1
|
van der Lans SPA, Bardoel BW, Ruyken M, de Haas CJC, Baijens S, Muts RM, Scheepmaker LM, Aerts PC, van 't Wout MFL, Preiner J, Marijnissen RJ, Schuurman J, Beurskens FJ, Kerkman PF, Rooijakkers SHM. Agnostic B cell selection approach identifies antibodies against K. pneumoniae that synergistically drive complement activation. Nat Commun 2024; 15:8100. [PMID: 39285158 PMCID: PMC11405761 DOI: 10.1038/s41467-024-52372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Antibody-dependent complement activation plays a key role in the natural human immune response to infections. Currently, the understanding of which antibody-antigen combinations drive a potent complement response on bacteria is limited. Here, we develop an antigen-agnostic approach to stain and single-cell sort human IgG memory B cells recognizing intact bacterial cells, keeping surface antigens in their natural context. With this method we successfully identified 29 antibodies against K. pneumoniae, a dominant cause of hospital-acquired infections with increasing antibiotic resistance. Combining genetic tools and functional analyses, we reveal that the capacity of antibodies to activate complement on K. pneumoniae critically depends on their antigenic target. Furthermore, we find that antibody combinations can synergistically activate complement on K. pneumoniae by strengthening each other's binding in an Fc-independent manner. Understanding the molecular basis of effective complement activation by antibody combinations to mimic a polyclonal response could accelerate the development of antibody-based therapies against problematic infections.
Collapse
Affiliation(s)
- Sjors P A van der Lans
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bart W Bardoel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stan Baijens
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remy M Muts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisette M Scheepmaker
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marije F L van 't Wout
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | - Priscilla F Kerkman
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Benucci B, Spinello Z, Calvaresi V, Viviani V, Perrotta A, Faleri A, Utrio Lanfaloni S, Pansegrau W, d’Alterio L, Bartolini E, Pinzuti I, Sampieri K, Giordano A, Rappuoli R, Pizza M, Masignani V, Norais N, Maione D, Merola M. Neisserial adhesin A (NadA) binds human Siglec-5 and Siglec-14 with high affinity and promotes bacterial adhesion/invasion. mBio 2024; 15:e0110724. [PMID: 39041817 PMCID: PMC11323535 DOI: 10.1128/mbio.01107-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024] Open
Abstract
Neisserial adhesin A (NadA) is a meningococcal surface protein included as recombinant antigen in 4CMenB, a protein-based vaccine able to induce protective immune responses against Neisseria meningitidis serogroup B (MenB). Although NadA is involved in the adhesion/invasion of epithelial cells and human myeloid cells, its function in meningococcal physiology is still poorly understood. To clarify the role played by NadA in the host-pathogen interaction, we sought to identify its cellular receptors. We screened a protein microarray encompassing 2,846 human and 297 mouse surface/secreted recombinant proteins using recombinant NadA as probe. Efficient NadA binding was revealed on the paired sialic acid-binding immunoglobulin-type lectins receptors 5 and 14 (Siglec-5 and Siglec-14), but not on Siglec-9 therein used as control. The interaction was confirmed by biochemical tools with the determination of the KD value in the order of nanomolar and the identification of the NadA binding site by hydrogen-deuterium exchange coupled to mass spectrometry. The N-terminal domain of the Siglec-5 that recognizes the sialic acid was identified as the NadA binding domain. Intriguingly, exogenously added recombinant soluble Siglecs, including Siglec-9, were found to decorate N. meningitidis surface in a NadA-dependent manner. However, Siglec-5 and Siglec-14 transiently expressed in CHO-K1 cells endorsed NadA binding and increased N. meningitidis adhesion/invasion while Siglec-9 did not. Taken together, Siglec-5 and Siglec-14 satisfy all features of NadA receptors suggesting a possible role of NadA in the acute meningococcal infection.IMPORTANCEBacteria have developed several strategies for cell colonization and immune evasion. Knowledge of the host and pathogen factors involved in these mechanisms is crucial to build efficacious countermoves. Neisserial adhesin A (NadA) is a meningococcal surface protein included in the anti-meningococcus B vaccine 4CMenB, which mediates adhesion to and invasion of epithelial cells. Although NadA has been shown to bind to other cell types, like myeloid and endothelial cells, it still remains orphan of a defined host receptor. We have identified two strong NadA interactors, Siglec-5 and Siglec-14, which are mainly expressed on myeloid cells. This showcases that NadA is an additional and key player among the Neisseria meningitidis factors targeting immune cells. We thus provide novel insights on the strategies exploited by N. meningitidis during the infection process, which can progress to a severe illness and death.
