risk of daughters. Methods Male mice were fed AIN93G-based diets containing either 17.7% (control) or 8.9% (low-protein (LP)) energy from protein from 3 to 10 weeks of age. Males on either group were mated to females raised on a control diet. Female offspring from control and LP fathers were treated with 7,12-dimethylbenz[a]anthracene (DMBA) to initiate mammary carcinogenesis. Mature sperm from fathers and mammary tissue and tumors from female offspring were used for epigenetic and other molecular analyses. Results We found that paternal malnutrition reduces the birthweight of daughters and leads to epigenetic and metabolic reprogramming of their mammary tissue and tumors. Daughters of LP fathers have higher rates of mammary cancer, with tumors arising earlier and growing faster than in controls. The energy sensor, the AMP-activated protein kinase (AMPK) pathway, is suppressed in both mammary glands and tumors of LP daughters, with consequent activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, LP mammary tumors show altered amino-acid metabolism with increased glutamine utilization. These changes are linked to alterations in noncoding RNAs regulating those pathways in mammary glands and tumors. Importantly, we detect alterations in some of the same microRNAs/target genes found in our animal model in breast tumors of women from populations where low birthweight is prevalent. Conclusions Our study suggests that ancestral paternal malnutrition plays a role in programming offspring cancer risk and phenotype by likely providing a metabolic advantage to cancer cells. Electronic supplementary material The online version of this article (10.1186/s13058-018-1034-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - Elissa J Carney
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - Johan Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - Hong Cao
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - Carlos Benitez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA
| | - Yi Fu
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University Research Center, Arlington, VA, USA
| | - Zuolin Cheng
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University Research Center, Arlington, VA, USA
| | - Yue Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University Research Center, Arlington, VA, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, The Research Building, Room E410, Washington, DC, 20057, USA.
| |
Collapse
|
9
|
Johnson MB, Hoffmann JN, You HM, Lastra RR, Fernandez S, Strober JW, Allaw AB, Brady MJ, Conzen SD, McClintock MK. Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 2018; 23:59-73. [PMID: 29687293 PMCID: PMC6207373 DOI: 10.1007/s10911-018-9392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 03/22/2018] [Indexed: 01/18/2023] Open
Abstract
Exposure to psychosocial stressors and ensuing stress physiology have been associated with spontaneous invasive mammary tumors in the Sprague-Dawley rat model of human breast cancer. Mammary gland (MG) development is a time when physiologic and environmental exposures influence breast cancer risk. However, the effect of psychosocial stress exposure on MG development remains unknown. Here, in the first comprehensive longitudinal study of MG development in nulliparous female rats (from puberty through young adulthood; 8-25 wks of age), we quantify the spatial gradient of differentiation within the MG of socially stressed (isolated) and control (grouped) rats. We then demonstrate that social isolation increased stress reactivity to everyday stressors, resulting in downregulation of glucocorticoid receptor (GR) expression in the MG epithelium. Surprisingly, given that chemical carcinogens increase MG cancer risk by preventing normal terminal end bud (TEB) differentiation, chronic isolation stress did not alter TEBs. Instead, isolation blunted MG growth and alveolobular differentiation and reduced epithelial cell proliferation in these structures. Social isolation also enhanced corpora luteal progesterone at all ages but reduced estrogenization only in early adulthood, a pattern that precludes modulated ovarian function as a sufficient mechanism for the effects of isolation on MG development. This longitudinal study of natural variation provides an integrated view of MG development and the importance of increased GR activation in nulliparous ductal growth and alveolobular differentiation. Thus, social isolation and its physiological sequelae disrupt MG growth and differentiation and suggest a contribution of stress exposure during puberty and young adulthood to the previously observed increase in invasive MG cancer observed in chronically socially-isolated adult Sprague-Dawley rats.
Collapse
Affiliation(s)
- Marianna B Johnson
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Hannah M You
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA
| | - Ricardo R Lastra
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Sully Fernandez
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jordan W Strober
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Ahmad B Allaw
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew J Brady
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzanne D Conzen
- Committee on Molecular Metabolism and Nutrition, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Martha K McClintock
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, USA.
- Departments of Psychology and Comparative Human Development, The University of Chicago, 940 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
GLA supplementation regulates PHD2 mediated hypoxia and mitochondrial apoptosis in DMBA induced mammary gland carcinoma. Int J Biochem Cell Biol 2018; 96:51-62. [PMID: 29355756 DOI: 10.1016/j.biocel.2018.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 12/30/2017] [Accepted: 01/13/2018] [Indexed: 11/23/2022]
Abstract
The aim of the present study is to evaluate the effect of gamma linolenic acid (GLA) on mitochondrial mediated death apoptosis, hypoxic microenvironment and cholinergic anti-inflammatory pathway against 7, 12-dimethylbenz (a) anthracene (DMBA) induced mammary gland carcinoma. The effects of GLA were evaluated morphologically and biochemically against DMBA induced mammary gland carcinoma. The metabolic study was done for evaluation of biomarkers using 1H NMR. The present study was also verified through immunoblotting and qRT-PCR studies for the evaluation of various pathways. GLA treatment has a delineate implementation upon morphology of the tissues when evaluated through carmine staining, hematoxyline and eosin staining and scanning electron microscopy. GLA also demarked a commendatory proclamation of the fifteen key serum metabolites analogous with amino acid metabolism and fatty acid metabolism when recognized through1H NMR studies. The immunoblotting and qRT-PCR studies accomplished that GLA mediated mitochondrial death apoptosis, curtail hypoxic microenvironment along with hindrance of de novo fatty acid synthesis and also mediate the cholinergic anti-inflammatory pathway to proclaim its anticancer effects.
