1
|
Acero VP, Das S, Rivellini O, Purvis EM, Adewole DO, Cullen DK. Emergent structural and functional properties of hippocampal multi-cellular aggregates. Front Neurosci 2023; 17:1171115. [PMID: 37397454 PMCID: PMC10311220 DOI: 10.3389/fnins.2023.1171115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Hippocampal neural networks are distinctly capable of integrating multi-modal sensory inputs to drive memory formation. Neuroscientific investigations using simplified in vitro models have greatly relied on planar (2D) neuronal cultures made from dissociated tissue. While these models have served as simple, cost-effective, and high-throughput tools for examining various morphological and electrophysiological characteristics of hippocampal networks, 2D cultures fail to reconstitute critical elements of the brain microenvironment that may be necessary for the emergence of sophisticated integrative network properties. To address this, we utilized a forced aggregation technique to generate high-density (>100,000 cells/mm3) multi-cellular three-dimensional aggregates using rodent embryonic hippocampal tissue. We contrasted the emergent structural and functional properties of aggregated (3D) and dissociated (2D) cultures over 28 days in vitro (DIV). Hippocampal aggregates displayed robust axonal fasciculation across large distances and significant neuronal polarization, i.e., spatial segregation of dendrites and axons, at earlier time points compared to dissociated cultures. Moreover, we found that astrocytes in aggregate cultures self-organized into non-overlapping quasi-domains and developed highly stellate morphologies resembling astrocyte structures in vivo. We maintained cultures on multi-electrode arrays (MEAs) to assess spontaneous electrophysiological activity for up to 28 DIV. We found that 3D networks of aggregated cultures developed highly synchronized networks and with high burstiness by 28 DIV. We also demonstrated that dual-aggregate networks became active by 7 DIV, in contrast to single-aggregate networks which became active and developed synchronous bursting activity with repeating motifs by 14 DIV. Taken together, our findings demonstrate that the high-density, multi-cellular, 3D microenvironment of hippocampal aggregates supports the recapitulation of emergent biofidelic morphological and functional properties. Our findings suggest that neural aggregates may be used as segregated, modular building blocks for the development of complex, multi-nodal neural network topologies.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Erin M. Purvis
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Fitzgerald J, Houle S, Cotter C, Zimomra Z, Martens KM, Vonder Haar C, Kokiko-Cochran ON. Lateral Fluid Percussion Injury Causes Sex-Specific Deficits in Anterograde but Not Retrograde Memory. Front Behav Neurosci 2022; 16:806598. [PMID: 35185489 PMCID: PMC8854992 DOI: 10.3389/fnbeh.2022.806598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is a common symptom after traumatic brain injury (TBI). Memory, in particular, is often disrupted during chronic post-injury recovery. To understand the sex-specific effects of brain injury on retrograde and anterograde memory, we examined paired associate learning (PAL), spatial learning and memory, and fear memory after lateral fluid percussion TBI. We hypothesized that male and female mice would display unique memory deficits after TBI. PAL task acquisition was initiated via touchscreen operant conditioning 22 weeks before sham injury or TBI. Post-injury PAL testing occurred 7 weeks post-injury. Barnes maze and fear conditioning were completed at 14- and 15-weeks post-injury, respectively. Contrary to our expectations, behavioral outcomes were not primarily influenced by TBI. Instead, sex-specific differences were observed in all tasks which exposed task-specific trends in male TBI mice. Male mice took longer to complete the PAL task, but this was not affected by TBI and did not compromise the ability to make a correct choice. Latency to reach the goal box decreased across testing days in Barnes maze, but male TBI mice lagged in improvement compared to all other groups. Use of two learning indices revealed that male TBI mice were deficient in transferring information from 1 day to the next. Finally, acquisition and contextual retention of fear memory were similar between all groups. Cued retention of the tone-shock pairing was influenced by both injury and sex. Male sham mice displayed the strongest cued retention of fear memory, evidenced by increased freezing behavior across the test trial. In contrast, male TBI mice displayed reduced freezing behavior with repetitive tone exposure. An inverse relationship in freezing behavior to tone exposure was detected between female sham and TBI mice, although the difference was not as striking. Together, these studies show that retrograde memory is intact after lateral TBI. However, male mice are more vulnerable to post-injury anterograde memory deficits. These behaviors were not associated with gross pathological change near the site injury or in subcortical brain regions associated with memory formation. Future studies that incorporate pre- and post-injury behavioral analysis will be integral in defining sex-specific memory impairment after TBI.