Collapse
MESH Headings
- Humans
- Adhesins, Bacterial/metabolism
- Adhesins, Bacterial/genetics
- Bacterial Adhesion
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins/metabolism
- Lectins/genetics
- Lectins/immunology
- Animals
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Host-Pathogen Interactions
- Protein Binding
- Mice
- CHO Cells
- Cricetulus
- Neisseria meningitidis/genetics
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/genetics
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- Epithelial Cells/microbiology
- Epithelial Cells/metabolism
- Epithelial Cells/immunology
- Meningococcal Infections/microbiology
- Meningococcal Infections/immunology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
Collapse
Affiliation(s)
| | | | - Valeria Calvaresi
- GSK, Siena, Italy
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marcello Merola
- GSK, Siena, Italy
- Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
3
|
Foss S, Sakya SA, Aguinagalde L, Lustig M, Shaughnessy J, Cruz AR, Scheepmaker L, Mathiesen L, Ruso-Julve F, Anthi AK, Gjølberg TT, Mester S, Bern M, Evers M, Bratlie DB, Michaelsen TE, Schlothauer T, Sok D, Bhattacharya J, Leusen J, Valerius T, Ram S, Rooijakkers SHM, Sandlie I, Andersen JT. Human IgG Fc-engineering for enhanced plasma half-life, mucosal distribution and killing of cancer cells and bacteria. Nat Commun 2024; 15:2007. [PMID: 38453922 PMCID: PMC10920689 DOI: 10.1038/s41467-024-46321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.
Collapse
Affiliation(s)
- Stian Foss
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Siri A Sakya
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Leire Aguinagalde
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marta Lustig
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jutamas Shaughnessy
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette Scheepmaker
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Line Mathiesen
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fulgencio Ruso-Julve
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Aina Karen Anthi
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Simone Mester
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Malin Bern
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Mitchell Evers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Diane B Bratlie
- Infection Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - Terje E Michaelsen
- Infection Immunology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Munich, Germany
| | - Devin Sok
- International AIDS Vaccine Initiative (IAVI), New York, NY, USA
| | - Jayanta Bhattacharya
- Antibody Translational Research Program, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Jeanette Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Boero E, Gorham RD, Francis EA, Brand J, Teng LH, Doorduijn DJ, Ruyken M, Muts RM, Lehmann C, Verschoor A, van Kessel KPM, Heinrich V, Rooijakkers SHM. Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1. Sci Rep 2023; 13:274. [PMID: 36609665 PMCID: PMC9822988 DOI: 10.1038/s41598-022-27279-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.
Collapse
Affiliation(s)
- Elena Boero
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.425088.3GSK, 53100 Siena, Italy
| | - Ronald D. Gorham
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.417555.70000 0000 8814 392XSanofi, Waltham, MA 02451 USA
| | - Emmet A. Francis
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Jonathan Brand
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Lay Heng Teng
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Dennis J. Doorduijn
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Remy M. Muts
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Lehmann
- grid.5330.50000 0001 2107 3311Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Admar Verschoor
- grid.15474.330000 0004 0477 2438Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Kok P. M. van Kessel
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Volkmar Heinrich
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Suzan H. M. Rooijakkers
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Boero E, Cruz AR, Pansegrau W, Giovani C, Rooijakkers SHM, van Kessel KPM, van Strijp JAG, Bagnoli F, Manetti AGO. Natural Human Immunity Against Staphylococcal Protein A Relies on Effector Functions Triggered by IgG3. Front Immunol 2022; 13:834711. [PMID: 35359919 PMCID: PMC8963248 DOI: 10.3389/fimmu.2022.834711] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Staphylococcal protein A (SpA) is a multifunctional, highly conserved virulence factor of Staphylococcus aureus. By binding the Fc portion of all human IgG subclasses apart from IgG3, SpA interferes with antibody and complement deposition on the bacterial surface, impairing staphylococcal clearance by phagocytosis. Because of its anti-opsonic properties, SpA is not investigated as a surface antigen to mediate bacterial phagocytosis. Herein we investigate human sera for the presence of SpA-opsonizing antibodies. The screening revealed that sera containing IgG3 against SpA were able to correctly opsonize the target and drive Fcγ receptor-mediated interactions and phagocytosis. We demonstrated that IgG3 Fc is significantly more efficient in inducing phagocytosis of SpA-expressing S. aureus as compared to IgG1 Fc in an assay resembling physiological conditions. Furthermore, we show that the capacity of SpA antibodies to induce phagocytosis depends on the specific epitope recognized by the IgGs on SpA molecules. Overall, our results suggest that anti-SpA IgG3 antibodies could favor the anti-staphylococcal response in humans, paving the way towards the identification of a correlate of protection against staphylococcal infections.