Collapse
|
11
|
Fontelles CC, da Cruz RS, Hilakivi-Clarke L, de Assis S, Ong TP. Investigation of Paternal Programming of Breast Cancer Risk in Female Offspring in Rodent Models. Methods Mol Biol 2018; 1735:207-220. [PMID: 29380314 DOI: 10.1007/978-1-4939-7614-0_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Emerging experimental evidence show that fathers' experiences during preconception can influence their daughters' risk of developing breast cancer. Here we describe detailed protocols for investigation in rats and mice of paternally mediated breast cancer risk programming effects.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center (FoRC), São Paulo, Brazil
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Sonia de Assis
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center (FoRC), São Paulo, Brazil.
| |
Collapse
|
12
|
Robichaux JP, Fuseler JW, Patel SS, Kubalak SW, Hartstone-Rose A, Ramsdell AF. Left-right analysis of mammary gland development in retinoid X receptor-α+/- mice. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0416. [PMID: 27821527 DOI: 10.1098/rstb.2015.0416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Left-right (L-R) differences in mammographic parenchymal patterns are an early predictor of breast cancer risk; however, the basis for this asymmetry is unknown. Here, we use retinoid X receptor alpha heterozygous null (RXRα+/-) mice to propose a developmental origin: perturbation of coordinated anterior-posterior (A-P) and L-R axial body patterning. We hypothesized that by analogy to somitogenesis-in which retinoic acid (RA) attenuation causes anterior somite pairs to develop L-R asynchronously-that RA pathway perturbation would likewise result in asymmetric mammary development. To test this, mammary glands of RXRα+/- mice were quantitatively assessed to compare left- versus right-side ductal epithelial networks. Unlike wild-type controls, half of the RXRα+/- thoracic mammary gland (TMG) pairs exhibited significant L-R asymmetry, with left-side reduction in network size. In RXRα+/- TMGs in which symmetry was maintained, networks had bilaterally increased size, with left networks showing greater variability in area and pattern. Reminiscent of posterior somites, whose bilateral symmetry is refractory to RA attenuation, inguinal mammary glands (IMGs) also had bilaterally increased network size, but no loss of symmetry. Together, these results demonstrate that mammary glands exhibit differential A-P sensitivity to RXRα heterozygosity, with ductal network symmetry markedly compromised in anterior but not posterior glands. As TMGs more closely model human breast development than IMGs, these findings raise the possibility that for some women, breast cancer risk may initiate with subtle axial patterning defects that result in L-R asymmetric growth and pattern of the mammary ductal epithelium.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Collapse
Affiliation(s)
- Jacqulyne P Robichaux
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John W Fuseler
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Shrusti S Patel
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Steven W Kubalak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Adam Hartstone-Rose
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Ann F Ramsdell
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA .,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA.,Program in Women's and Gender Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
13
|
Maternal Resveratrol Treatment Reduces the Risk of Mammary Carcinogenesis in Female Offspring Prenatally Exposure to 2,3,7,8-Tetrachlorodibenzo-p-Dioxin. Discov Oncol 2017; 8:286-297. [DOI: 10.1007/s12672-017-0304-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/31/2017] [Indexed: 12/20/2022] Open
|
14
|
Alpha-linolenic acid stabilizes HIF-1 α and downregulates FASN to promote mitochondrial apoptosis for mammary gland chemoprevention. Oncotarget 2017; 8:70049-70071. [PMID: 29050261 PMCID: PMC5642536 DOI: 10.18632/oncotarget.19551] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/12/2017] [Indexed: 12/25/2022] Open
Abstract
Alpha linolenic acid is an essential polyunsaturated fatty acid and is reported to have the anti-cancer potential with no defined hypothesis or mechanism/s. Henceforth present study was in-quested to validate the effect of alpha linolenic acid on mitochondrial apoptosis, hypoxic microenvironment and de novo fatty acid synthesis using in-vitro and in-vivo studies. The IC50 value of alpha linolenic acid was recorded to be 17.55μM against ER+MCF-7 cells. Treatment with alpha linolenic acid was evident for the presence of early and late apoptotic signals along with mitochondrial depolarization, when studied through acridine orange/ethidium bromide and JC-1 staining. Alpha linolenic acid arrested the cell cycle in G2/M phase. Subsequently, the in-vivo efficacy was examined against 7, 12-dimethylbenz anthracene induced carcinogenesis. Treatment with alpha linolenic acid demarcated significant effect upon the cellular proliferation as evidenced through decreased in alveolar bud count, restoration of the histopathological architecture and loss of tumor micro vessels. Alpha linolenic acid restored the metabolic changes to normal when scrutinized through 1H NMR studies. The immunoblotting and qRT-PCR studies revealed participation of mitochondrial mediated death apoptosis pathway and curtailment of hypoxic microenvironment after treatment with alpha linolenic acid. With all above, it was concluded that alpha linolenic acid mediates mitochondrial apoptosis, curtails hypoxic microenvironment along with inhibition of de novo fatty acid synthesis to impart anticancer effects.
