1
|
Kjølle S, Finne K, Birkeland E, Ardawatia V, Winge I, Aziz S, Knutsvik G, Wik E, Paulo JA, Vethe H, Kleftogiannis D, Akslen LA. Hypoxia induced responses are reflected in the stromal proteome of breast cancer. Nat Commun 2023; 14:3724. [PMID: 37349288 PMCID: PMC10287711 DOI: 10.1038/s41467-023-39287-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Cancers are often associated with hypoxia and metabolic reprogramming, resulting in enhanced tumor progression. Here, we aim to study breast cancer hypoxia responses, focusing on secreted proteins from low-grade (luminal-like) and high-grade (basal-like) cell lines before and after hypoxia. We examine the overlap between proteomics data from secretome analysis and laser microdissected human breast cancer stroma, and we identify a 33-protein stromal-based hypoxia profile (33P) capturing differences between luminal-like and basal-like tumors. The 33P signature is associated with metabolic differences and other adaptations following hypoxia. We observe that mRNA values for 33P predict patient survival independently of molecular subtypes and basic prognostic factors, also among low-grade luminal-like tumors. We find a significant prognostic interaction between 33P and radiation therapy.
Collapse
Affiliation(s)
- Silje Kjølle
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Even Birkeland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Vandana Ardawatia
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Sura Aziz
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Gøril Knutsvik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Elisabeth Wik
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Heidrun Vethe
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
| | - Dimitrios Kleftogiannis
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway
- Department of Informatics, Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Section for Pathology, University of Bergen, Bergen, N-5021, Norway.
- Department of Pathology, Haukeland University Hospital, Bergen, N-5021, Norway.
| |
Collapse
|
2
|
Mikkelsen H, Vikse BE, Eikrem O, Scherer A, Finne K, Osman T, Marti HP. Glomerular proteomic profiling of kidney biopsies with hypertensive nephropathy reveals a signature of disease progression. Hypertens Res 2023; 46:144-156. [PMID: 36229534 DOI: 10.1038/s41440-022-01066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 02/03/2023]
Abstract
Hypertensive nephropathy (HN) requires a kidney biopsy as diagnostic gold-standard but histological findings are unspecific and specific prognostic markers are missing. We aimed at identifying candidate prognostic markers based on glomerular protein signatures. We studied adult patients (n = 17) with eGFR >30 ml/min/1.73m2 and proteinuria <3 g/d from the Norwegian Kidney Biopsy Registry, including subjects non progressing (NP, n = 9), or progressing (P, n = 8) to end-stage renal disease (ESRD) within an average follow-up of 22 years. Glomerular cross-sections from archival kidney biopsy sections were microdissected and processed for protein extraction. Proteomic analyses were performed using Q-exactive HF mass spectrometer and relative glomerular protein abundances were compared between P and NP patients. Immunohistochemistry (IHC) was used to validate selected data. Amongst 1870 quality filtered proteins, 58 were differentially expressed in P and NP patients' glomeruli, with absolute fold changes (FC) ≥1.5, p ≤ 0.05. Supervised classifier analysis (K nearest neighbor) identified a set of five proteins, including Gamma-butyrobetaine dioxygenase (BBOX1, O75936) and Cadherin 16 (CDH16, O75309), overexpressed in P, and Eosinophil peroxidase (EPX, P11678), DnaJ homolog subfamily B member 1 (DNAJB1, P25685) and Alpha-1-syntrophin (SNTA1, Q13424), overexpressed in NP glomeruli, correctly classifying 16/17 kidney biopsy samples. Geneset Enrichment Analysis (GSEA), showed that metabolic pathways were generally enriched in P, and structural cell pathways in NP. Pathway analysis identified Epithelial Adherens Junction Signaling as most affected canonical pathway. IHC analysis confirmed overexpression of BBOX1 and Cadherin 16 in glomeruli from P patients. In conclusion, glomerular proteomic profiling can be used to discriminate P from NP HN patients.
Collapse
Affiliation(s)
- Håvard Mikkelsen
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bjørn E Vikse
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | - Oystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland.,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway. .,Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
3
|
Mukherjee A, Ghosh S, Biswas D, Rao A, Shetty P, Epari S, Moiyadi A, Srivastava S. Clinical Proteomics for Meningioma: An Integrated Workflow for Quantitative Proteomics and Biomarker Validation in Formalin-Fixed Paraffin-Embedded Tissue Samples. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:512-520. [PMID: 36036964 DOI: 10.1089/omi.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clinical proteomics is a rapidly emerging frontier in laboratory medicine. High-throughput proteomic investigations of biopsy tissues provide mechanistic insights into complex human diseases. For large-scale proteomics, formalin-fixed and paraffin-embedded (FFPE) tissue samples offer a viable alternative to fresh-frozen (FF) tissues that have restricted availability. In this context, meningioma is one of the most common primary brain tumors where innovation in diagnostics and therapeutic targets can benefit from clinical proteomics. We present here an integrated workflow for quantitative proteomics and biomarker validation of meningioma FFPE tissues. Applying label-free quantitative (LFQ) proteomics, we reproducibly (Pearson's correlation: 0.84-0.91) obtained an in-depth proteome coverage (nearly 4000 proteins per sample) from 120 min gradient of single unfractionated mass spectrometry run. Furthermore, building upon LFQ data and literature curated set of meningioma-associated proteins, we validated VIM, AHNAK, and CLU from FFPE tissues using selected reaction monitoring (SRM) assay and compared its performance with FF tissues. This study illustrates how knowledge from label-free proteomics can be integrated for selecting peptides for targeted validation and suggests that FFPE tissues are comparable to FF tissues for SRM assays. This quantitative clinical proteomics workflow is scalable for large-scale clinical diagnostics studies in the future, for example, utilizing the global repository of FFPE tissues in meningioma and possibly in other cancers.
Collapse
Affiliation(s)
- Arijit Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Susmita Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Aishwarya Rao
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | | | | | | | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
4
|
Rossouw S, Bendou H, Bell L, Rigby J, Christoffels A. Effect of polyethylene glycol 20 000 on protein extraction efficiency of formalin-fixed paraffin-embedded tissues in South Africa. Afr J Lab Med 2021; 10:1122. [PMID: 34966662 PMCID: PMC8689371 DOI: 10.4102/ajlm.v10i1.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/08/2021] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Optimal protocols for efficient and reproducible protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues are not yet standardised and new techniques are continually developed and improved. The effect of polyethylene glycol (PEG) 20 000 on protein extraction efficiency has not been evaluated using human FFPE colorectal cancer tissues and there is no consensus on the protein extraction solution required for efficient, reproducible extraction. OBJECTIVE The impact of PEG 20 000 on protein extraction efficiency, reproducibility and protein selection bias was evaluated using FFPE colonic tissue via liquid chromatography tandem mass spectrometry analysis. METHODS This study was conducted from August 2017 to July 2019 using human FFPE colorectal carcinoma tissues from the Anatomical Pathology department at Tygerberg Hospital in South Africa. Samples were analysed via label-free liquid chromatography tandem mass spectrometry to determine the impact of using PEG 20 000 in the protein extraction solution. Data were assessed regarding peptide and protein identifications, method efficiency, reproducibility, protein characteristics and organisation relating to gene ontology categories. RESULTS Polyethylene glycol 20 000 exclusion increased peptides and proteins identifications and the method was more reproducible compared to the samples processed with PEG 20 000. However, no differences were observed with regard to protein selection bias. We found that higher protein concentrations (> 10 µg) compromised the function of PEG. CONCLUSION This study indicates that protocols generating high protein yields from human FFPE tissues would benefit from the exclusion of PEG 20 000 in the protein extraction solution.