Collapse
Affiliation(s)
- Elena Boero
- GSK, Siena, Italy
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ana Rita Cruz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | | | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | | |
Collapse
|
6
|
Wee BA, Alves J, Lindsay DSJ, Klatt AB, Sargison FA, Cameron RL, Pickering A, Gorzynski J, Corander J, Marttinen P, Opitz B, Smith AJ, Fitzgerald JR. Population analysis of Legionella pneumophila reveals a basis for resistance to complement-mediated killing. Nat Commun 2021; 12:7165. [PMID: 34887398 PMCID: PMC8660822 DOI: 10.1038/s41467-021-27478-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
Legionella pneumophila is the most common cause of the severe respiratory infection known as Legionnaires' disease. However, the microorganism is typically a symbiont of free-living amoeba, and our understanding of the bacterial factors that determine human pathogenicity is limited. Here we carried out a population genomic study of 902 L. pneumophila isolates from human clinical and environmental samples to examine their genetic diversity, global distribution and the basis for human pathogenicity. We find that the capacity for human disease is representative of the breadth of species diversity although some clones are more commonly associated with clinical infections. We identified a single gene (lag-1) to be most strongly associated with clinical isolates. lag-1, which encodes an O-acetyltransferase for lipopolysaccharide modification, has been distributed horizontally across all major phylogenetic clades of L. pneumophila by frequent recent recombination events. The gene confers resistance to complement-mediated killing in human serum by inhibiting deposition of classical pathway molecules on the bacterial surface. Furthermore, acquisition of lag-1 inhibits complement-dependent phagocytosis by human neutrophils, and promoted survival in a mouse model of pulmonary legionellosis. Thus, our results reveal L. pneumophila genetic traits linked to disease and provide a molecular basis for resistance to complement-mediated killing.
Collapse
Affiliation(s)
- Bryan A Wee
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Joana Alves
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Diane S J Lindsay
- Bacterial Respiratory Infections Service (Ex Mycobacteria), Scottish Microbiology Reference Laboratory, Glasgow, Scotland, UK
| | - Ann-Brit Klatt
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Fiona A Sargison
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Ross L Cameron
- NHS National Services Scotland, Health Protection Scotland, Glasgow, Scotland, UK
| | - Amy Pickering
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jamie Gorzynski
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Pekka Marttinen
- Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Aalto, Finland
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew J Smith
- Bacterial Respiratory Infections Service (Ex Mycobacteria), Scottish Microbiology Reference Laboratory, Glasgow, Scotland, UK
- College of Medical, Veterinary & Life Sciences, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - J Ross Fitzgerald
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
7
|
Boero E, Brinkman I, Juliet T, van Yperen E, van Strijp JAG, Rooijakkers SHM, van Kessel KPM. Use of Flow Cytometry to Evaluate Phagocytosis of Staphylococcus aureus by Human Neutrophils. Front Immunol 2021; 12:635825. [PMID: 33679791 PMCID: PMC7934835 DOI: 10.3389/fimmu.2021.635825] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play a key role in the human immune response to Staphylococcus aureus infections. These professional phagocytes rapidly migrate to the site of infection to engulf bacteria and destroy them via specialized intracellular killing mechanisms. Here we describe a robust and relatively high-throughput flow cytometry assay to quantify phagocytosis of S. aureus by human neutrophils. We show that effective phagocytic uptake of S. aureus is greatly enhanced by opsonization, i.e. the tagging of microbial surfaces with plasma-derived host proteins like antibodies and complement. Our rapid assay to monitor phagocytosis can be used to study neutrophil deficiencies and bacterial evasion, but also provides a powerful tool to assess the opsonic capacity of antibodies, either in the context of natural immune responses or immune therapies.
