1
|
Bricio-Moreno L, Barreto de Albuquerque J, Neary JM, Nguyen T, Kuhn LF, Yeung Y, Hastie KM, Landeras-Bueno S, Olmedillas E, Hariharan C, Nathan A, Getz MA, Gayton AC, Khatri A, Gaiha GD, Ollmann Saphire E, Luster AD, Moon JJ. Identification of mouse CD4 + T cell epitopes in SARS-CoV-2 BA.1 spike and nucleocapsid for use in peptide:MHCII tetramers. Front Immunol 2024; 15:1329846. [PMID: 38529279 PMCID: PMC10961420 DOI: 10.3389/fimmu.2024.1329846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 03/27/2024] Open
Abstract
Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.
Collapse
Affiliation(s)
- Laura Bricio-Moreno
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Juliana Barreto de Albuquerque
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jake M. Neary
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Thao Nguyen
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Lucy F. Kuhn
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - YeePui Yeung
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
| | - Kathryn M. Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Eduardo Olmedillas
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Chitra Hariharan
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Anusha Nathan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Program in Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Boston, MA, United States
| | - Matthew A. Getz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Alton C. Gayton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Ashok Khatri
- Harvard Medical School, Boston, MA, United States
- Endocrine Division, MGH, Boston, MA, United States
| | - Gaurav D. Gaiha
- Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Division of Gastroenterology, MGH, Boston, MA, United States
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - James J. Moon
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, United States
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Pulmonary and Critical Care Medicine, MGH, Boston, MA, United States
| |
Collapse
|
2
|
Bugaut H, El Morr Y, Mestdagh M, Darbois A, Paiva RA, Salou M, Perrin L, Fürstenheim M, du Halgouet A, Bilonda-Mutala L, Le Gac AL, Arnaud M, El Marjou A, Guerin C, Chaiyasitdhi A, Piquet J, Smadja DM, Cieslak A, Ryffel B, Maciulyte V, Turner JM, Bernardeau K, Montagutelli X, Lantz O, Legoux F. A conserved transcriptional program for MAIT cells across mammalian evolution. J Exp Med 2024; 221:e20231487. [PMID: 38117256 PMCID: PMC10733631 DOI: 10.1084/jem.20231487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.
Collapse
Affiliation(s)
- Hélène Bugaut
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Yara El Morr
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Martin Mestdagh
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Aurélie Darbois
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Rafael A. Paiva
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Marion Salou
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Laetitia Perrin
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Mariela Fürstenheim
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Université Paris Cité, Paris, France
| | - Anastasia du Halgouet
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Linda Bilonda-Mutala
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Anne-Laure Le Gac
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | - Manon Arnaud
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
| | | | - Coralie Guerin
- Cytometry Platform, CurieCoreTech, Institut Curie, Paris, France
- Innovative Therapies in Haemostasis, Institut National de La Santé et de La Recherche Médicale, Université de Paris, Paris, France
| | - Atitheb Chaiyasitdhi
- Laboratoire Physico-Chimie Curie, Institut Curie, Paris Sciences et Lettres Research University, Centre national de la recherche scientifique UMR168, Paris, France
- Sorbonne Université, Paris, France
| | - Julie Piquet
- Biosurgical Research Laboratory, Carpentier Foundation, Paris, France
| | - David M. Smadja
- Innovative Therapies in Haemostasis, Institut National de La Santé et de La Recherche Médicale, Université de Paris, Paris, France
- Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre-Université de Paris, Paris, France
| | - Agata Cieslak
- Université de Paris (Descartes), Institut Necker-Enfants Malades, Institut National de La Santé et de La Recherche Médicale U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Bernhard Ryffel
- Université D’Orléans, Centre national de la recherche scientifique UMR7355, Orléans, France
| | - Valdone Maciulyte
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - James M.A. Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, UK
| | - Karine Bernardeau
- Nantes Université, Centre hospitalier universitaire de Nantes, Centre national de la recherche scientifique, Institut National de La Santé et de La Recherche Médicale, BioCore, US16, Plateforme P2R, Structure Fédérative de Recherche François Bonamy, Nantes, France
| | - Xavier Montagutelli
- Mouse Genetics Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Olivier Lantz
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Laboratoire D’immunologie Clinique, Institut Curie, Paris, France