Collapse
Affiliation(s)
- Sophia Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Department of Anatomical Pathology, National Health Laboratory Service, Tygerberg Hospital, Stellenbosch University, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Drelich L, Aboulouard S, Franck J, Salzet M, Fournier I, Wisztorski M. Toward High Spatially Resolved Proteomics Using Expansion Microscopy. Anal Chem 2021; 93:12195-12203. [PMID: 34449217 DOI: 10.1021/acs.analchem.0c05372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expansion microscopy (EM) is an emerging approach for morphological examination of biological specimens at nanoscale resolution using conventional optical microscopy. To achieve physical separation of cell structures, tissues are embedded in a swellable polymer and expanded several fold in an isotropic manner. This work shows the development and optimization of physical tissue expansion as a new method for spatially resolved large-scale proteomics. Herein we established a novel method to enlarge the tissue section to be compatible with manual microdissection on regions of interest and MS-based proteomic analysis. A major issue in expansion microscopy is the loss of protein information during the mechanical homogenization phase due to the use of proteinase K. For isotropic expansion, different homogenization agents were investigated, both to maximize protein identification and to minimize protein diffusion. Best results were obtained with SDS for homogenization. Using our modified protocol, we were able to enlarge a tissue section more than 3-fold and identified up to 655 proteins from 1 mm in size after expansion, equivalent to 330 μm in their real size corresponding thus to an average of 260 cells. This approach can be performed easily without any expensive sampling instrument. We demonstrated the compatibility of sample preparation for expansion microscopy and proteomic study in a spatial context.
Collapse
Affiliation(s)
- Lauranne Drelich
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, 59000, France
| | - Soulaimane Aboulouard
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, 59000, France
| | - Julien Franck
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, 59000, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, 59000, France.,Institut Universitaire de France (IUF), Paris, 75000, France
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, 59000, France.,Institut Universitaire de France (IUF), Paris, 75000, France
| | - Maxence Wisztorski
- University of Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, 59000, France
| |
Collapse
|
6
|
Yin B, Caggiano LR, Li RC, McGowan E, Holmes JW, Ewald SE. Automated Spatially Targeted Optical Microproteomics Investigates Inflammatory Lesions In Situ. J Proteome Res 2021; 20:4543-4552. [PMID: 34436902 PMCID: PMC8969901 DOI: 10.1021/acs.jproteome.1c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Tissue
microenvironment properties like blood flow, extracellular
matrix, or proximity to immune-infiltrate are important regulators
of cell biology. However, methods to study regional protein expression
in the native tissue environment are limited. To address this need,
we developed a novel approach to visualize, purify, and measure proteins in situ using automated spatially targeted optical microproteomics
(AutoSTOMP). Here, we report custom codes to specify regions of heterogeneity
in a tissue section and UV-biotinylate proteins within those regions.
We have developed liquid chromatography–mass spectrometry (LC–MS)/MS-compatible
biochemistry to purify those proteins and label-free quantification
methodology to determine protein enrichment in target cell types or
structures relative to nontarget regions in the same sample. These
tools were applied to (a) identify inflammatory proteins expressed
by CD68+ macrophages in rat cardiac infarcts and (b) characterize
inflammatory proteins enriched in IgG4+ lesions in human
esophageal tissues. These data indicate that AutoSTOMP is a flexible
approach to determine regional protein expression in situ on a range of primary tissues and clinical biopsies where current
tools and sample availability are limited.
Collapse
Affiliation(s)
- Bocheng Yin
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Laura R Caggiano
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Rung-Chi Li
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States.,Department of Allergy and Immunology, Northern Light Health, Bangor, Maine 04401, United States
| | - Emily McGowan
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States.,School of Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Sarah E Ewald
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia 22903, United States
| |
Collapse
|
7
|
Pandey S, Tuma Z, Smrhova T, Cedikova M, Macanova T, Chottova Dvorakova M. Laser Capture Microdissection Coupled Capillary Immunoassay to Study the Expression of PCK-2 on Spatially-Resolved Islets of Rat Langerhans. Pharmaceutics 2021; 13:pharmaceutics13060883. [PMID: 34203686 PMCID: PMC8232303 DOI: 10.3390/pharmaceutics13060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
The platform for precise proteomic profiling of targeted cell populations from heterogeneous tissue sections is developed. We demonstrate a seamless and systematic integration of LCM with an automated cap-IA for the handling of a very small-sized dissected tissues section from the kidney, liver and pancreatic Langerhans islet of rats. Our analysis reveals that the lowest LCM section area ≥ 0.125 mm2 with 10 µm thickness can be optimized for the detection of proteins through LCM-cap-IA integration. We detect signals ranging from a highly-abundant protein, β-actin, to a low-abundance protein, LC-3AB, using 0.125 mm2 LCM section from rat kidney, but, so far, a relatively large section is required for good quality of results. This integration is applicable for a highly-sensitive and accurate assessment of microdissected tissue sections to decipher hidden proteomic information of pure targeted cells. To validate this integration, PCK2 protein expression is studied within Langerhans islets of normal and diabetic rats. Our results show significant overexpression of PCK2 in Langerhans islets of rats with long-term diabetes.
Collapse
Affiliation(s)
- Shashank Pandey
- Department of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (Z.T.); (M.C.); (M.C.D.)
- Correspondence:
| | - Zdenek Tuma
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (Z.T.); (M.C.); (M.C.D.)
| | - Tereza Smrhova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic;
| | - Miroslava Cedikova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (Z.T.); (M.C.); (M.C.D.)
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic;
| | - Tereza Macanova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic;
| | - Magdalena Chottova Dvorakova
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic; (Z.T.); (M.C.); (M.C.D.)
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 32300 Pilsen, Czech Republic;
| |
Collapse
|
8
|
Rossouw SC, Bendou H, Blignaut RJ, Bell L, Rigby J, Christoffels A. Evaluation of Protein Purification Techniques and Effects of Storage Duration on LC-MS/MS Analysis of Archived FFPE Human CRC Tissues. Pathol Oncol Res 2021; 27:622855. [PMID: 34257588 PMCID: PMC8262168 DOI: 10.3389/pore.2021.622855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
To elucidate cancer pathogenesis and its mechanisms at the molecular level, the collecting and characterization of large individual patient tissue cohorts are required. Since most pathology institutes routinely preserve biopsy tissues by standardized methods of formalin fixation and paraffin embedment, these archived FFPE tissues are important collections of pathology material that include patient metadata, such as medical history and treatments. FFPE blocks can be stored under ambient conditions for decades, while retaining cellular morphology, due to modifications induced by formalin. However, the effect of long-term storage, at resource-limited institutions in developing countries, on extractable protein quantity/quality has not yet been investigated. In addition, the optimal sample preparation techniques required for accurate and reproducible results from label-free LC-MS/MS analysis across block ages remains unclear. This study investigated protein extraction efficiency of 1, 5, and 10-year old human colorectal carcinoma resection tissue and assessed three different gel-free protein purification methods for label-free LC-MS/MS analysis. A sample size of n = 17 patients per experimental group (with experiment power = 0.7 and α = 0.05, resulting in 70% confidence level) was selected. Data were evaluated in terms of protein concentration extracted, peptide/protein identifications, method reproducibility and efficiency, sample proteome integrity (due to storage time), as well as protein/peptide distribution according to biological processes, cellular components, and physicochemical properties. Data are available via ProteomeXchange with identifier PXD017198. The results indicate that the amount of protein extracted is significantly dependent on block age (p < 0.0001), with older blocks yielding less protein than newer blocks. Detergent removal plates were the most efficient and overall reproducible protein purification method with regard to number of peptide and protein identifications, followed by the MagReSyn® SP3/HILIC method (with on-bead enzymatic digestion), and lastly the acetone precipitation and formic acid resolubilization method. Overall, the results indicate that long-term storage of FFPE tissues (as measured by methionine oxidation) does not considerably interfere with retrospective proteomic analysis (p > 0.1). Block age mainly affects initial protein extraction yields and does not extensively impact on subsequent label-free LC-MS/MS analysis results.