Collapse
Affiliation(s)
- Elena Boero
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- GlaxoSmithKline Vaccines S.r.l., Siena, Italy
| | - Iris Brinkman
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Thessely Juliet
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eline van Yperen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jos A. G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan H. M. Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kok P. M. van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, de Haas CJC, Aerts PC, Wang G, de Jong RN, Bagnoli F, van Strijp JAG, van Kessel KPM, Schuurman J, Preiner J, Heck AJR, Rooijakkers SHM. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A 2021; 118:e2016772118. [PMID: 33563762 PMCID: PMC7896290 DOI: 10.1073/pnas.2016772118] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Collapse
Affiliation(s)
- Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maurits A den Boer
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Guanbo Wang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | | | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
9
|
Heesterbeek DAC, Muts RM, van Hensbergen VP, de Saint Aulaire P, Wennekes T, Bardoel BW, van Sorge NM, Rooijakkers SHM. Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes. PLoS Pathog 2021; 17:e1009227. [PMID: 33481964 PMCID: PMC7886145 DOI: 10.1371/journal.ppat.1009227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system. In this paper we identified how different players of the human immune system cooperate to degrade the complex cell envelope of Gram-negative bacteria. The outer membrane of Gram-negative bacteria forms an impermeable barrier for various antimicrobial proteins of the immune system. Here we show that complement-dependent Membrane Attack Complex (MAC) formation permeabilizes this barrier, allowing otherwise impermeable antimicrobial proteins to reach their targets underneath the outer membrane. Specifically, we show that outer membrane damage by the MAC allows lysozyme to degrade the peptidoglycan layer, and secreted phospholipase A2-IIA to hydrolyze the bacterial inner membrane. MAC formation also sensitizes Gram-negative bacteria to more efficient degradation and killing inside human neutrophils. Altogether, this knowledge may guide the development of new antimicrobial strategies to treat infections caused by Gram-negative bacteria.
Collapse
Affiliation(s)
- Dani A. C. Heesterbeek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vincent P. van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pieter de Saint Aulaire
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Bart W. Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
10
|
Al-Bdery ASJ, Mohammad GJ, Hussen B. Vancomycin and linezolid resistance among multidrug-resistant Staphylococcus aureus clinical isolates and interaction with neutrophils. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Pickering AC, Vitry P, Prystopiuk V, Garcia B, Höök M, Schoenebeck J, Geoghegan JA, Dufrêne YF, Fitzgerald JR. Host-specialized fibrinogen-binding by a bacterial surface protein promotes biofilm formation and innate immune evasion. PLoS Pathog 2019; 15:e1007816. [PMID: 31216354 PMCID: PMC6602291 DOI: 10.1371/journal.ppat.1007816] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/01/2019] [Accepted: 05/06/2019] [Indexed: 11/18/2022] Open
Abstract
Fibrinogen is an essential part of the blood coagulation cascade and a major component of the extracellular matrix in mammals. The interface between fibrinogen and bacterial pathogens is an important determinant of the outcome of infection. Here, we demonstrate that a canine host-restricted skin pathogen, Staphylococcus pseudintermedius, produces a cell wall-associated protein (SpsL) that has evolved the capacity for high strength binding to canine fibrinogen, with reduced binding to fibrinogen of other mammalian species including humans. Binding occurs via the surface-expressed N2N3 subdomains, of the SpsL A-domain, to multiple sites in the fibrinogen α-chain C-domain by a mechanism analogous to the classical dock, lock, and latch binding model. Host-specific binding is dependent on a tandem repeat region of the fibrinogen α-chain, a region highly divergent between mammals. Of note, we discovered that the tandem repeat region is also polymorphic in different canine breeds suggesting a potential influence on canine host susceptibility to S. pseudintermedius infection. Importantly, the strong host-specific fibrinogen-binding interaction of SpsL to canine fibrinogen is essential for bacterial aggregation and biofilm formation, and promotes resistance to neutrophil phagocytosis, suggesting a key role for the interaction during pathogenesis. Taken together, we have dissected a bacterial surface protein-ligand interaction resulting from the co-evolution of host and pathogen that promotes host-specific innate immune evasion and may contribute to its host-restricted ecology. Many bacterial pathogens are specialized for a single host-species and rarely cause infections of other hosts. Our understanding of the bacterial factors underpinning host-specificity are limited. Here we demonstrate that a canine host-restricted bacterial pathogen, Staphylococcus pseudintermedius, produces a surface protein (SpsL) that has the ability to preferentially bind to canine fibrinogen with high strength. This host-specific interaction has evolved via binding to a tandem repeat region of the fibrinogen α-chain which is divergent among mammalian species. Importantly, we found that the strong binding interaction with canine fibrinogen promotes bacterial aggregation and biofilm formation as well as inhibiting neutrophil phagocytosis. Our findings reveal the host-adaptive evolution of a key bacterium-host interaction that promotes evasion of the host immune response.