- Centre D’investigation Clinique en Biothérapie Gustave-Roussy Institut Curie, Paris, France
| | - François Legoux
- Institut Curie, Paris Sciences et Lettres University, Institut National de La Santé et de La Recherche Médicale U932, Immunity and Cancer, Paris, France
- Institut de Génétique et Développement de Rennes, Université de Rennes, Institut National de La Santé et de La Recherche Médicale ERL1305, Centre national de la recherche scientifique UMR6290, Rennes, France
| |
Collapse
|
3
|
Rüterbusch MJ, Hondowicz BD, Takehara KK, Pruner KB, Griffith TS, Pepper M. Allergen exposure functionally alters influenza-specific CD4+ Th1 memory cells in the lung. J Exp Med 2023; 220:e20230112. [PMID: 37698553 PMCID: PMC10497397 DOI: 10.1084/jem.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/11/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
CD4+ lung-resident memory T cells (TRM) generated in response to influenza infection confer effective protection against subsequent viral exposures. Whether these cells can be altered by environmental antigens and cytokines released during heterologous, antigen-independent immune responses is currently unclear. We therefore investigated how influenza-specific CD4+ Th1 TRM in the lung are impacted by a subsequent Th2-inducing respiratory house dust mite (HDM) exposure. Although naïve influenza-specific CD4+ T cells in the lymph nodes do not respond to HDM, influenza-specific CD4+ TRM in the lungs do respond to a subsequent allergen exposure by decreasing expression of the transcription factor T-bet. This functional alteration is associated with decreased IFN-γ production upon restimulation and improved disease outcomes following heterosubtypic influenza challenge. Further investigation revealed that ST2 signaling in CD4+ T cells during allergic challenge is necessary to induce these changes in lung-resident influenza-specific CD4+ TRM. Thus, heterologous antigen exposure or ST2-signaling can drive persistent changes in CD4+ Th1 TRM populations and impact protection upon reinfection.
Collapse
Affiliation(s)
- Mikel J. Rüterbusch
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Brian D. Hondowicz
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kennidy K. Takehara
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kurt B. Pruner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas S. Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Marion Pepper
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Kanjana K, Strle K, Lochhead RB, Pianta A, Mateyka LM, Wang Q, Arvikar SL, Kling DE, Deangelo CA, Curham L, Barbour AG, Costello CE, Moon JJ, Steere AC. Autoimmunity to synovial extracellular matrix proteins in patients with postinfectious Lyme arthritis. J Clin Invest 2023; 133:e161170. [PMID: 37471146 PMCID: PMC10471169 DOI: 10.1172/jci161170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUNDAutoimmune diseases often have strong genetic associations with specific HLA-DR alleles. The synovial lesion in chronic inflammatory forms of arthritis shows marked upregulation of HLA-DR molecules, including in postinfectious Lyme arthritis (LA). However, the identity of HLA-DR-presented peptides, and therefore the reasons for these associations, has frequently remained elusive.METHODSUsing immunopeptidomics to detect HLA-DR-presented peptides from synovial tissue, we identified T cell epitopes from 3 extracellular matrix (ECM) proteins in patients with postinfectious LA, identified potential Borreliella burgdorferi-mimic (Bb-mimic) epitopes, and characterized T and B cell responses to these peptides or proteins.RESULTSOf 24 postinfectious LA patients, 58% had CD4+ T cell responses to at least 1 epitope of 3 ECM proteins, fibronectin-1, laminin B2, and/or collagen Vα1, and 17% of 52 such patients had antibody responses to at least 1 of these proteins. Patients with autoreactive T cell responses had significantly increased frequencies of HLA-DRB1*04 or -DRB1*1501 alleles and more prolonged arthritis. When tetramer reagents were loaded with ECM or corresponding Bb-mimic peptides, binding was only with the autoreactive T cells. A high percentage of ECM-autoreactive CD4+ T cells in synovial fluid were T-bet-expressing Th1 cells, a small percentage were RoRγt-expressing Th17 cells, and a minimal percentage were FoxP3-expressing Tregs.CONCLUSIONAutoreactive, proinflammatory CD4+ T cells and autoantibodies develop to ECM proteins in a subgroup of postinfectious LA patients who have specific HLA-DR alleles. Rather than the traditional molecular mimicry model, we propose that epitope spreading provides the best explanation for this example of infection-induced autoimmunity.FUNDINGSupported by National Institute of Allergy and Infectious Diseases R01-AI101175, R01-AI144365, and F32-AI125764; National Institute of Arthritis and Musculoskeletal and Skin Diseases K01-AR062098 and T32-AR007258; NIH grants P41-GM104603, R24-GM134210, S10-RR020946, S10-OD010724, S10-OD021651, and S10-OD021728; and the G. Harold and Leila Y. Mathers Foundation, the Eshe Fund, and the Lyme Disease and Arthritis Research Fund at Massachusetts General Hospital.