Collapse
Affiliation(s)
- Sophia C. Rossouw
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Hocine Bendou
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Renette J. Blignaut
- Department of Statistics and Population Studies, University of the Western Cape, Bellville, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Observatory, Cape Town, South Africa
| | - Jonathan Rigby
- Division of Anatomical Pathology, Department of Pathology, Faculty of Health Sciences, University of Stellenbosch, National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
9
|
Brüning F, Humphrey SJ, Robles MS. Phosphoproteome and Proteome Sample Preparation from Mouse Tissues for Circadian Analysis. Methods Mol Biol 2021; 2130:185-193. [PMID: 33284445 DOI: 10.1007/978-1-0716-0381-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent advances in mass spectrometry (MS)-based quantitative proteomics now allow the identification and quantification of deep proteomes and post-translational modifications (PTMs) in relatively short times. Therefore, in the last few years, this technology has proven successful in the circadian field to characterize temporal oscillations of the proteome and more recently PTMs in cellular systems and in tissues. In this chapter, we describe a robust and simple protocol, based on the EasyPhos workflow, to enable preparation of large number of proteomes and phosphoproteomes from mouse tissues for MS-based quantitative analysis. We additionally discuss computational methods to analyze proteome and phosphoproteome time series to determine circadian oscillations.
Collapse
Affiliation(s)
- Franziska Brüning
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany.
| |
Collapse
|
10
|
Chen WH, Lin YX, Lin L, Zhang BQ, Xu SX, Wang W. Identification of potential candidate proteins for reprogramming spinal cord-derived astrocytes into neurons: a proteomic analysis. Neural Regen Res 2021; 16:2257-2263. [PMID: 33818510 PMCID: PMC8354129 DOI: 10.4103/1673-5374.310697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Our previous study has confirmed that astrocytes overexpressing neurogenic differentiation factor 1 (NEUROD1) in the spinal cord can be reprogrammed into neurons under in vivo conditions. However, whether they can also be reprogrammed into neurons under in vitro conditions remains unclear, and the mechanisms of programmed conversion from astrocytes to neurons have not yet been clarified. In the present study, we prepared reactive astrocytes from newborn rat spinal cord astrocytes using the scratch method and infected them with lentivirus carrying NEUROD1. The results showed that NEUROD1 overexpression reprogrammed the cultured reactive astrocytes into neurons in vitro with an efficiency of 13.4%. Using proteomic and bioinformatic analyses, 1952 proteins were identified, of which 92 were differentially expressed. Among these proteins, 11 were identified as candidate proteins in the process of reprogramming based on their biological functions and fold-changes in the bioinformatic analysis. Furthermore, western blot assay revealed that casein kinase II subunit alpha (CSNK2A2) and pinin (PNN) expression in NEUROD1-overexpressing reactive astrocytes was significantly increased, suggesting that NEUROD1 can directly reprogram spinal cord-derived reactive astrocytes into neurons in vitro, and that the NEUROD1-CSNK2A2-PNN pathway is involved in this process. This study was approved by the Animal Ethics Committee of Fujian Medical University, China (approval No. 2016-05) on April 18, 2016.
Collapse
Affiliation(s)
- Wen-Hao Chen
- Department of Pediatric Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yu-Xiang Lin
- Department of Breast Surgery, Affiliated Union Hospital, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ling Lin
- Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, China
| | - Bao-Quan Zhang
- Department of Neonatology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shu-Xia Xu
- Department of Pathology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wei Wang
- Department of Anatomy and Histoembryology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
11
|
A Novel Nanoproteomic Approach for the Identification of Molecular Targets Associated with Thyroid Tumors. NANOMATERIALS 2020; 10:nano10122370. [PMID: 33260544 PMCID: PMC7761166 DOI: 10.3390/nano10122370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
A thyroid nodule is the most common presentation of thyroid cancer; thus, it is extremely important to differentiate benign from malignant nodules. Within malignant lesions, classification of a thyroid tumor is the primary step in the assessment of the prognosis and selection of treatment. Currently, fine-needle aspiration biopsy (FNAB) is the preoperative test most commonly used for the initial thyroid nodule diagnosis. However, due to some limitations of FNAB, different high-throughput “omics” approaches have emerged that could further support diagnosis based on histopathological patterns. In the present work, formalin-fixed paraffin-embedded (FFPE) tissue specimens from normal (non-neoplastic) thyroid (normal controls (NCs)), benign tumors (follicular thyroid adenomas (FTAs)), and some common types of well-differentiated thyroid carcinoma (follicular thyroid carcinomas (FTCs), conventional or classical papillary thyroid carcinomas (CV-PTCs), and the follicular variant of papillary thyroid carcinomas (FV-PTCs)) were analyzed. For the first time, FFPE thyroid samples were deparaffinized using an easy, fast, and non-toxic method. Protein extracts from thyroid tissue samples were analyzed using a nanoparticle-assisted proteomics approach combined with shotgun LC-MS/MS. The differentially regulated proteins found to be specific for the FTA, FTC, CV-PTC, and FV-PTC subtypes were analyzed with the bioinformatic tools STRING and PANTHER showing a profile of proteins implicated in the thyroid cancer metabolic reprogramming, cancer progression, and metastasis. These proteins represent a new source of potential molecular targets related to thyroid tumors.
Collapse
|
12
|
Toptan T, Cantrell PS, Zeng X, Liu Y, Sun M, Yates NA, Chang Y, Moore PS. Proteomic approach to discover human cancer viruses from formalin-fixed tissues. JCI Insight 2020; 5:143003. [PMID: 33055416 PMCID: PMC7710300 DOI: 10.1172/jci.insight.143003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
The challenge of discovering a completely new human tumor virus of unknown phylogeny or sequence depends on detecting viral molecules and differentiating them from host molecules in the virus-associated neoplasm. We developed differential peptide subtraction (DPS) using differential mass spectrometry (dMS) followed by targeted analysis to facilitate this discovery. We validated this approach by analyzing Merkel cell carcinoma (MCC), an aggressive human neoplasm, in which ~80% of cases are caused by the human Merkel cell polyomavirus (MCV). Approximately 20% of MCC have a high mutational burden and are negative for MCV, but are microscopically indistinguishable from virus positive cases. Using 23 (12 MCV+, 11 MCV-) formalin-fixed MCC, DPS identified both viral and human biomarkers (MCV large T antigen, CDKN2AIP, SERPINB5, and TRIM29) that discriminate MCV+ and MCV- MCC. Statistical analysis of 498,131 dMS features not matching the human proteome by DPS revealed 562 (0.11%) to be upregulated in virus-infected samples. Remarkably, 4 (20%) of the top 20 candidate MS spectra originated from MCV T oncoprotein peptides and confirmed by reverse translation degenerate oligonucleotide sequencing. DPS is a robust proteomic approach to identify potentially novel viral sequences in infectious tumors when nucleic acid-based methods are not feasible.
Collapse
Affiliation(s)
- Tuna Toptan
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | | | | | - Yang Liu
- Biomedical Mass Spectrometry Center and
| | - Mai Sun
- Biomedical Mass Spectrometry Center and
| | - Nathan A. Yates
- Biomedical Mass Spectrometry Center and
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Chang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrick S. Moore
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Shapanis A, Lai C, Sommerlad M, Parkinson E, Healy E, Skipp P. Proteomic Profiling of Archived Tissue of Primary Melanoma Identifies Proteins Associated with Metastasis. Int J Mol Sci 2020; 21:ijms21218160. [PMID: 33142795 PMCID: PMC7663670 DOI: 10.3390/ijms21218160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Formalin-fixed paraffin embedded (FFPE) clinical tissues represent an abundant and unique resource for translational proteomic studies. In the US, melanoma is the 5th and 6th most common cancer in men and women, respectively, affecting over 230,000 people annually and metastasising in 5–15% of cases. Median survival time for distant metastatic melanoma is 6–9 months with a 5-year-survival of < 15%. In this study, 24 primary FFPE tumours which have metastasised (P-M) and 24 primary FFPE tumours which did not metastasise (P-NM) were subjected to proteomic profiling. In total, 2750 proteins were identified, of which 16 were significantly differentially expressed. Analysis of TCGA data demonstrated that expression of the genes encoding for 6 of these 16 proteins had a significant effect on survival in cutaneous melanoma. Pathway analysis of the proteomics data revealed mechanisms likely involved in the process of melanoma metastasis, including cytoskeleton rearrangement, extracellular changes and immune system alterations. A machine learning prediction model scoring an AUC of 0.922, based on these 16 differentially expressed proteins was able to accurately classify samples into P-M and P-NM. This study has identified potential biomarkers and key processes relating to melanoma metastasis using archived clinical samples, providing a basis for future studies in larger cohorts.