Collapse
|
15
|
Stanko JP, Fenton SE. Quantifying Branching Density in Rat Mammary Gland Whole-mounts Using the Sholl Analysis Method. J Vis Exp 2017. [PMID: 28745626 DOI: 10.3791/55789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An increasing number of studies are utilizing the rodent mammary gland as an endpoint for assessing the developmental toxicity of a chemical exposure. The effects these exposures have on mammary gland development are typically evaluated using either basic dimensional measurements or by scoring morphological characteristics. However, the broad range of methods for interpreting developmental changes could lead to inconsistent translations across laboratories. A common method of assessment is needed so that proper interpretations can be formed from data being compared across studies. The present study describes the application of the Sholl analysis method to quantify mammary gland branching characteristics. The Sholl method was originally developed for use in quantifying neuronal dendritic patterns. By using ImageJ, an open-source image analysis software package, and a plugin developed for this analysis, the mammary gland branching density and the complexity of a mammary gland from a peripubertal female rat were determined. The methods described here will enable the use of the Sholl analysis as an effective tool for quantifying an important characteristic of mammary gland development.
Collapse
Affiliation(s)
- Jason P Stanko
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences;
| |
Collapse
|
16
|
Nguyen NM, de Oliveira Andrade F, Jin L, Zhang X, Macon M, Cruz MI, Benitez C, Wehrenberg B, Yin C, Wang X, Xuan J, de Assis S, Hilakivi-Clarke L. Maternal intake of high n-6 polyunsaturated fatty acid diet during pregnancy causes transgenerational increase in mammary cancer risk in mice. Breast Cancer Res 2017; 19:77. [PMID: 28673325 PMCID: PMC5494892 DOI: 10.1186/s13058-017-0866-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 06/07/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Maternal and paternal high-fat (HF) diet intake before and/or during pregnancy increases mammary cancer risk in several preclinical models. We studied if maternal consumption of a HF diet that began at a time when the fetal primordial germ cells travel to the genital ridge and start differentiating into germ cells would result in a transgenerational inheritance of increased mammary cancer risk. METHODS Pregnant C57BL/6NTac mouse dams were fed either a control AIN93G or isocaloric HF diet composed of corn oil high in n-6 polyunsaturated fatty acids between gestational days 10 and 20. Offspring in subsequent F1-F3 generations were fed only the control diet. RESULTS Mammary tumor incidence induced by 7,12-dimethylbenz[a]anthracene was significantly higher in F1 (p < 0.016) and F3 generation offspring of HF diet-fed dams (p < 0.040) than in the control offspring. Further, tumor latency was significantly shorter (p < 0.028) and burden higher (p < 0.027) in F1 generation HF offspring, and similar trends were seen in F3 generation HF offspring. RNA sequencing was done on normal mammary glands to identify signaling differences that may predispose to increased breast cancer risk by maternal HF intake. Analysis revealed 1587 and 4423 differentially expressed genes between HF and control offspring in F1 and F3 generations, respectively, of which 48 genes were similarly altered in both generations. Quantitative real-time polymerase chain reaction analysis validated 13 chosen up- and downregulated genes in F3 HF offspring, but only downregulated genes in F1 HF offspring. Ingenuity Pathway Analysis identified upregulation of Notch signaling as a key alteration in HF offspring. Further, knowledge-fused differential dependency network analysis identified ten node genes that in the HF offspring were uniquely connected to genes linked to increased cancer risk (ANKEF1, IGFBP6, SEMA5B), increased resistance to cancer treatments (SLC26A3), poor prognosis (ID4, JAM3, TBX2), and impaired anticancer immunity (EGR3, ZBP1). CONCLUSIONS We conclude that maternal HF diet intake during pregnancy induces a transgenerational increase in offspring mammary cancer risk in mice. The mechanisms of inheritance in the F3 generation may be different from the F1 generation because significantly more changes were seen in the transcriptome.