Collapse
Affiliation(s)
- Julie Fitzgerald
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Christopher Cotter
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Zachary Zimomra
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Kris M. Martens
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cole Vonder Haar
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
- *Correspondence: Olga N. Kokiko-Cochran,
| |
Collapse
|
3
|
Carver CM, DeWitt HR, Stoja AP, Shapiro MS. Blockade of TRPC Channels Limits Cholinergic-Driven Hyperexcitability and Seizure Susceptibility After Traumatic Brain Injury. Front Neurosci 2021; 15:681144. [PMID: 34489621 PMCID: PMC8416999 DOI: 10.3389/fnins.2021.681144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholine-induced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazol-induced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater Gq/11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.
Collapse
Affiliation(s)
- Chase M Carver
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Haley R DeWitt
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Aiola P Stoja
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Mark S Shapiro
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Clark LR, Yun S, Acquah NK, Kumar PL, Metheny HE, Paixao RCC, Cohen AS, Eisch AJ. Mild Traumatic Brain Injury Induces Transient, Sequential Increases in Proliferation, Neuroblasts/Immature Neurons, and Cell Survival: A Time Course Study in the Male Mouse Dentate Gyrus. Front Neurosci 2021; 14:612749. [PMID: 33488351 PMCID: PMC7817782 DOI: 10.3389/fnins.2020.612749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are prevalent worldwide. mTBIs can impair hippocampal-based functions such as memory and cause network hyperexcitability of the dentate gyrus (DG), a key entry point to hippocampal circuitry. One candidate for mediating mTBI-induced hippocampal cognitive and physiological dysfunction is injury-induced changes in the process of DG neurogenesis. There are conflicting results on how TBI impacts the process of DG neurogenesis; this is not surprising given that both the neurogenesis process and the post-injury period are dynamic, and that the quantification of neurogenesis varies widely in the literature. Even within the minority of TBI studies focusing specifically on mild injuries, there is disagreement about if and how mTBI changes the process of DG neurogenesis. Here we utilized a clinically relevant rodent model of mTBI (lateral fluid percussion injury, LFPI), gold-standard markers and quantification of the neurogenesis process, and three time points post-injury to generate a comprehensive picture of how mTBI affects adult hippocampal DG neurogenesis. Male C57BL/6J mice (6-8 weeks old) received either sham surgery or mTBI via LFPI. Proliferating cells, neuroblasts/immature neurons, and surviving cells were quantified via stereology in DG subregions (subgranular zone [SGZ], outer granule cell layer [oGCL], molecular layer, and hilus) at short-term (3 days post-injury, dpi), intermediate (7 dpi), and long-term (31 dpi) time points. The data show this model of mTBI induces transient, sequential increases in ipsilateral SGZ/GCL proliferating cells, neuroblasts/immature neurons, and surviving cells which is suggestive of mTBI-induced neurogenesis. In contrast to these ipsilateral hemisphere findings, measures in the contralateral hemisphere were not increased in key neurogenic DG subregions after LFPI. Our work in this mTBI model is in line with most literature on other and more severe models of TBI in showing TBI stimulates the process of DG neurogenesis. However, as our DG data in mTBI provide temporal, subregional, and neurogenesis-stage resolution, these data are important to consider in regard to the functional importance of TBI-induction of the neurogenesis process and future work assessing the potential of replacing and/or repairing DG neurons in the brain after TBI.
Collapse
Affiliation(s)
- Lyles R. Clark
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Nana K. Acquah
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Priya L. Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biomechanical Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Rikley C. C. Paixao
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Akivas S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Sex differences in cued fear responses and parvalbumin cell density in the hippocampus following repetitive concussive brain injuries in C57BL/6J mice. PLoS One 2019; 14:e0222153. [PMID: 31487322 PMCID: PMC6728068 DOI: 10.1371/journal.pone.0222153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
There is strong evidence to suggest a link between repeated head trauma and cognitive and emotional disorders, and Repetitive concussive brain injuries (rCBI) may also be a risk factor for depression and anxiety disorders. Animal models of brain injury afford the opportunity for controlled study of the effects of injury on functional outcomes. In this study, male and cycling female C57BL/6J mice sustained rCBI (3x) at 24-hr intervals and were tested in a context and cued fear conditioning paradigm, open field (OF), elevated zero maze and tail suspension test. All mice with rCBI showed less freezing behavior than sham control mice during the fear conditioning context test. Injured male, but not female mice also froze less in response to the auditory cue (tone). Injured mice were hyperactive in an OF environment and spent more time in the open quadrants of the elevated zero maze, suggesting decreased anxiety, but there were no differences between injured mice and sham-controls in depressive-like activity on the tail suspension test. Pathologically, injured mice showed increased astrogliosis in the injured cortex and white matter tracts (optic tracts and corpus callosum). There were no changes in the number of parvalbumin-positive interneurons in the cortex or amygdala, but injured male mice had fewer parvalbumin-positive neurons in the hippocampus. Parvalbumin-reactive interneurons of the hippocampus have been previously demonstrated to be involved in hippocampal-cortical interactions required for memory consolidation, and it is possible memory changes in the fear-conditioning paradigm following rCBI are the result of more subtle imbalances in excitation and inhibition both within the amygdala and hippocampus, and between more widespread brain regions that are injured following a diffuse brain injury.