Collapse
Affiliation(s)
- Andrew Shapanis
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
| | - Chester Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.L.); (E.H.)
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Mathew Sommerlad
- Histopathology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK;
| | - Erika Parkinson
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.L.); (E.H.)
- Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; (A.S.); (E.P.)
- Correspondence:
| |
Collapse
|
14
|
Vainer ED, Kania-Almog J, Zatara G, Levin Y, Vainer GW. Novel Proteome Extraction Method Illustrates a Conserved Immunological Signature of MSI-H Colorectal Tumors. Mol Cell Proteomics 2020; 19:1619-1631. [PMID: 32641473 PMCID: PMC8015011 DOI: 10.1074/mcp.ra120.002152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Indexed: 11/14/2022] Open
Abstract
Using a simple, environment friendly proteome extraction (TOP), we were able to optimize the analysis of clinical samples. Using our TOP method we analyzed a clinical cohort of microsatellite stable (MSS) and unstable (MSI-H) colorectal carcinoma (CRC). We identified a tumor cell specific, STAT1-centered, immune signature expressed by the MSI-H tumor cells. We then showed that long, but not short, exposure to Interferon-γ induces a similar signature in vitro We identified 10 different temporal protein expression patterns, classifying the Interferon-γ protein temporal regulation in CRC. Our data sheds light on the changes that tumor cells undergo under long-term immunological pressure in vivo, the importance of STAT proteins in specific biological scenarios. The data generated could help find novel clinical biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Elez D Vainer
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Juliane Kania-Almog
- Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ghadeer Zatara
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gilad W Vainer
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
15
|
Herrera JA, Mallikarjun V, Rosini S, Montero MA, Lawless C, Warwood S, O’Cualain R, Knight D, Schwartz MA, Swift J. Laser capture microdissection coupled mass spectrometry (LCM-MS) for spatially resolved analysis of formalin-fixed and stained human lung tissues. Clin Proteomics 2020; 17:24. [PMID: 32565759 PMCID: PMC7302139 DOI: 10.1186/s12014-020-09287-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Haematoxylin and eosin (H&E)-which respectively stain nuclei blue and other cellular and stromal material pink-are routinely used for clinical diagnosis based on the identification of morphological features. A richer characterization can be achieved by laser capture microdissection coupled to mass spectrometry (LCM-MS), giving an unbiased assay of the proteins that make up the tissue. However, the process of fixing and H&E staining of tissues provides challenges with standard sample preparation methods for mass spectrometry, resulting in low protein yield. Here we describe a microproteomics technique to analyse H&E-stained, formalin-fixed paraffin-embedded (FFPE) tissues. METHODS Herein, we utilize heat extraction, physical disruption, and in column digestion for the analysis of H&E stained FFPE tissues. Micro-dissected morphologically normal human lung alveoli (0.082 mm3) and human lung blood vessels (0.094 mm3) from FFPE-fixed H&E-stained sections from Idiopathic Pulmonary Fibrosis (IPF) specimens (n = 3 IPF specimens) were then subject to a qualitative and then quantitative proteomics approach using BayesENproteomics. In addition, we tested the sensitivity of this method by processing and analysing a range of micro-dissected human lung blood vessel tissue volumes. RESULTS This approach yields 1252 uniquely expressed proteins (at a protein identification threshold of 3 unique peptides) with 892 differentially expressed proteins between these regions. In accord with prior knowledge, our methodology approach confirms that human lung blood vessels are enriched with smoothelin, CNN1, ITGA7, MYH11, TAGLN, and PTGIS; whereas morphologically normal human lung alveoli are enriched with cytokeratin-7, -8, -18, -19, 14, and -17. In addition, we identify a total of 137 extracellular matrix (ECM) proteins and immunohistologically validate that laminin subunit beta-1 localizes to morphologically normal human lung alveoli and tenascin localizes to human lung blood vessels. Lastly, we show that this micro-proteomics technique can be applied to tissue volumes as low as 0.0125 mm3. CONCLUSION Herein we show that our multistep sample preparation methodology of LCM-MS can identify distinct, characteristic proteomic compositions of anatomical features within complex fixed and stained tissues.
Collapse
Affiliation(s)
- Jeremy A. Herrera
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Venkatesh Mallikarjun
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Silvia Rosini
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Maria Angeles Montero
- Histopathology Department, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT UK
| | - Craig Lawless
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Stacey Warwood
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Ronan O’Cualain
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - David Knight
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Martin A. Schwartz
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| | - Joe Swift
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL UK
| |
Collapse
|
16
|
Yin B, Mendez R, Zhao XY, Rakhit R, Hsu KL, Ewald SE. Automated Spatially Targeted Optical Microproteomics (autoSTOMP) to Determine Protein Complexity of Subcellular Structures. Anal Chem 2020; 92:2005-2010. [PMID: 31869197 DOI: 10.1021/acs.analchem.9b04396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spatially targeted optical microproteomics (STOMP) is a method to study region-specific protein complexity in primary cells and tissue samples. STOMP uses a confocal microscope to visualize structures of interest and to tag the proteins within those structures by a photodriven cross-linking reaction so that they can be affinity purified and identified by mass spectrometry (eLife 2015, 4, e09579). However, the use of a custom photo-cross-linker and the requirement for extensive user intervention during sample tagging have posed barriers to the utilization of STOMP. To address these limitations, we built automated STOMP (autoSTOMP) which uses a customizable code in SikuliX to coordinate image capture and cross-linking functions in Zeiss Zen Black with image processing in FIJI. To increase protocol accessibility, we implemented a commercially available biotin-benzophenone photo-cross-linking and purification protocol. Here we demonstrate that autoSTOMP can efficiently label, purify, and identify proteins belonging to 1-2 μm structures in primary human foreskin fibroblasts or mouse bone marrow-derived dendritic cells infected with the protozoan parasite Toxoplasma gondii (Tg). AutoSTOMP can easily be adapted to address a range of research questions using Zeiss Zen Black microscopy systems and LC-MS protocols that are standard in many research cores.