Collapse
Affiliation(s)
- Nguyen M Nguyen
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Fabia de Oliveira Andrade
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Lu Jin
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Xiyuan Zhang
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Madisa Macon
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - M Idalia Cruz
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Carlos Benitez
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Bryan Wehrenberg
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Yin
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Xiao Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Jianhua Xuan
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Sonia de Assis
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA
| | - Leena Hilakivi-Clarke
- Department of Oncology, Georgetown University, Research Building, Room E407, 3970 Reservoir Road, NW, Washington, DC, 20057, USA.
| |
Collapse
|
17
|
Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats. J Nutr Biochem 2017; 44:71-79. [DOI: 10.1016/j.jnutbio.2017.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/16/2016] [Accepted: 03/02/2017] [Indexed: 11/19/2022]
|
18
|
Abdelmagid SA, MacKinnon JL, Janssen SM, Ma DWL. Role of n-3 Polyunsaturated Fatty Acids and Exercise in Breast Cancer Prevention: Identifying Common Targets. Nutr Metab Insights 2016; 9:71-84. [PMID: 27812288 PMCID: PMC5089819 DOI: 10.4137/nmi.s39043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs) have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.
Collapse
Affiliation(s)
- Salma A Abdelmagid
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Jessica L MacKinnon
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Sarah M Janssen
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
α-Chymotrypsin regulates free fatty acids and UCHL-1 to ameliorate N-methyl nitrosourea induced mammary gland carcinoma in albino wistar rats. Inflammopharmacology 2016; 24:277-286. [PMID: 27671329 DOI: 10.1007/s10787-016-0280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023]
Abstract
This study was undertaken to investigate the effect of α-chymotrypsin on methyl nitrosourea (MNU) induced mammary gland carcinoma in albino wistar rats. Animals were randomized into four groups (six animals in each). Group I (sham control 0.9 % normal saline p.o.); Group II (toxic control, MNU 47 mg/kg, i.v.); Group III (α-chymotrypsin, 5 mg/kg, p.o.); Group IV (α-chymotrypsin, 10 mg/kg p.o.). Toxicity was induced by single i.v. injection of MNU followed by α-chymotrypsin supplementation therapy for 100 days. MNU treatment was evident with increased alveolar bud count, differentiation score, upregulated inflammatory enzymes markers (COX, LOX and NO) antioxidative stress markers (TBARs, SOD, catalase and GSH).MNU associated toxicity was also ascertained by PGP 9.5 and NF-κB expression in the mammary gland tissue followed by FAME analysis for fatty acid profiling. α-chymotrypsin afforded significant protection against the deleterious effects of MNU.
Collapse
|
20
|
Möller FJ, Pemp D, Soukup ST, Wende K, Zhang X, Zierau O, Muders MH, Bosland MC, Kulling SE, Lehmann L, Vollmer G. Soy isoflavone exposure through all life stages accelerates 17β-estradiol-induced mammary tumor onset and growth, yet reduces tumor burden, in ACI rats. Arch Toxicol 2016; 90:1907-16. [PMID: 26861028 DOI: 10.1007/s00204-016-1674-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022]
Abstract
There is an ongoing debate whether the intake of soy-derived isoflavones (sISO) mediates beneficial or adverse effects with regard to breast cancer risk. Therefore, we investigated whether nutritional exposure to a sISO-enriched diet from conception until adulthood impacts on 17β-estradiol (E2)-induced carcinogenesis in the rat mammary gland (MG). August-Copenhagen-Irish (ACI) rats were exposed to dietary sISO from conception until postnatal day 285. Silastic tubes containing E2 were used to induce MG tumorigenesis. Body weight, food intake, and tumor growth were recorded weekly. At necropsy, the number, position, size, and weight of each tumor were determined. Plasma samples underwent sISO analysis, and the morphology of MG was analyzed. Tumor incidence and multiplicity were reduced by 20 and 56 %, respectively, in the sISO-exposed rats compared to the control rats. Time-to-tumor onset was shortened from 25 to 20 weeks, and larger tumors developed in the sISO-exposed rats. The histological phenotype of the MG tumors was independent of the sISO diet received, and it included both comedo and cribriform phenotypes. Morphological analyses of the whole-mounted MGs also showed no diet-dependent differences. Lifelong exposure to sISO reduced the overall incidence of MG carcinomas in ACI rats, although the time-to-tumor was significantly shortened.
Collapse
Affiliation(s)
- Frank Josef Möller
- Department of Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany.