Collapse
Affiliation(s)
- Korawit Kanjana
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Klemen Strle
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert B. Lochhead
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Annalisa Pianta
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura M. Mateyka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Wang
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Sheila L. Arvikar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Kling
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cameron A. Deangelo
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucy Curham
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan G. Barbour
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, California, USA
| | - Catherine E. Costello
- Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - James J. Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allen C. Steere
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Shin DS, Ratnapriya S, Cashin CN, Kuhn LF, Rahimi RA, Anthony RM, Moon JJ. Lung injury induces a polarized immune response by self antigen-specific Foxp3 + regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527896. [PMID: 36798259 PMCID: PMC9934659 DOI: 10.1101/2023.02.09.527896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Self antigen-specific T cells are prevalent in the mature adaptive immune system, but are regulated through multiple mechanisms of tolerance. However, inflammatory conditions such as tissue injury may provide these T cells with an opportunity to break tolerance and trigger autoimmunity. To understand how the T cell repertoire responds to the presentation of self antigen under highly stimulatory conditions, we used peptide:MHCII tetramers to track the behavior of endogenous CD4 + T cells with specificity to a lung-expressed self antigen in mouse models of immune-mediated lung injury. Acute injury resulted in the exclusive expansion of regulatory T cells (Tregs) that was dependent on self antigen recognition and IL-2. Conversely, conventional T cells of the same self antigen specificity remained unresponsive, even following Treg ablation. Thus, the self antigen-specific T cell repertoire is poised to serve a regulatory function during acute tissue damage to limit further damage and the possibility of autoimmunity.
Collapse
|
6
|
Klawon DEJ, Gilmore DC, Leonard JD, Miller CH, Chao JL, Walker MT, Duncombe RK, Tung KS, Adams EJ, Savage PA. Altered selection on a single self-ligand promotes susceptibility to organ-specific T cell infiltration. J Exp Med 2021; 218:212038. [PMID: 33914024 PMCID: PMC8091134 DOI: 10.1084/jem.20200701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/17/2020] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
For the large array of self-peptide/MHC class II (pMHC-II) complexes displayed in the body, it is unclear whether CD4+ T cell tolerance must be imparted for each individual complex or whether pMHC-II–nonspecific bystander mechanisms are sufficient to confer tolerance by acting broadly on T cells reactive to multiple self-pMHC-II ligands. Here, via reconstitution of T cell–deficient mice, we demonstrate that altered T cell selection on a single prostate-specific self-pMHC-II ligand renders recipient mice susceptible to prostate-specific T cell infiltration. Mechanistically, this self-pMHC-II complex is required for directing antigen-specific cells into the Foxp3+ regulatory T cell lineage but does not induce clonal deletion to a measurable extent. Thus, our data demonstrate that polyclonal T reg cells are unable to functionally compensate for a breach in tolerance to a single self-pMHC-II complex in this setting, revealing vulnerabilities in antigen-nonspecific bystander mechanisms of immune tolerance.