Collapse
Affiliation(s)
- Bocheng Yin
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center , University of Virginia School of Medicine , Charlottesville , Virginia 22908-0395 , United States
| | - Roberto Mendez
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4132 , United States
| | - Xiao-Yu Zhao
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center , University of Virginia School of Medicine , Charlottesville , Virginia 22908-0395 , United States
| | - Rishi Rakhit
- Mitokinin Inc , 953 Indiana Street , San Francisco , California 94107-3007 , United States
| | - Ku-Lung Hsu
- Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904-4132 , United States
| | - Sarah E Ewald
- Department of Microbiology, Immunology and Cancer Biology and the Carter Immunology Center , University of Virginia School of Medicine , Charlottesville , Virginia 22908-0395 , United States
| |
Collapse
|
17
|
He S, Liu X, Lin Z, Liu Y, Gu L, Zhou H, Tang W, Zuo J. Reversible SAHH inhibitor protects against glomerulonephritis in lupus-prone mice by downregulating renal α-actinin-4 expression and stabilizing integrin-cytoskeleton linkage. Arthritis Res Ther 2019; 21:40. [PMID: 30696480 PMCID: PMC6352376 DOI: 10.1186/s13075-019-1820-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Glomerulonephritis is one of the major complications and causes of death in systemic lupus erythematosus (SLE) and is characterized by glomerulosclerosis, interstitial fibrosis, and tubular atrophy, along with severe persistent proteinuria. DZ2002 is a reversible S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor with potent therapeutic activity against lupus nephritis in mice. However, the molecular events underlying the renal protective effects of DZ2002 remained unclear. This study is designed to uncover the molecular mechanisms of DZ2002 on glomerulonephritis of lupus-prone mice. METHODS We conducted a twice-daily treatment of DZ2002 on the lupus-prone NZB/WF1 mice, and the progression of lupus nephritis and alteration of renal function were monitored. The LC-MS-based label-free quantitative (LFQ) proteomic approach was applied to analyze the kidney tissue samples from the normal C57BL/6 mice and the NZB/WF1 mice treated with DZ2002 or vehicle. KEGG pathway enrichment and direct protein-protein interaction (PPI) network analyses were used to map the pathways in which the significantly changed proteins (SCPs) are involved. The selected proteins from proteomic analysis were validated by Western blot analysis and immunohistochemistry in the kidney tissues. RESULTS The twice-daily regimen of DZ2002 administration significantly ameliorated the lupus nephritis and improved the renal function in NZB/WF1 mice. A total of 3275 proteins were quantified, of which 253 proteins were significantly changed across normal C57BL/6 mice and the NZB/WF1 mice treated with DZ2002 or vehicle. Pathway analysis revealed that 13 SCPs were involved in tight junction and focal adhesion process. Further protein expression validation demonstrated that DZ2002-treated NZB/WF1 mice exhibited downregulation of α-actinin-4 and integrin-linked kinase (ILK), as well as the restoration of β1-integrin activation in the kidney tissues compared with the vehicle-treated ones. CONCLUSIONS Our study demonstrated the first evidence for the molecular mechanism of SAHH inhibitor on glomerulonephritis in SLE via the modulation of α-actinin-4 expression and focal adhesion-associated signaling proteins in the kidney.
Collapse
Affiliation(s)
- Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Lei Gu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China. .,Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Wei Tang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
18
|
Gao F, Liu X, Shen Z, Jia X, He H, Gao J, Wu J, Jiang C, Zhou H, Wang Y. Andrographolide Sulfonate Attenuates Acute Lung Injury by Reducing Expression of Myeloperoxidase and Neutrophil-Derived Proteases in Mice. Front Physiol 2018; 9:939. [PMID: 30174607 PMCID: PMC6107831 DOI: 10.3389/fphys.2018.00939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Andrographolide sulfonate (Andro-S), a sulfonation derivative of andrographolide, is known to be effective in treating inflammation-related diseases, while the underlying mechanisms and global protein alterations in response to Andro-S remain unknown. This study aimed to investigate the pharmacological effects and potential targets of Andro-S in a murine model of acute lung injury (ALI). ALI was induced by aerosolized lipopolysaccharide (LPS) exposure before treatment with Andro-S. Inflammatory state of each treatment group was determined by histological analysis and quantification of inflammatory markers. Differentially expressed proteins in lung tissues were identified by an iTRAQ-based quantitative proteomic approach and further confirmed by immunohistochemistry analysis. Administration of Andro-S alleviated LPS-induced histological changes in the lung and reduced the expression of inflammatory markers in serum, bronchoalveolar fluid and lung tissues. Proteomic analysis identified 31 differentially expressed proteins from a total of 2,234 quantified proteins in the lung. According to bioinformatics analysis, neutrophil elastase (ELANE), cathepsin G (CTSG) and myeloperoxidase (MPO), three neutrophil-derived proteases related to immune system process and defense responses to fungi were chosen as potential targets of Andro-S. Further immunohistochemistry analysis confirmed the inhibitory effects of Andro-S on LPS-induced ELANE, CTSG and MPO up-regulation. These results indicate that Andro-S suppressed the severity of LPS-induced ALI, possibly by attenuating the expression of and neutrophil-derived proteases.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Ziying Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Han He
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Wu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Ganzhou, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Drulis‐Fajdasz D, Gizak A, Wójtowicz T, Wiśniewski JR, Rakus D. Aging-associated changes in hippocampal glycogen metabolism in mice. Evidence for and against astrocyte-to-neuron lactate shuttle. Glia 2018; 66:1481-1495. [PMID: 29493012 PMCID: PMC6001795 DOI: 10.1002/glia.23319] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Lactate derived from astrocytic glycogen has been shown to support memory formation in hippocampi of young animals, inhibiting it in old animals. Here we show, using quantitative mass spectrometry-based proteomics, immunofluorescence, and qPCR that aging is associated with an increase of glycogen metabolism enzymes concentration and shift in their localization from astrocytes to neurons. These changes are accompanied with reorganization of hippocampal energy metabolism which is manifested by elevated capacity of aging neurons to oxidize glucose in glycolysis and mitochondria, and decreased ability for fatty acids utilization. Our observations suggest that astrocyte-to-neuron lactate shuttle may operate in young hippocampi, however, during aging neurons become independent on astrocytic lactate and the metabolic crosstalk between the brain's cells is disrupted.
Collapse
Affiliation(s)
- Dominika Drulis‐Fajdasz
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| | - Tomasz Wójtowicz
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal TransductionMax‐Planck‐Institute of Biochemistry, Am Klopferspitz 18Martinsried82152Germany
| | - Dariusz Rakus
- Department of Molecular Physiology and NeurobiologyUniversity of Wroclaw, Sienkiewicza 21Wroclaw50‐335Poland
| |
Collapse
|
20
|
Föll MC, Fahrner M, Oria VO, Kühs M, Biniossek ML, Werner M, Bronsert P, Schilling O. Reproducible proteomics sample preparation for single FFPE tissue slices using acid-labile surfactant and direct trypsinization. Clin Proteomics 2018. [PMID: 29527141 PMCID: PMC5838928 DOI: 10.1186/s12014-018-9188-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Proteomic analyses of clinical specimens often rely on human tissues preserved through formalin-fixation and paraffin embedding (FFPE). Minimal sample consumption is the key to preserve the integrity of pathological archives but also to deal with minimal invasive core biopsies. This has been achieved by using the acid-labile surfactant RapiGest in combination with a direct trypsinization (DTR) strategy. A critical comparison of the DTR protocol with the most commonly used filter aided sample preparation (FASP) protocol is lacking. Furthermore, it is unknown how common histological stainings influence the outcome of the DTR protocol. Methods Four single consecutive murine kidney tissue specimens were prepared with the DTR approach or with the FASP protocol using both 10 and 30 k filter devices and analyzed by label-free, quantitative liquid chromatography–tandem mass spectrometry (LC–MS/MS). We compared the different protocols in terms of proteome coverage, relative label-free quantitation, missed cleavages, physicochemical properties and gene ontology term annotations of the proteins. Additionally, we probed compatibility of the DTR protocol for the analysis of common used histological stainings, namely hematoxylin & eosin (H&E), hematoxylin and hemalaun. These were proteomically compared to an unstained control by analyzing four human tonsil FFPE tissue specimens per condition. Results On average, the DTR protocol identified 1841 ± 22 proteins in a single, non-fractionated LC–MS/MS analysis, whereas these numbers were 1857 ± 120 and 1970 ± 28 proteins for the FASP 10 and 30 k protocol. The DTR protocol showed 15% more missed cleavages, which did not adversely affect quantitation and intersample comparability. Hematoxylin or hemalaun staining did not adversely impact the performance of the DTR protocol. A minor perturbation was observed for H&E staining, decreasing overall protein identification by 13%. Conclusions In essence, the DTR protocol can keep up with the FASP protocol in terms of qualitative and quantitative reproducibility and performed almost as well in terms of proteome coverage and missed cleavages. We highlight the suitability of the DTR protocol as a viable and straightforward alternative to the FASP protocol for proteomics-based clinical research. Electronic supplementary material The online version of this article (10.1186/s12014-018-9188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melanie Christine Föll
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Matthias Fahrner
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Victor Oginga Oria
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,2Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,3Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Markus Kühs
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Lothar Biniossek
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany
| | - Martin Werner
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bronsert
- 4Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany.,5Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.,6Faculty of Medicine, University of Freiburg, Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Schilling
- 1Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Stefan Meier Strasse 17, 79104 Freiburg, Germany.,7German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,8BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Longuespée R, Baiwir D, Mazzucchelli G, Smargiasso N, De Pauw E. Laser Microdissection-Based Microproteomics of Formalin-Fixed and Paraffin-Embedded (FFPE) Tissues. Methods Mol Biol 2018; 1723:19-31. [PMID: 29344853 DOI: 10.1007/978-1-4939-7558-7_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Laser microdissection-based proteomics on formalin-fixed and paraffin-embedded tissues is usually performed from relatively large tissue areas or pools of multiple tissue pieces. However, several molecular pathology studies require working on very limited amounts of tissue. This is for example the case when very early cancer lesions have to be handled. Hereby, we present a method for the processing of very small pieces of formalin-fixed and paraffin-embedded tissues for proteomic purposes. This approach is designed in order to avoid sample loss during technical processing and to optimize the digestion of tissue areas containing as little as 2700 cells.