| | - Daniela Pemp
- Department of Food Chemistry, Institute for Pharmacy and Food Chemistry, Universität Würzburg, 97074, Würzburg, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131, Karlsruhe, Germany
| | - Kathleen Wende
- Department of Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiajie Zhang
- Department of Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Oliver Zierau
- Department of Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael H Muders
- Institute for Pathology, University Clinic Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131, Karlsruhe, Germany
| | - Leane Lehmann
- Department of Food Chemistry, Institute for Pharmacy and Food Chemistry, Universität Würzburg, 97074, Würzburg, Germany
| | - Günter Vollmer
- Department of Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
21
|
Manral C, Roy S, Singh M, Gautam S, Yadav RK, Rawat JK, Devi U, Ansari MN, Saeedan AS, Kaithwas G. Effect of β-sitosterol against methyl nitrosourea-induced mammary gland carcinoma in albino rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:260. [PMID: 27473871 PMCID: PMC4966711 DOI: 10.1186/s12906-016-1243-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/23/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND The present study was in quested to study the effects of β-sitosterol on methyl nitrosourea (MNU) induced mammary gland carcinoma in albino wistar rats. METHODS Animals were randomized and divided into four groups of eight animals each. Group I (sham control 1 % CMC in normal saline p.o.); Group II (toxic control, MNU 47 mg/kg, i.v); Group III (MNU 47 mg/kg, i.v + β-sitosterol, 10 mg/kg, p.o); Group IV (MNU 47 mg/kg, i.v + β-sitosterol, 20 mg/kg, p.o). Toxicity was induced by single i.v. injection of MNU followed by β-sitosterol supplementation therapy for 115 days at the dose mentioned above. RESULTS Treatment with β-sitosterol evidenced decrease in the alveolar bud and lobule score in the whole mount of the mammary gland. β-sitosterol exhibited diminishing effect on oxidative stress through synchronizing lipid and enzymatic antioxidant defense. A significant decrease in the saturated and unsaturated fatty acid was evident with the MNU treatment and β-sitosterol demonstrated a marked effect on it. Pgp 9.5 expression was dose dependently upregulated by β-sitosterol treatment in comparison to MNU treatment. On the contrary, downregulated NF-kB expression was perceived, when β-sitosterol was concomitantly administered with MNU. CONCLUSION β-sitosterol afforded significant protection against the deleterious effects of MNU.
Collapse
Affiliation(s)
- Chetan Manral
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India
| | - Swetlana Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India
| | - Rajnish K Yadav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India
| | - Jitendra K Rawat
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India
| | - Uma Devi
- Department of Pharmaceutical Sciences, FHMSIASM SHIATS-Deemed University (Formerly Allahabad Agriculture Institute), Naini, Allahabad, 211007, (U.P.), India
| | - Md Nazam Ansari
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Abdulaziz S Saeedan
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, KSA
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya vihar, Raibareli road, Lucknow, 226025, (U.P.), India.
| |
Collapse
|
22
|
Fontelles CC, Guido LN, Rosim MP, Andrade FDO, Jin L, Inchauspe J, Pires VC, de Castro IA, Hilakivi-Clarke L, de Assis S, Ong TP. Paternal programming of breast cancer risk in daughters in a rat model: opposing effects of animal- and plant-based high-fat diets. Breast Cancer Res 2016; 18:71. [PMID: 27456846 PMCID: PMC4960664 DOI: 10.1186/s13058-016-0729-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Although males contribute half of the embryo’s genome, only recently has interest begun to be directed toward the potential impact of paternal experiences on the health of offspring. While there is evidence that paternal malnutrition may increase offspring susceptibility to metabolic diseases, the influence of paternal factors on a daughter’s breast cancer risk has been examined in few studies. Methods Male Sprague-Dawley rats were fed, before and during puberty, either a lard-based (high in saturated fats) or a corn oil-based (high in n-6 polyunsaturated fats) high-fat diet (60 % of fat-derived energy). Control animals were fed an AIN-93G control diet (16 % of fat-derived energy). Their 50-day-old female offspring fed only a commercial diet were subjected to the classical model of mammary carcinogenesis based on 7,12-dimethylbenz[a]anthracene initiation, and mammary tumor development was evaluated. Sperm cells and mammary gland tissue were subjected to cellular and molecular analysis. Results Compared with female offspring of control diet-fed male rats, offspring of lard-fed male rats did not differ in tumor latency, growth, or multiplicity. However, female offspring of lard-fed male rats had increased elongation of the mammary epithelial tree, number of terminal end buds, and tumor incidence compared with both female offspring of control diet-fed and corn oil-fed male rats. Compared with female offspring of control diet-fed male rats, female offspring of corn oil-fed male rats showed decreased tumor growth but no difference regarding tumor incidence, latency, or multiplicity. Additionally, female offspring of corn oil-fed male rats had longer tumor latency as well as decreased tumor growth and multiplicity compared with female offspring of lard-fed male rats. Paternal consumption of animal- or plant-based high-fat diets elicited opposing effects, with lard rich in saturated fatty acids increasing breast cancer risk in offspring and corn oil rich in n-6 polyunsaturated fatty acids decreasing it. These effects could be linked to alterations in microRNA expression in fathers’ sperm and their daughters’ mammary glands, and to modifications in breast cancer-related protein expression in this tissue. Conclusions Our findings highlight the importance of paternal nutrition in affecting future generations’ risk of developing breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0729-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Luiza Nicolosi Guido
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Mariana Papaléo Rosim
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Fábia de Oliveira Andrade
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Lu Jin
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, 20007, USA
| | - Jessica Inchauspe
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, 20007, USA
| | - Vanessa Cardoso Pires
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | - Inar Alves de Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil
| | | | - Sonia de Assis
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, 20007, USA
| | - Thomas Prates Ong
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 580, Bloco 14, São Paulo, SP, 05508-000, Brazil. .,Food Research Center (FoRC), São Paulo, 05508-000, Brazil.