Collapse
|
6
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
7
|
Zhou Y. Small world properties changes in mild traumatic brain injury. J Magn Reson Imaging 2016; 46:518-527. [PMID: 27902865 DOI: 10.1002/jmri.25548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/26/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To investigate local and global efficiency changes characterized by small-world properties based on resting-state functional MRI, such as centrality and clustering coefficient, in mild traumatic brain injury (MTBI) patients; and to associate these findings with axonal injury as measured by diffusion tensor imaging (DTI) as well as with post-concussive symptom (PCS). MATERIALS AND METHODS Thirty patients (mean age 35 ± 13 years) with clinically defined MTBI and 45 age-matched healthy controls (mean age 37 ± 10 years) participated in the experiments. Resting-state functional MRI was performed using gradient echo planar imaging sequence with 3 Tesla MRI scanner to obtain functional small-world networks. Out of all participants, 20 MTBI patients and 20 controls had available DTI data with three b-values (0, 500, 1000) s/mm2 and 30 directions for diffuse axonal injury analyses. RESULTS Compared with controls, MTBI patients showed lower relative betweenness centrality (P = 0.01), but significantly higher clustering coefficient (P = 0.04), and these two metrics correlated negatively in patients (r = -0.77; P < 0.001). Regions with lower betweenness centrality (e.g., frontal and occipital) corresponded with the regions of reduced FA in patients, while global FA reduction correlated with betweenness centrality (r = 0.48; P = 0.03) and clustering coefficient (r = -0.46; P = 0.04) in MTBI patients. In addition, there was significantly higher thalamocortical connectivity that correlated with clustering coefficient (r = 0.39; P = 0.03) in patients. Also, patients with higher clustering coefficient tended to have less PCS score with negative correlation (r = -0.4; P = 0.04). CONCLUSION Our results demonstrated significant functional small-world properties changes in patients with MTBI, and suggest decreased global efficiency, possibly due to diffuse axonal injury and local network upregulation including increased thalamo-cortical connectivity. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:518-527.
Collapse
Affiliation(s)
- Yongxia Zhou
- Department of Radiology / Center for Biomedical Imaging, NYU Langone Medical Center, New York, New York
| |
Collapse
|
8
|
Dash PK, Hylin MJ, Hood KN, Orsi SA, Zhao J, Redell JB, Tsvetkov AS, Moore AN. Inhibition of Eukaryotic Initiation Factor 2 Alpha Phosphatase Reduces Tissue Damage and Improves Learning and Memory after Experimental Traumatic Brain Injury. J Neurotrauma 2015; 32:1608-20. [PMID: 25843479 PMCID: PMC4593880 DOI: 10.1089/neu.2014.3772] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patients who survive traumatic brain injury (TBI) are often faced with persistent memory deficits. The hippocampus, a structure critical for learning and memory, is vulnerable to TBI and its dysfunction has been linked to memory impairments. Protein kinase RNA-like ER kinase regulates protein synthesis (by phosphorylation of eukaryotic initiation factor 2 alpha [eIF2α]) in response to endoplasmic reticulum (ER) stressors, such as increases in calcium levels, oxidative damage, and energy/glucose depletion, all of which have been implicated in TBI pathophysiology. Exposure of cells to guanabenz has been shown to increase eIF2α phosphorylation and reduce ER stress. Using a rodent model of TBI, we present experimental results that indicate that postinjury administration of 5.0 mg/kg of guanabenz reduced cortical contusion volume and decreased hippocampal cell damage. Moreover, guanabenz treatment attenuated TBI-associated motor, vestibulomotor, recognition memory, and spatial learning and memory dysfunction. Interestingly, when the initiation of treatment was delayed by 24 h, or the dose reduced to 0.5 mg/kg, some of these beneficial effects were still observed. Taken together, these findings further support the involvement of ER stress signaling in TBI pathophysiology and indicate that guanabenz may have translational utility.
Collapse
Affiliation(s)
- Pramod K. Dash
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michael J. Hylin
- Department of Psychology, Southern Illinois University, Carbondale, Illinois
| | - Kimberly N. Hood
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Sara A. Orsi
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John B. Redell
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Andrey S. Tsvetkov
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Anthony N. Moore
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|