Collapse
Affiliation(s)
- Rémi Longuespée
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liege, Liège, Belgium.
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany.
| | - Dominique Baiwir
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liege, Liège, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liege, Liège, Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liege, Liège, Belgium
| | - Edwin De Pauw
- Mass Spectrometry Laboratory, Systems Biology and Chemical Biology, GIGA-Research, University of Liege, Liège, Belgium
| |
Collapse
|
22
|
Pabba M, Scifo E, Kapadia F, Nikolova YS, Ma T, Mechawar N, Tseng GC, Sibille E. Resilient protein co-expression network in male orbitofrontal cortex layer 2/3 during human aging. Neurobiol Aging 2017; 58:180-190. [PMID: 28750307 DOI: 10.1016/j.neurobiolaging.2017.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022]
Abstract
The orbitofrontal cortex (OFC) is vulnerable to normal and pathologic aging. Currently, layer resolution large-scale proteomic studies describing "normal" age-related alterations at OFC are not available. Here, we performed a large-scale exploratory high-throughput mass spectrometry-based protein analysis on OFC layer 2/3 from 15 "young" (15-43 years) and 18 "old" (62-88 years) human male subjects. We detected 4193 proteins and identified 127 differentially expressed (DE) proteins (p-value ≤0.05; effect size >20%), including 65 up- and 62 downregulated proteins (e.g., GFAP, CALB1). Using a previously described categorization of biological aging based on somatic tissues, that is, peripheral "hallmarks of aging," and considering overlap in protein function, we show the highest representation of altered cell-cell communication (54%), deregulated nutrient sensing (39%), and loss of proteostasis (35%) in the set of OFC layer 2/3 DE proteins. DE proteins also showed a significant association with several neurologic disorders; for example, Alzheimer's disease and schizophrenia. Notably, despite age-related changes in individual protein levels, protein co-expression modules were remarkably conserved across age groups, suggesting robust functional homeostasis. Collectively, these results provide biological insight into aging and associated homeostatic mechanisms that maintain normal brain function with advancing age.
Collapse
Affiliation(s)
- Mohan Pabba
- Campbell Family Mental Health Research Institute of CAMH, Neurobiology of Depression and Aging, Toronto, Ontario, Canada
| | - Enzo Scifo
- Campbell Family Mental Health Research Institute of CAMH, Neurobiology of Depression and Aging, Toronto, Ontario, Canada
| | - Fenika Kapadia
- Campbell Family Mental Health Research Institute of CAMH, Neurobiology of Depression and Aging, Toronto, Ontario, Canada
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute of CAMH, Neurobiology of Depression and Aging, Toronto, Ontario, Canada
| | - Tianzhou Ma
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada; Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH, Neurobiology of Depression and Aging, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Landolt L, Eikrem Ø, Strauss P, Scherer A, Lovett DH, Beisland C, Finne K, Osman T, Ibrahim MM, Gausdal G, Ahmed L, Lorens JB, Thiery JP, Tan TZ, Sekulic M, Marti HP. Clear Cell Renal Cell Carcinoma is linked to Epithelial-to-Mesenchymal Transition and to Fibrosis. Physiol Rep 2017; 5:e13305. [PMID: 28596300 PMCID: PMC5471444 DOI: 10.14814/phy2.13305] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents the most common type of kidney cancer with high mortality in its advanced stages. Our study aim was to explore the correlation between tumor epithelial-to-mesenchymal transition (EMT) and patient survival. Renal biopsies of tumorous and adjacent nontumorous tissue were taken with a 16 g needle from our patients (n = 26) undergoing partial or radical nephrectomy due to ccRCC RNA sequencing libraries were generated using Illumina TruSeq® Access library preparation protocol and TruSeq Small RNA library preparation kit. Next generation sequencing (NGS) was performed on Illumina HiSeq2500. Comparative analysis of matched sample pairs was done using the Bioconductor Limma/voom R-package. Liquid chromatography-tandem mass spectrometry and immunohistochemistry were applied to measure and visualize protein abundance. We detected an increased generic EMT transcript score in ccRCC Gene expression analysis showed augmented abundance of AXL and MMP14, as well as down-regulated expression of KL (klotho). Moreover, microRNA analyses demonstrated a positive expression correlation of miR-34a and its targets MMP14 and AXL Survival analysis based on a subset of genes from our list EMT-related genes in a publicly available dataset showed that the EMT genes correlated with ccRCC patient survival. Several of these genes also play a known role in fibrosis. Accordingly, recently published classifiers of solid organ fibrosis correctly identified EMT-affected tumor samples and were correlated with patient survival. EMT in ccRCC linked to fibrosis is associated with worse survival and may represent a target for novel therapeutic interventions.
Collapse
Affiliation(s)
- Lea Landolt
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philipp Strauss
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Andreas Scherer
- Spheromics, Kontiolahti, Finland
- Institute for Molecular Medicine Finland (FIMM) University of Helsinki, Helsinki, Finland
| | - David H Lovett
- Department of Medicine, San Francisco VAMC University of California San Francisco, San Francisco, California
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Tarig Osman
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | - James B Lorens
- BerGenBio AS, Bergen, Norway
- Department of Biomedicine, Center for Cancer Biomarkers University of Bergen, Bergen, Norway
| | - Jean Paul Thiery
- Department of Biomedicine, Center for Cancer Biomarkers University of Bergen, Bergen, Norway
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology Gustave Roussy EPHE Fac. de médecine-Univ. Paris-Sud Université Paris-Saclay, Villejuif, France
| | - Tuan Zea Tan
- Science Institute of Singapore National University of Singapore, Singapore, Singapore
| | - Miroslav Sekulic
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
24
|
Scifo E, Calza G, Fuhrmann M, Soliymani R, Baumann M, Lalowski M. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics. Expert Rev Proteomics 2017; 14:545-559. [PMID: 28539064 DOI: 10.1080/14789450.2017.1335200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.
Collapse
Affiliation(s)
- Enzo Scifo
- a Department of Psychiatry, and of Pharmacology and Toxicology , University of Toronto, Campbell Family Mental Health Research Institute of CAMH , Toronto , Canada
| | - Giulio Calza
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Martin Fuhrmann
- c Neuroimmunology and Imaging Group , German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
| | - Rabah Soliymani
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Marc Baumann
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Maciej Lalowski
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| |
Collapse
|
25
|
Wiśniewski JR. Label-Free Quantitative Analysis of Mitochondrial Proteomes Using the Multienzyme Digestion-Filter Aided Sample Preparation (MED-FASP) and "Total Protein Approach". Methods Mol Biol 2017; 1567:69-77. [PMID: 28276014 DOI: 10.1007/978-1-4939-6824-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Determination of proteome composition and measuring of changes in protein titers provide important information with a substantial value for studying mitochondria.This chapter describes a workflow for the quantitative analysis of mitochondrial proteome with a focus on sample preparation and quantitative analysis of the data. The workflow involves the multienzyme digestion-filter aided sample preparation (MED-FASP) protocol enabling efficient extraction of proteins and high rate of protein-to-peptide conversion. Consecutive protein digestion with Lys C and trypsin enables generation of peptide fractions with minimal overlap, largely increases the number of identified proteins, and extends their sequence coverage. Abundances of proteins identified by multiple peptides can be assessed by the "Total Protein Approach."