Collapse
Affiliation(s)
| | - Dana C Gilmore
- Department of Pathology, University of Chicago, Chicago, IL
| | - John D Leonard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | | | - Jaime L Chao
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Ryan K Duncombe
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Kenneth S Tung
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
7
|
Faustino LD, Griffith JW, Rahimi RA, Nepal K, Hamilos DL, Cho JL, Medoff BD, Moon JJ, Vignali DAA, Luster AD. Interleukin-33 activates regulatory T cells to suppress innate γδ T cell responses in the lung. Nat Immunol 2020; 21:1371-1383. [PMID: 32989331 PMCID: PMC7578082 DOI: 10.1038/s41590-020-0785-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
Foxp3+ regulatory T (Treg) cells expressing the interleukin (IL)-33 receptor ST2 mediate tissue repair in response to IL-33. Whether Treg cells also respond to the alarmin IL-33 to regulate specific aspects of the immune response is not known. Here we describe an unexpected function of ST2+ Treg cells in suppressing the innate immune response in the lung to environmental allergens without altering the adaptive immune response. Following allergen exposure, ST2+ Treg cells were activated by IL-33 to suppress IL-17-producing γδ T cells. ST2 signaling in Treg cells induced Ebi3, a component of the heterodimeric cytokine IL-35 that was required for Treg cell-mediated suppression of γδ T cells. This response resulted in fewer eosinophil-attracting chemokines and reduced eosinophil recruitment into the lung, which was beneficial to the host in reducing allergen-induced inflammation. Thus, we define a fundamental role for ST2+ Treg cells in the lung as a negative regulator of the early innate γδ T cell response to mucosal injury.
Collapse
Affiliation(s)
- Lucas D Faustino
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keshav Nepal
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel L Hamilos
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Josalyn L Cho
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine and Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, Huang X, Day M, Koehn B, Lee SW, Silva Morales M, Hogquist KA, Jameson SC, Mueller D, Rothstein J, Blazar BR, Cheng C, Noelle RJ. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 2020; 367:eaay0524. [PMID: 31949051 PMCID: PMC7391053 DOI: 10.1126/science.aay0524] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yanding Zhao
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Evelien Schaafsma
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Sabrina Ceeraz
- Immunology Discovery, Janssen Research and Development LLC, Spring House, PA, USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Changwei Peng
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Xin Huang
- ImmuNext Corporation, Lebanon, NH, USA
| | - Maria Day
- ImmuNext Corporation, Lebanon, NH, USA
| | - Brent Koehn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Sam W Lee
- Yale University School of Medicine, New Haven, CT, USA
| | - Milagros Silva Morales
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kristin A Hogquist
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Stephen C Jameson
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Daniel Mueller
- Division of Rheumatic and Autoimmune Diseases, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- The Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R Blazar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- ImmuNext Corporation, Lebanon, NH, USA
| |
Collapse
|
9
|
Zhang Z, Legoux FP, Vaughan SW, Moon JJ. Opposing peripheral fates of tissue-restricted self antigen-specific conventional and regulatory CD4 + T cells. Eur J Immunol 2019; 50:63-72. [PMID: 31580477 DOI: 10.1002/eji.201948180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/29/2019] [Accepted: 09/27/2019] [Indexed: 11/08/2022]
Abstract
The development of self antigen-specific T cells is influenced by how the self antigen is expressed. Here, we created a mouse in which a model self antigen is conditionally expressed in different tissue environments. Using peptide:MHCII tetramer-based cell enrichment methods, we examined the development of corresponding endogenous self antigen-specific CD4+ T cell populations. While ubiquitous self antigen expression resulted in efficient deletion of self antigen-specific T cells in the thymus, some tissue-restricted expression patterns resulted in partial deletion of the population in peripheral lymphoid organs. Deletion specifically affected Foxp3- conventional T cells (Tconv) with a bias towards high avidity TCR expressing cells in the case of thymic, but not peripheral deletion. In contrast, Foxp3+ Treg exhibited elevated frequencies with increased TCR avidity. T cells surviving deletion were functionally impaired, with Tconv cells exhibiting more impairment than Tregs. Collectively, our results illustrate how postthymic recognition of tissue-restricted self antigens results in opposing developmental fates for Tconv and Treg cell subsets.