Collapse
Affiliation(s)
- Amy C. Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, United Kingdom
| | - Pauline Vitry
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Valeriia Prystopiuk
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Brandon Garcia
- Department of Microbiology and Immunology, Brody school of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Jeffrey Schoenebeck
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, United Kingdom
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Yves F. Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
| | - J. Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 2017; 13:e1006461. [PMID: 28880920 PMCID: PMC5589267 DOI: 10.1371/journal.ppat.1006461] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/29/2022] Open
Abstract
Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis. Staphylococcus aureus is a bacterial pathogen responsible for an array of disease types in healthcare and community settings. One of the keys to the success of this pathogen is its ability to subvert the immune system of the host. Here we demonstrate that the superantigen (SAg) staphylococcal enterotoxin-like toxin X (SElX) contributes to immune evasion by inducing unregulated T-cell proliferation, and by inhibition of phagocytosis by neutrophils. We observed that the capacity to bind neutrophils appears to be central to the SElX-dependent toxicity observed in a necrotising pneumonia infection model in rabbits. We report the first example of a staphylococcal SAg with two independent immunomodulatory functions acting on distinct immune cell types.
Collapse
Affiliation(s)
- Stephen W. Tuffs
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - David B. A. James
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - Jovanka Bestebroer
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Amy C. Richards
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Mariya I. Goncheva
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Marie O’Shea
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Bryan A. Wee
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Keun Seok Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Patrick M. Schlievert
- Department of Microbiology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
| | - Jos A. van Strijp
- Department Medical Microbiology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Victor J. Torres
- Department of Microbiology, New York University School of Medicine, New York, NY, United Kingdom
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gomes-Fernandes M, Laabei M, Pagan N, Hidalgo J, Molinos S, Villar Hernandez R, Domínguez-Villanueva D, Jenkins ATA, Lacoma A, Prat C. Accessory gene regulator (Agr) functionality in Staphylococcus aureus derived from lower respiratory tract infections. PLoS One 2017; 12:e0175552. [PMID: 28410390 PMCID: PMC5391941 DOI: 10.1371/journal.pone.0175552] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/28/2017] [Indexed: 01/09/2023] Open
Abstract
Objective Characterization of Staphylococcus aureus clinical isolates derived from lower respiratory tract infections (LRTIs), and correlation between the functionality of the accessory gene regulator (Agr) and genotypic and phenotypic characteristics, clinical variables and clinical outcome. Methods S aureus isolates derived from LRTIs and control groups (nasal carriage and bacteraemia) were genotyped using StaphyType DNA microarray. Agr activity was evaluated using the CAMP synergistic haemolysis assay and the Vesicle Lysis Test (VLT). Discordant strains were analysed by quantitative reverse-transcriptase real-time PCR (qRT-PCR). Results Agr was functional in 79.7% and 84.5% of strains according to the CAMP and VLT assays respectively. Higher concordance with RNAIII expression measured by qRT-PCR was observed with the VLT assay (76.2%) compared with the CAMP assay (23.8%). No statistically significant differences were observed in Agr functionality between the study groups, nor the phenotypical/genotypical bacterial characteristics. No association between increased mortality/respiratory complications and Agr function was observed. Conclusions Agr activity was high (82.2%) in isolates from LRTIs suggesting the importance of this global regulator in lower respiratory tract colonisation and infection. However, equally high Agr activity was observed in isolates derived from nasal carriage and bacteraemia, contradictory to previous observations. Agr functionality measured by the VLT assay was superior to CAMP assay.