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|
26
|
Luebker SA, Wojtkiewicz M, Koepsell SA. Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost. Proteomics 2016; 15:3744-53. [PMID: 26306679 DOI: 10.1002/pmic.201500147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/06/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a rich source of clinically relevant material that can yield important translational biomarker discovery using proteomic analysis. Protocols for analyzing FFPE tissue by LC-MS/MS exist, but standardization of procedures and critical analysis of data quality is limited. This study compared and characterized data obtained from FFPE tissue using two methods: a urea in-solution digestion method (UISD) versus a commercially available Qproteome FFPE Tissue Kit method (Qkit). Each method was performed independently three times on serial sections of homogenous FFPE tissue to minimize pre-analytical variations and analyzed with three technical replicates by LC-MS/MS. Data were evaluated for reproducibility and physiochemical distribution, which highlighted differences in the ability of each method to identify proteins of different molecular weights and isoelectric points. Each method replicate resulted in a significant number of new protein identifications, and both methods identified significantly more proteins using three technical replicates as compared to only two. UISD was cheaper, required less time, and introduced significant protein modifications as compared to the Qkit method, which provided more precise and higher protein yields. These data highlight significant variability among method replicates and type of method used, despite minimizing pre-analytical variability. Utilization of only one method or too few replicates (both method and technical) may limit the subset of proteomic information obtained.
Collapse
Affiliation(s)
- Stephen A Luebker
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Melinda Wojtkiewicz
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Scott A Koepsell
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
27
|
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A. High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 2016; 11:1428-43. [PMID: 27414759 DOI: 10.1038/nprot.2016.081] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Formalin-fixed and paraffin-embedded (FFPE) tissue specimens are the gold standard for histological examination, and they provide valuable molecular information in tissue-based research. Metabolite assessment from archived tissue samples has not been extensively conducted because of a lack of appropriate protocols and concerns about changes in metabolite content or chemical state due to tissue processing. We present a protocol for the in situ analysis of metabolite content from FFPE samples using a high-mass-resolution matrix-assisted laser desorption/ionization fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR-MSI) platform. The method involves FFPE tissue sections that undergo deparaffinization and matrix coating by 9-aminoacridine before MALDI-MSI. Using this platform, we previously detected ∼1,500 m/z species in the mass range m/z 50-1,000 in FFPE samples; the overlap compared with fresh frozen samples is 72% of m/z species, indicating that metabolites are largely conserved in FFPE tissue samples. This protocol can be reproducibly performed on FFPE tissues, including small samples such as tissue microarrays and biopsies. The procedure can be completed in a day, depending on the size of the sample measured and raster size used. Advantages of this approach include easy sample handling, reproducibility, high throughput and the ability to demonstrate molecular spatial distributions in situ. The data acquired with this protocol can be used in research and clinical practice.
Collapse
Affiliation(s)
- Alice Ly
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karin Gorzolka
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Gregor Weirich
- Institute of Pathology, Technische Universität München, Munich, Germany
| | | | - Rupert Langer
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Liam McDonnell
- Centre for Proteomics and Metabolomics, Leiden University Medical Centre, Leiden, the Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
28
|
Ma Y, Gao J, Yin J, Gu L, Liu X, Chen S, Huang Q, Lu H, Yang Y, Zhou H, Wang Y, Peng Y. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue. J Proteome Res 2016; 15:628-37. [PMID: 26767403 DOI: 10.1021/acs.jproteome.5b01030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM.
Collapse
Affiliation(s)
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | |
Collapse
|
29
|
Maurizio E, Wiśniewski JR, Ciani Y, Amato A, Arnoldo L, Penzo C, Pegoraro S, Giancotti V, Zambelli A, Piazza S, Manfioletti G, Sgarra R. Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer. Mol Cell Proteomics 2015; 15:109-23. [PMID: 26527623 PMCID: PMC4762532 DOI: 10.1074/mcp.m115.050401] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer.
Collapse
Affiliation(s)
- Elisa Maurizio
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Jacek R Wiśniewski
- §Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Yari Ciani
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | - Angela Amato
- ¶¶Laboratory of Experimental Oncology and Pharmacogenomics IRCCS - Salvatore Maugeri Foundation, 27100 Pavia, Italy
| | - Laura Arnoldo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Carlotta Penzo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Pegoraro
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Vincenzo Giancotti
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alberto Zambelli
- ‖Department of Medical Oncology, Hospital Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Silvano Piazza
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | | | - Riccardo Sgarra
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
30
|
C-STrap Sample Preparation Method--In-Situ Cysteinyl Peptide Capture for Bottom-Up Proteomics Analysis in the STrap Format. PLoS One 2015; 10:e0138775. [PMID: 26407052 PMCID: PMC4583295 DOI: 10.1371/journal.pone.0138775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023] Open
Abstract
Recently we introduced the concept of Suspension Trapping (STrap) for bottom-up proteomics sample processing that is based upon SDS-mediated protein extraction, swift detergent removal and rapid reactor-type protein digestion in a quartz depth filter trap. As the depth filter surface is made of silica, it is readily modifiable with various functional groups using the silane coupling chemistries. Thus, during the digest, peptides possessing specific features could be targeted for enrichment by the functionalized depth filter material while non-targeted peptides could be collected as an unbound distinct fraction after the digest. In the example presented here the quartz depth filter surface is functionalized with the pyridyldithiol group therefore enabling reversible in-situ capture of the cysteine-containing peptides generated during the STrap-based digest. The described C-STrap method retains all advantages of the original STrap methodology and provides robust foundation for the conception of the targeted in-situ peptide fractionation in the STrap format for bottom-up proteomics. The presented data support the method’s use in qualitative and semi-quantitative proteomics experiments.
Collapse
|
31
|
Wiśniewski JR, Duś-Szachniewicz K, Ostasiewicz P, Ziółkowski P, Rakus D, Mann M. Absolute Proteome Analysis of Colorectal Mucosa, Adenoma, and Cancer Reveals Drastic Changes in Fatty Acid Metabolism and Plasma Membrane Transporters. J Proteome Res 2015; 14:4005-18. [PMID: 26245529 DOI: 10.1021/acs.jproteome.5b00523] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is a leading cause of cancer-related death. It develops from normal enterocytes, through a benign adenoma stage, into the cancer and finally into the metastatic form. We previously compared the proteomes of normal colorectal enterocytes, cancer and nodal metastasis to a depth of 8100 proteins and found extensive quantitative remodeling between normal and cancer tissues but not cancer and metastasis (Wiśniewski et al. PMID 22968445). Here we utilize advances in the proteomic workflow to perform an in depth analysis of the normal tissue (N), the adenoma (A), and the cancer (C). Absolute proteomics of 10 000 proteins per patient from microdissected formalin-fixed and paraffin-embedded clinical material established a quantitative protein repository of the disease. Between N and A, 23% of all proteins changed significantly, 17.8% from A to C and 21.6% from N to C. Together with principal component analysis of the patient groups, this suggests that N, A, and C are equidistant but not on one developmental line. Our proteomics approach allowed us to assess changes in varied cell size, the composition of different subcellular components, and alterations in basic biological processes including the energy metabolism, plasma membrane transport, DNA replication, and transcription. This revealed several-fold higher concentrations of enzymes in fatty acid metabolism in C compared with N, and unexpectedly, the same held true of plasma membrane transporters.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Kamila Duś-Szachniewicz
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany.,Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Paweł Ostasiewicz
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wrocław Medical University , 50-368 Wrocław, Poland
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University , 50-205 Wrocław, Poland
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry , Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
32
|
Ziskin JL, Greicius MD, Zhu W, Okumu AN, Adams CM, Plowey ED. Neuropathologic analysis of Tyr69His TTR variant meningovascular amyloidosis with dementia. Acta Neuropathol Commun 2015; 3:43. [PMID: 26156087 PMCID: PMC4496870 DOI: 10.1186/s40478-015-0216-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/15/2023] Open
Abstract
Transthyretin/TTR gene mutations usually cause systemic amyloidotic diseases. Few TTR variants preferentially affect the central nervous system, manifesting as oculoleptomeningeal amyloidosis. Patients with TTR meningovascular amyloidosis often show dementia, however the neuropathologic features of dementia in these cases have not been elucidated. We report the neuropathologic findings from a brain autopsy of a 72-year-old man with the rare Tyr69His (Y69H) TTR gene variant, dementia and ataxia. Severe amyloid deposits were observed in the leptomeninges and in a subpial and subependymal distribution. Mass spectrometry analysis demonstrated that the amyloid deposits were comprised of over 80 % of the variant TTR. TTR was undetectable by mass spectrometry in the neocortex subjacent to the subpial amyloid deposits. Subpial TTR amyloid deposits were associated with brisk superficial reactive gliosis and siderosis in the neocortex and cerebellar cortex. Subependymal TTR amyloid deposits were associated with subjacent myelin pallor in the hippocampal outflow tract structures including the alveus, fimbria and fornix. Phospho-tau immunostains demonstrated transentorhinal-stage neurofibrillary degeneration (Braak stage II) which, in the absence of neocortical amyloid-beta and neuritic plaques, was indicative of primary age-related tauopathy (PART). However, distinctive phospho-tau aggregates were observed subjacent to the subpial TTR amyloid deposits in all regions of the neocortex, including the primary motor and striate cortices, suggesting a potential link between TTR amyloid and neocortical tauopathy. Our report reveals novel insights into the potential neuropathologic substrates of dementia in variant TTR amyloidosis that need to be investigated in larger autopsy series.