Collapse
Affiliation(s)
- Zimeng Zhang
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA.,Program in Immunology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Francois P Legoux
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Spencer W Vaughan
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Legoux F, Bellet D, Daviaud C, El Morr Y, Darbois A, Niort K, Procopio E, Salou M, Gilet J, Ryffel B, Balvay A, Foussier A, Sarkis M, El Marjou A, Schmidt F, Rabot S, Lantz O. Microbial metabolites control the thymic development of mucosal-associated invariant T cells. Science 2019; 366:494-499. [PMID: 31467190 DOI: 10.1126/science.aaw2719] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/15/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
How the microbiota modulate immune functions remains poorly understood. Mucosal-associated invariant T (MAIT) cells are implicated in mucosal homeostasis and absent in germ-free mice. Here, we show that commensal bacteria govern murine MAIT intrathymic development, as MAIT cells did not recirculate to the thymus. MAIT development required RibD expression in bacteria, indicating that production of the MAIT antigen 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) was necessary. 5-OP-RU rapidly traveled from mucosal surfaces to the thymus, where it was captured by the major histocompatibility complex class Ib molecule MR1. This led to increased numbers of the earliest MAIT precursors and the expansion of more mature receptor-related, orphan receptor γt-positive MAIT cells. Thus, a microbiota-derived metabolite controls the development of mucosally targeted T cells in a process blurring the distinction between exogenous antigens and self-antigens.
Collapse
Affiliation(s)
- François Legoux
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.
| | - Déborah Bellet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Celine Daviaud
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,Animal Facility, Institut Curie, Paris 75005, France
| | - Yara El Morr
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Aurelie Darbois
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Kristina Niort
- Recombinant Protein Facility, Institut Curie, Paris 75005, France
| | | | - Marion Salou
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | - Jules Gilet
- INSERM U932, PSL University, Institut Curie, Paris 75005, France
| | | | - Aurélie Balvay
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Anne Foussier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Manal Sarkis
- INSERM U932, PSL University, Institut Curie, Paris 75005, France.,CNRS UMR3666, INSERM U1143, PSL University, Institut Curie, Paris 75005, France
| | - Ahmed El Marjou
- Recombinant Protein Facility, Institut Curie, Paris 75005, France
| | - Frederic Schmidt
- CNRS UMR3666, INSERM U1143, PSL University, Institut Curie, Paris 75005, France
| | - Sylvie Rabot
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas 78350, France
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris 75005, France. .,Laboratoire d'Immunologie Clinique, Institut Curie, Paris 75005, France.,Centre d'Investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| |
Collapse
|
11
|
Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É, Laverdure JP, Gendron P, Courcelles M, Hardy MP, Côté C, Durette C, St-Pierre C, Benhammadi M, Lanoix J, Vobecky S, Haddad E, Lemieux S, Thibault P, Perreault C. Noncoding regions are the main source of targetable tumor-specific antigens. Sci Transl Med 2018; 10:10/470/eaau5516. [DOI: 10.1126/scitranslmed.aau5516] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
Tumor-specific antigens (TSAs) represent ideal targets for cancer immunotherapy, but few have been identified thus far. We therefore developed a proteogenomic approach to enable the high-throughput discovery of TSAs coded by potentially all genomic regions. In two murine cancer cell lines and seven human primary tumors, we identified a total of 40 TSAs, about 90% of which derived from allegedly noncoding regions and would have been missed by standard exome-based approaches. Moreover, most of these TSAs derived from nonmutated yet aberrantly expressed transcripts (such as endogenous retroelements) that could be shared by multiple tumor types. Last, we demonstrated that, in mice, the strength of antitumor responses after TSA vaccination was influenced by two parameters that can be estimated in humans and could serve for TSA prioritization in clinical studies: TSA expression and the frequency of TSA-responsive T cells in the preimmune repertoire. In conclusion, the strategy reported herein could considerably facilitate the identification and prioritization of actionable human TSAs.