| |
Collapse
|
23
|
Fontelles CC, Carney E, Clarke J, Nguyen NM, Yin C, Jin L, Cruz MI, Ong TP, Hilakivi-Clarke L, de Assis S. Paternal overweight is associated with increased breast cancer risk in daughters in a mouse model. Sci Rep 2016; 6:28602. [PMID: 27339599 PMCID: PMC4919621 DOI: 10.1038/srep28602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
While many studies have shown that maternal weight and nutrition in pregnancy affects offspring's breast cancer risk, no studies have investigated the impact of paternal body weight on daughters' risk of this disease. Here, we show that diet-induced paternal overweight around the time of conception can epigenetically reprogram father's germ-line and modulate their daughters' birth weight and likelihood of developing breast cancer, using a mouse model. Increased body weight was associated with changes in the miRNA expression profile in paternal sperm. Daughters of overweight fathers had higher rates of carcinogen-induced mammary tumors which were associated with delayed mammary gland development and alterations in mammary miRNA expression. The hypoxia signaling pathway, targeted by miRNAs down-regulated in daughters of overweight fathers, was activated in their mammary tissues and tumors. This study provides evidence that paternal peri-conceptional body weight may affect daughters' mammary development and breast cancer risk and warrants further studies in other animal models and humans.
Collapse
Affiliation(s)
- Camile Castilho Fontelles
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.,Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Elissa Carney
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Johan Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Nguyen M Nguyen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Chao Yin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Thomas Prates Ong
- Departament of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo and Food Research Center, São Paulo, SP, Brazil
| | - Leena Hilakivi-Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
24
|
Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. Cross-Talk in the Female Rat Mammary Gland: Influence of Aryl Hydrocarbon Receptor on Estrogen Receptor Signaling. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:601-610. [PMID: 26372666 PMCID: PMC4858405 DOI: 10.1289/ehp.1509680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Cross-talk between the aryl hydrocarbon receptor (AHR) and the estrogen receptor (ER) plays a major role in signaling processes in female reproductive organs. OBJECTIVES We investigated the influence of the AHR ligand 3-methylcholanthrene (3-MC) on ER-mediated signaling in mammary gland tissue of ovariectomized (ovx) rats. METHODS After 14 days of hormonal decline, ovx rats were treated for 3 days with 4 μg/kg 17β-estradiol (E2), 15 mg/kg 8-prenylnaringenin (8-PN), 15 mg/kg 3-MC, or a combination of these compounds (E2 + 3-MC, 8-PN + 3-MC). Whole-mount preparations of the mammary gland were used to count terminal end buds (TEBs). Protein expression studies (immunohistochemistry, immunofluorescence), a cDNA microarray, pathway analyses, and quantitative real-time polymerase chain reaction (qPCR) were performed to evaluate the interaction between AHR- and ER-mediated signaling pathways. RESULTS E2 treatment increased the number of TEBs and the levels of Ki-67 protein and progesterone receptor (PR); this treatment also changed the expression of 325 genes by more than 1.5-fold. Although 3-MC treatment alone had marginal impact on gene or protein expression, when rats were co-treated with 3-MC and E2, 3-MC strongly inhibited E2-induced TEB development, protein synthesis, and the expression of nearly half of E2-induced genes. This inhibitory effect of 3-MC was partially mirrored when 8-PN was used as an ER ligand. The anti-estrogenicity of ligand-activated AHR was at least partly due to decreased protein levels of ERα in ductal epithelial cells. CONCLUSION Our data show transcriptome-wide anti-estrogenic properties of ligand-activated AHR on ER-mediated processes in the mammary gland, thereby contributing an explanation for the chemopreventive and endocrine-disrupting potential of AHR ligands. CITATION Helle J, Bader MI, Keiler AM, Zierau O, Vollmer G, Chittur SV, Tenniswood M, Kretzschmar G. 2016. Cross-talk in the female rat mammary gland: influence of aryl hydrocarbon receptor on estrogen receptor signaling. Environ Health Perspect 124:601-610; http://dx.doi.org/10.1289/ehp.1509680.