Collapse
|
33
|
Sun W, Sun J, Zou L, Shen K, Zhong D, Zhou D, Sun W, Li J. The Successful Diagnosis and Typing of Systemic Amyloidosis Using A Microwave-Assisted Filter-Aided Fast Sample Preparation Method and LC/MS/MS Analysis. PLoS One 2015; 10:e0127180. [PMID: 25984759 PMCID: PMC4436214 DOI: 10.1371/journal.pone.0127180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/12/2015] [Indexed: 12/21/2022] Open
Abstract
Laser microdissection followed by mass spectrometry has been successfully used for amyloid typing. However, sample contamination can interfere with proteomic analysis, and overnight digestion limits the analytical throughput. Moreover, current quantitative analysis methods are based on the spectrum count, which ignores differences in protein length and may lead to misdiagnoses. Here, we developed a microwave-assisted filter-aided sample preparation (maFASP) method that can efficiently remove contaminants with a 10-kDa cutoff ultrafiltration unit and can accelerate the digestion process with the assistance of a microwave. Additionally, two parameters (P- and D-scores) based on the exponentially modified protein abundance index were developed to define the existence of amyloid deposits and those causative proteins with the greatest abundance. Using our protocol, twenty cases of systemic amyloidosis that were well-typed according to clinical diagnostic standards (training group) and another twenty-four cases without subtype diagnoses (validation group) were analyzed. Using this approach, sample preparation could be completed within four hours. We successfully subtyped 100% of the cases in the training group, and the diagnostic success rate in the validation group was 91.7%. This maFASP-aided proteomic protocol represents an efficient approach for amyloid diagnosis and subtyping, particularly for serum-contaminated samples.
Collapse
Affiliation(s)
- Weiyi Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China; Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Sun
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zou
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Kaini Shen
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dingrong Zhong
- Department of Pathology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Bohnenberger H, Ströbel P, Mohr S, Corso J, Berg T, Urlaub H, Lenz C, Serve H, Oellerich T. Quantitative mass spectrometric profiling of cancer-cell proteomes derived from liquid and solid tumors. J Vis Exp 2015:e52435. [PMID: 25867170 PMCID: PMC4401153 DOI: 10.3791/52435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In-depth analyses of cancer cell proteomes are needed to elucidate oncogenic pathomechanisms, as well as to identify potential drug targets and diagnostic biomarkers. However, methods for quantitative proteomic characterization of patient-derived tumors and in particular their cellular subpopulations are largely lacking. Here we describe an experimental set-up that allows quantitative analysis of proteomes of cancer cell subpopulations derived from either liquid or solid tumors. This is achieved by combining cellular enrichment strategies with quantitative Super-SILAC-based mass spectrometry followed by bioinformatic data analysis. To enrich specific cellular subsets, liquid tumors are first immunophenotyped by flow cytometry followed by FACS-sorting; for solid tumors, laser-capture microdissection is used to purify specific cellular subpopulations. In a second step, proteins are extracted from the purified cells and subsequently combined with a tumor-specific, SILAC-labeled spike-in standard that enables protein quantification. The resulting protein mixture is subjected to either gel electrophoresis or Filter Aided Sample Preparation (FASP) followed by tryptic digestion. Finally, tryptic peptides are analyzed using a hybrid quadrupole-orbitrap mass spectrometer, and the data obtained are processed with bioinformatic software suites including MaxQuant. By means of the workflow presented here, up to 8,000 proteins can be identified and quantified in patient-derived samples, and the resulting protein expression profiles can be compared among patients to identify diagnostic proteomic signatures or potential drug targets.
Collapse
Affiliation(s)
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen
| | - Sebastian Mohr
- Department of Hematology/Oncology, Goethe University of Frankfurt
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry
| | - Tobias Berg
- Department of Hematology/Oncology, Goethe University of Frankfurt
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry; Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry; Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen
| | - Hubert Serve
- Department of Hematology/Oncology, Goethe University of Frankfurt; German Cancer Consortium; German Cancer Research Center
| | - Thomas Oellerich
- Department of Hematology/Oncology, Goethe University of Frankfurt; German Cancer Consortium; German Cancer Research Center;
| |
Collapse
|
35
|
Wiśniewski JR, Hein MY, Cox J, Mann M. A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards. Mol Cell Proteomics 2014; 13:3497-506. [PMID: 25225357 PMCID: PMC4256500 DOI: 10.1074/mcp.m113.037309] [Citation(s) in RCA: 586] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 09/08/2014] [Indexed: 12/12/2022] Open
Abstract
Absolute protein quantification using mass spectrometry (MS)-based proteomics delivers protein concentrations or copy numbers per cell. Existing methodologies typically require a combination of isotope-labeled spike-in references, cell counting, and protein concentration measurements. Here we present a novel method that delivers similar quantitative results directly from deep eukaryotic proteome datasets without any additional experimental steps. We show that the MS signal of histones can be used as a "proteomic ruler" because it is proportional to the amount of DNA in the sample, which in turn depends on the number of cells. As a result, our proteomic ruler approach adds an absolute scale to the MS readout and allows estimation of the copy numbers of individual proteins per cell. We compare our protein quantifications with values derived via the use of stable isotope labeling by amino acids in cell culture and protein epitope signature tags in a method that combines spike-in protein fragment standards with precise isotope label quantification. The proteomic ruler approach yields quantitative readouts that are in remarkably good agreement with results from the precision method. We attribute this surprising result to the fact that the proteomic ruler approach omits error-prone steps such as cell counting or protein concentration measurements. The proteomic ruler approach is readily applicable to any deep eukaryotic proteome dataset-even in retrospective analysis-and we demonstrate its usefulness with a series of mouse organ proteomes.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Marco Y Hein
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Jürgen Cox
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
36
|
Abstract
Escherichia coli (strain ATCC 25922 in a stationary culture) cells were lysed with SDS and the lysates were processed according MED-FASP protocol. The released peptides were analyzed by LC–MS/MS. Protein content per bacterial cell was calculated on the basis of the DNA content. Absolute protein quantitation was performed using the ‘Total Protein Approach’. The data are supplied in the article.
Collapse
Affiliation(s)
- Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
- Corresponding author.
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Wroclaw University, Wroclaw, Poland
| |
Collapse
|