Collapse
|
12
|
Zhang Y, Zhang H, Ma W, Liu K, Zhao M, Zhao Y, Lu X, Zhang F, Li X, Gao GF, Liu WJ. Evaluation of Zika Virus-specific T-cell Responses in Immunoprivileged Organs of Infected Ifnar1-/- Mice. J Vis Exp 2018:58110. [PMID: 30394402 PMCID: PMC6235543 DOI: 10.3791/58110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Zika virus (ZIKV) can induce inflammation in immunoprivileged organs (e.g., the brain and testis), leading to the Guillain-Barré syndrome and damaging the testes. During an infection with the ZIKV, immune cells have been shown to infiltrate into the tissues. However, the cellular mechanisms that define the protection and/or immunopathogenesis of these immune cells during a ZIKV infection are still largely unknown. Herein, we describe methods to evaluate the virus-specific T-cell functionality in these immunoprivileged organs of ZIKV-infected mice. These methods include a) a ZIKV infection and vaccine inoculation in Ifnar1-/- mice; b) histopathology, immunofluorescence, and immunohistochemistry assays to detect the virus infection and inflammation in the brain, testes, and spleen; c) the preparation of a tetramer of ZIKV-derived T-cell epitopes; d) the detection of ZIKV-specific T cells in the monocytes isolated from the brain, testes, and spleen. Using these approaches, it is possible to detect the antigen-specific T cells that have infiltrated into the immunoprivileged organs and to evaluate the functions of these T cells during the infection: potential immune protection via virus clearance and/or immunopathogenesis to exacerbate the inflammation. These findings may also help to clarify the contribution of T cells induced by the immunization against ZIKV.
Collapse
Affiliation(s)
- Yongli Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention
| | - Hangjie Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention
| | - Wenqiang Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University
| | - Kefang Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention
| | - Min Zhao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences
| | - Yingze Zhao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention
| | - Xuancheng Lu
- Laboratory Animal Center, Chinese Center for Disease Control and Prevention
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University;
| | - George F Gao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention; Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences;
| | - William J Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University; NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention;
| |
Collapse
|
13
|
Leonard JD, Gilmore DC, Dileepan T, Nawrocka WI, Chao JL, Schoenbach MH, Jenkins MK, Adams EJ, Savage PA. Identification of Natural Regulatory T Cell Epitopes Reveals Convergence on a Dominant Autoantigen. Immunity 2017; 47:107-117.e8. [PMID: 28709804 DOI: 10.1016/j.immuni.2017.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/17/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T (Treg) cells expressing the transcription factor Foxp3 are critical for the prevention of autoimmunity and the suppression of anti-tumor immunity. The major self-antigens recognized by Treg cells remain undefined, representing a substantial barrier to the understanding of immune regulation. Here, we have identified natural Treg cell ligands in mice. We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the other associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC-class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. On the basis of these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self-proteins that are most susceptible to autoimmune attack, and we suggest that this link could be exploited as a generalizable strategy for identifying the Treg cell antigens relevant to human autoimmunity.
Collapse
Affiliation(s)
- John D Leonard
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Dana C Gilmore
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wioletta I Nawrocka
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jaime L Chao
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Mary H Schoenbach
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA.
| | - Peter A Savage
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Cho JL, Ling MF, Adams DC, Faustino L, Islam SA, Afshar R, Griffith JW, Harris RS, Ng A, Radicioni G, Ford AA, Han AK, Xavier R, Kwok WW, Boucher R, Moon JJ, Hamilos DL, Kesimer M, Suter MJ, Medoff BD, Luster AD. Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation. Sci Transl Med 2016; 8:359ra132. [PMID: 27708065 PMCID: PMC5399547 DOI: 10.1126/scitranslmed.aag1370] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023]
Abstract
Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4+ T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4+ T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation.