Collapse
Affiliation(s)
- Janina Helle
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Manuela I. Bader
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Annekathrin M. Keiler
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Zierau
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Günter Vollmer
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| | - Sridar V. Chittur
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Martin Tenniswood
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Georg Kretzschmar
- Institute of Zoology, Molecular Cell Physiology and Endocrinology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
Salah FS, Ebbinghaus M, Muley VY, Zhou Z, Al-Saadi KRD, Pacyna-Gengelbach M, O'Sullivan GA, Betz H, König R, Wang ZQ, Bräuer R, Petersen I. Tumor suppression in mice lacking GABARAP, an Atg8/LC3 family member implicated in autophagy, is associated with alterations in cytokine secretion and cell death. Cell Death Dis 2016; 7:e2205. [PMID: 27124579 PMCID: PMC4855672 DOI: 10.1038/cddis.2016.93] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/04/2023]
Abstract
GABARAP belongs to an evolutionary highly conserved gene family that has a fundamental role in autophagy. There is ample evidence for a crosstalk between autophagy and apoptosis as well as the immune response. However, the molecular details for these interactions are not fully characterized. Here, we report that the ablation of murine GABARAP, a member of the Atg8/LC3 family that is central to autophagosome formation, suppresses the incidence of tumor formation mediated by the carcinogen DMBA and results in an enhancement of the immune response through increased secretion of IL-1β, IL-6, IL-2 and IFN-γ from stimulated macrophages and lymphocytes. In contrast, TGF-β1 was significantly reduced in the serum of these knockout mice. Further, DMBA treatment of these GABARAP knockout mice reduced the cellularity of the spleen and the growth of mammary glands through the induction of apoptosis. Gene expression profiling of mammary glands revealed significantly elevated levels of Xaf1, an apoptotic inducer and tumor-suppressor gene, in knockout mice. Furthermore, DMBA treatment triggered the upregulation of pro-apoptotic (Bid, Apaf1, Bax), cell death (Tnfrsf10b, Ripk1) and cell cycle inhibitor (Cdkn1a, Cdkn2c) genes in the mammary glands. Finally, tumor growth of B16 melanoma cells after subcutaneous inoculation was inhibited in GABARAP-deficient mice. Together, these data provide strong evidence for the involvement of GABARAP in tumorigenesis in vivo by delaying cell death and its associated immune-related response.
Collapse
Affiliation(s)
- F S Salah
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany.,Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Ebbinghaus
- Institute of Physiology 1, University Hospital - Friedrich Schiller University Jena, Teichgraben 8, Jena D-07743, Germany
| | - V Y Muley
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z Zhou
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany
| | - K R D Al-Saadi
- Iraqi Centre for Cancer and Medical Genetics Research, Al-Mustansiriya University, Baghdad, Iraq
| | - M Pacyna-Gengelbach
- Institute of Pathology, University Medicine Berlin, Campus Charité Mitte, Berlin D-10098, Germany
| | - G A O'Sullivan
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany
| | - H Betz
- Department of Neurochemistry, Max-Planck Institute for Brain Research, Deutschordenstrasse 46, Frankfurt D-60528, Germany.,Max-Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg D-69120, Germany
| | - R König
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstrasse 11, Jena D-07745, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Erlanger Allee 101, Jena D-07747, Germany
| | - Z-Q Wang
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, Jena D-07745, Germany.,Faculty of Biology and Pharmacy, Friedrich Schiller University Jena, Bachstrasse 18k, Jena D-07743, Germany
| | - R Bräuer
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| | - I Petersen
- Institute of Pathology, University Hospital - Friedrich Schiller University Jena, Ziegelmühlenweg 1, Jena D-07743, Germany
| |
Collapse
|
26
|
Honvo-Houéto E, Truchet S. Indirect Immunofluorescence on Frozen Sections of Mouse Mammary Gland. J Vis Exp 2015. [PMID: 26650781 DOI: 10.3791/53179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indirect immunofluorescence is used to detect and locate proteins of interest in a tissue. The protocol presented here describes a complete and simple method for the immune detection of proteins, the mouse lactating mammary gland being taken as an example. A protocol for the preparation of the tissue samples, especially concerning the dissection of mouse mammary gland, tissue fixation and frozen tissue sectioning, are detailed. A standard protocol to perform indirect immunofluorescence, including an optional antigen retrieval step, is also presented. The observation of the labeled tissue sections as well as image acquisition and post-treatments are also stated. This procedure gives a full overview, from the collection of animal tissue to the cellular localization of a protein. Although this general method can be applied to other tissue samples, it should be adapted to each tissue/primary antibody couple studied.