Collapse
Affiliation(s)
- Josalyn L Cho
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Morris F Ling
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David C Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucas Faustino
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sabina A Islam
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roshi Afshar
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jason W Griffith
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert S Harris
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Aylwin Ng
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Giorgia Radicioni
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amina A Ford
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andre K Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ramnik Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Richard Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel L Hamilos
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa J Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Evonuk KS, Moseley CE, Doyle RE, Weaver CT, DeSilva TM. Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination. J Vis Exp 2016. [PMID: 27685467 PMCID: PMC5092010 DOI: 10.3791/54348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A major hallmark of the autoimmune demyelinating disease multiple sclerosis (MS) is immune cell infiltration into the brain and spinal cord resulting in myelin destruction, which not only slows conduction of nerve impulses, but causes axonal injury resulting in motor and cognitive decline. Current treatments for MS focus on attenuating immune cell infiltration into the central nervous system (CNS). These treatments decrease the number of relapses, improving quality of life, but do not completely eliminate relapses so long-term disability is not improved. Therefore, therapeutic agents that protect the CNS are warranted. In both animal models as well as human patients with MS, T cell entry into the CNS is generally considered the initiating inflammatory event. In order to assess if a drug protects the CNS, any potential effects on immune cell infiltration or proliferation in the periphery must be ruled out. This protocol describes how to determine whether CNS protection observed after drug intervention is a consequence of attenuating CNS-infiltrating immune cells or blocking death of CNS cells during inflammatory insults. The ability to examine MS treatments that are protective to the CNS during inflammatory insults is highly critical for the advancement of therapeutic strategies since current treatments reduce, but do not completely eliminate, relapses (i.e., immune cell infiltration), leaving the CNS vulnerable to degeneration.
Collapse
Affiliation(s)
- Kirsten S Evonuk
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham
| | | | - Ryan E Doyle
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham
| | - Tara M DeSilva
- Physical Medicine and Rehabilitation, University of Alabama at Birmingham; Department of Neurobiology, University of Alabama at Birmingham; Center for Glial Biology and Medicine, University of Alabama at Birmingham;
| |
Collapse
|
16
|
Legoux FP, Lim JB, Cauley AW, Dikiy S, Ertelt J, Mariani TJ, Sparwasser T, Way SS, Moon JJ. CD4+ T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion. Immunity 2015; 43:896-908. [PMID: 26572061 DOI: 10.1016/j.immuni.2015.10.011] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/02/2015] [Accepted: 08/21/2015] [Indexed: 01/14/2023]
Abstract
Deletion of self-antigen-specific T cells during thymic development provides protection from autoimmunity. However, it is unclear how efficiently this occurs for tissue-restricted self antigens, or how immune tolerance is maintained for self-antigen-specific T cells that routinely escape deletion. Here we show that endogenous CD4+ T cells with specificity for a set of tissue-restricted self antigens were not deleted at all. For pancreatic self antigen, this resulted in an absence of steady-state tolerance, while for the lung and intestine, tolerance was maintained by the enhanced presence of thymically-derived antigen-specific Foxp3+ regulatory T (Treg) cells. Unlike deletional tolerance, Treg cell-mediated tolerance was broken by successive antigen challenges. These findings reveal that for some tissue-restricted self antigens, tolerance relies entirely on nondeletional mechanisms that are less durable than T cell deletion. This might explain why autoimmunity is often tissue-specific, and it offers a rationale for cancer vaccine strategies targeting tissue-restricted tumor antigens.