Collapse
|
27
|
Gouda ZA, Ahmed SM, Elghonaimy NM. Characterization of adult male albino rat mammary gland: a histological and serological study. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2055-091x-2-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
de Oliveira Andrade F, Fontelles CC, Rosim MP, de Oliveira TF, de Melo Loureiro AP, Mancini-Filho J, Rogero MM, Moreno FS, de Assis S, Barbisan LF, Hilakivi-Clarke L, Ong TP. Exposure to lard-based high-fat diet during fetal and lactation periods modifies breast cancer susceptibility in adulthood in rats. J Nutr Biochem 2014; 25:613-22. [PMID: 24746835 DOI: 10.1016/j.jnutbio.2014.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 12/16/2022]
Abstract
The present study investigated whether early life exposure to high levels of animal fat increases breast cancer risk in adulthood in rats. Dams consumed a lard-based high-fat (HF) diet (60% fat-derived energy) or an AIN93G control diet (16% fat-derived energy) during gestation or gestation and lactation. Their 7-week-old female offspring were exposed to 7,12-dimethyl-benzo[a]anthracene to induce mammary tumors. Pregnant dams consuming an HF diet had higher circulating leptin levels than pregnant control dams. However, compared to the control offspring, significantly lower susceptibility to mammary cancer development was observed in the offspring of dams fed an HF diet during pregnancy (lower tumor incidence, multiplicity and weight), or pregnancy and lactation (lower tumor multiplicity only). Mammary epithelial elongation, cell proliferation (Ki67) and expression of NFκB p65 were significantly lower and p21 expression and global H3K9me3 levels were higher in the mammary glands of rats exposed to an HF lard diet in utero. They also tended to have lower Rank/Rankl ratios (P=.09) and serum progesterone levels (P=.07) than control offspring. In the mammary glands of offspring of dams consuming an HF diet during both pregnancy and lactation, the number of terminal end buds, epithelial elongation and the BCL-2/BAX ratio were significantly lower and serum leptin levels were higher than in the controls. Our data confirm that the breast cancer risk of offspring can be programmed by maternal dietary intake. However, contrary to our expectation, exposure to high levels of lard during early life decreased later susceptibility to breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Salvador Moreno
- Faculty of Pharmaceutical Sciences; Food and Nutrition Research Center (NAPAN), São Paulo, Brazil
| | - Sonia de Assis
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | - Thomas Prates Ong
- Faculty of Pharmaceutical Sciences; Food and Nutrition Research Center (NAPAN), São Paulo, Brazil.
| |
Collapse
|
29
|
de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B, Wang Y, Huang THM, Hilakivi-Clarke L. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 2013; 3:1053. [PMID: 22968699 PMCID: PMC3570979 DOI: 10.1038/ncomms2058] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/10/2012] [Indexed: 01/05/2023] Open
Abstract
Maternal exposures to environmental factors during pregnancy influence the risk of many chronic adult-onset diseases in the offspring. Here we investigate whether feeding pregnant rats a high-fat (HF)- or ethinyl-oestradiol (EE2)-supplemented diet affects carcinogen-induced mammary cancer risk in daughters, granddaughters and great-granddaughters. We show that mammary tumourigenesis is higher in daughters and granddaughters of HF rat dams and in daughters and great-granddaughters of EE2 rat dams. Outcross experiments suggest that the increase in mammary cancer risk is transmitted to HF granddaughters equally through the female or male germ lines, but it is only transmitted to EE2 granddaughters through the female germ line. The effects of maternal EE2 exposure on offspring's mammary cancer risk are associated with changes in the DNA methylation machinery and methylation patterns in mammary tissue of all three EE2 generations. We conclude that dietary and oestrogenic exposures in pregnancy increase breast cancer risk in multiple generations of offspring, possibly through epigenetic means. Environmental factors can influence one's susceptibility to cancer, but it is not clear whether such an influence extends beyond the directly exposed generations. Here, feeding pregnant rats with a high-fat diet or a hormone derivative, the authors observe increased breast cancer risk in up to three subsequent generations.
Collapse
Affiliation(s)
- Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, The Research Building, Room E407, Washington, District of Columbia 20057, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zheng S, Li Q, Zhang Y, Balluff Z, Pan YX. Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16 (INK4a) gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics 2012; 7:183-90. [PMID: 22395468 DOI: 10.4161/epi.7.2.18972] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Maternal exposure to environmental agents throughout pregnancy and lactation may affect offspring's mammary gland growth and alter the epigenome. This may predispose the offspring's mammary glands to be more susceptible to carcinogenesis. The purpose of this study was to examine the effect of a maternal high-fat diet on the regulation of p16 (INK4a) gene expression in the mammary gland of rat offspring. Timed-pregnant Sprague-Dawley rats were fed one of the two diets, a control (C, 16% of fat) or a high fat (HF, 45% of fat) diet, throughout gestation and lactation and sacrificed at 12 weeks of age. Compared with C, HF offspring showed a decrease of p16 (INK4a) gene expression in the mammary gland at both mRNA and protein levels. Chromatin immunoprecipitation (ChIP) assay demonstrated that the downregulation of p16 (INK4a) transcription in HF offspring was associated with reduced acetylation of histone H4 and increased recruitment of histone deacetylase 3 (HDAC3) within the p16 (INK4a) promoter region, but was not associated with acetylation of histone H3 or HDAC1. Methylated DNA immunoprecipitation (MeDIP) did not detect differences in methylation at different regions of the p16 (INK4a) gene between C and HF offspring. We conclude that maternal high fat exposure represses p16 (INK4a) gene expression in the mammary gland of offspring through changes of histone modifications and HDAC3 binding activity within the regulatory regions of the p16 (INK4a) gene.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
31
|
Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5693-708. [PMID: 22300613 PMCID: PMC3383353 DOI: 10.1021/jf204084f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.
Collapse
Affiliation(s)
- Harini S Aiyer
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
- Corresponding author: Harini S. Aiyer, PhD (Tel: 202-687-4060; Fax: 202-687-7505; )
| | - Anni M Warri
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Denzel R Woode
- Columbia University, 5992 Lerner Hall, New York, NY 10027
| | - Leena Hilakivi-Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Robert Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| |
Collapse
|