Collapse
Affiliation(s)
- Francois P Legoux
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital; and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jong-Baeck Lim
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital; and Harvard Medical School, Charlestown, MA 02129, USA
| | - Andrew W Cauley
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital; and Harvard Medical School, Charlestown, MA 02129, USA
| | - Stanislav Dikiy
- Howard Hughes Medical Institute, Ludwig Center, and Immunology Program; Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - James Ertelt
- Division of Infectious Diseases and Perinatal Institute; Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program; University of Rochester, Rochester, NY 14642, USA
| | - Tim Sparwasser
- TWINCORE - Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Sing Sing Way
- Division of Infectious Diseases and Perinatal Institute; Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James J Moon
- Center for Immunology and Inflammatory Diseases, and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital; and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
17
|
Mattapallil MJ, Silver PB, Cortes LM, St Leger AJ, Jittayasothorn Y, Kielczewski JL, Moon JJ, Chan CC, Caspi RR. Characterization of a New Epitope of IRBP That Induces Moderate to Severe Uveoretinitis in Mice With H-2b Haplotype. Invest Ophthalmol Vis Sci 2015; 56:5439-49. [PMID: 26284549 DOI: 10.1167/iovs.15-17280] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Experimental autoimmune uveitis (EAU) induced in mice using the retinal antigen interphotoreceptor retinoid binding protein (IRBP) is an animal model for posterior uveitis in humans. However, EAU induced by native IRBP protein or its widely used epitope amino acid residues 1 to 20 of human IRBP (hIRBP1-20) is inconsistent, often showing low scores and incidence. We found an urgent need to identify a better pathogenic epitope for the C57BL/6 strain. METHODS Mice were immunized with uveitogenic peptides or with native bovine IRBP. Clinical and histological disease and associated immunological responses were evaluated. Truncated and substituted peptides, as well as bioinformatic analyses, were used to identify critical major histocompatibility complex (MHC)/T cell receptor (TCR) contact residues and the minimal core epitope. RESULTS The new uveitogenic epitope of IRBP, amino acid residues 651 to 670 of human IRBP (LAQGAYRTAVDLESLASQLT [hIRBP651-670]) is uveitogenic for mice of the H-2b haplotype and elicits EAU with a higher severity and incidence in C57BL/6 mice than the previously characterized hIRBP1-20 epitope. Using truncated and substituted peptides, as well as bioinformatic analysis, we identified the critical contact residues with MHC/TCR and defined the minimal core epitope. This made it possible to design MHC tetramers and use them to detect epitope-specific T cells in the uveitic eye and in lymphoid organs of hIRBP651-670-immunized mice. CONCLUSIONS Data suggest that hIRBP651-670 is an epitope naturally processed from a conserved region of native IRBP, potentially explaining its relatively high uveitogenicity. This epitope should be useful for basic and preclinical studies of uveitis in the C57BL/6 model and gives access to genetically engineered mice available on this background.
Collapse
Affiliation(s)
- Mary J Mattapallil
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Phyllis B Silver
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lizette M Cortes
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Anthony J St Leger
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Yingyos Jittayasothorn
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jennifer L Kielczewski
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - James J Moon
- Center for Immunology and Inflammatory Diseases and Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Chi-Chao Chan
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Rachel R Caspi
- Laboratory of Immunology National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
18
|
Litterman AJ, Zellmer DM, LaRue RS, Jameson SC, Largaespada DA. Antigen-specific culture of memory-like CD8 T cells for adoptive immunotherapy. Cancer Immunol Res 2014; 2:839-45. [PMID: 24852944 DOI: 10.1158/2326-6066.cir-14-0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cytotoxic T cells typically are expanded ex vivo in culture with IL2 for adoptive immunotherapy. This culture period leads to a differentiated phenotype and acquisition of effector function, as well as a loss of in vivo proliferative capability and antitumor efficacy. Here, we report antigen-specific and polyclonal expansion of cytotoxic T cells in a cocktail of cytokines and small molecules that leads to a memory-like phenotype in mouse and human cells even during extended culture, leading to enhanced in vivo expansion and tumor control in mice.
Collapse
Affiliation(s)
- Adam J Litterman
- Masonic Cancer Center, Brain Tumor Program, Departments of Pediatrics
| | - David M Zellmer
- Masonic Cancer Center, Brain Tumor Program, Departments of Pediatrics
| | - Rebecca S LaRue
- Masonic Cancer Center, Genetics, Cell Biology and Development, and Center for Genome Engineering, and
| | - Stephen C Jameson
- Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Masonic Cancer Center, Brain Tumor Program, Departments of Pediatrics, Genetics, Cell Biology and Development, and Center for Genome Engineering, and
| |
Collapse
|