Collapse
Affiliation(s)
- Meissiner Gomes-Fernandes
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Maisem Laabei
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Natalia Pagan
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Jessica Hidalgo
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Sònia Molinos
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Raquel Villar Hernandez
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Dídac Domínguez-Villanueva
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | | | - Alicia Lacoma
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias, CIBER, Instituto de Salud Carlos III, Badalona, Spain
| | - Cristina Prat
- Microbiology Department, Hospital Universitari Germans Trias i Pujol, Institut d’ Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias, CIBER, Instituto de Salud Carlos III, Badalona, Spain
- * E-mail:
| |
Collapse
|
14
|
Koop G, Vrieling M, Storisteanu DML, Lok LSC, Monie T, van Wigcheren G, Raisen C, Ba X, Gleadall N, Hadjirin N, Timmerman AJ, Wagenaar JA, Klunder HM, Fitzgerald JR, Zadoks R, Paterson GK, Torres C, Waller AS, Loeffler A, Loncaric I, Hoet AE, Bergström K, De Martino L, Pomba C, de Lencastre H, Ben Slama K, Gharsa H, Richardson EJ, Chilvers ER, de Haas C, van Kessel K, van Strijp JAG, Harrison EM, Holmes MA. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 2017; 7:40660. [PMID: 28106142 PMCID: PMC5247767 DOI: 10.1038/srep40660] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component.
Collapse
Affiliation(s)
- Gerrit Koop
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Manouk Vrieling
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Laurence S. C. Lok
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Tom Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Glenn van Wigcheren
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Claire Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nicholas Gleadall
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nazreen Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Arjen J. Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, 8200 AB Lelystad, The Netherlands
| | - Heleen M. Klunder
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, EH25 9RG, Edinburgh, United Kingdom
| | - Ruth Zadoks
- Moredun Research Institute, Bush Loan, Penicuik EH26 0PZ, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, Logroño 26006, Spain
| | - Andrew S. Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, North Mymms, Hertfordshire AL9 7TA, United Kingdom
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Armando E. Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
- Veterinary Public Health Program, College of Public Health, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Karin Bergström
- Department of Animal Health and Antimicrobial Strategies, SVA, SE-751 89 Uppsala, Sweden
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, Infectious Diseases Section, University of Naples “Federico II”, 80137 Naples, Italy
| | - Constança Pomba
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 LISBOA, Portugal
| | - Hermínia de Lencastre
- Laboratório de Genética Molecular, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY10065, USA
| | - Karim Ben Slama
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia
| | - Haythem Gharsa
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
| | - Emily J. Richardson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Carla de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
15
|
Serine-Aspartate Repeat Protein D Increases Staphylococcus aureus Virulence and Survival in Blood. Infect Immun 2016; 85:IAI.00559-16. [PMID: 27795358 PMCID: PMC5203653 DOI: 10.1128/iai.00559-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus expresses a panel of cell wall-anchored adhesins, including proteins belonging to the microbial surface components recognizing adhesive matrix molecule (MSCRAMM) family, exemplified by the serine-aspartate repeat protein D (SdrD), which serve key roles in colonization and infection. Deletion of sdrD from S. aureus subsp. aureus strain NCTC8325-4 attenuated bacterial survival in human whole blood ex vivo, which was associated with increased killing by human neutrophils. Remarkably, SdrD was able to inhibit innate immune-mediated bacterial killing independently of other S. aureus proteins, since addition of recombinant SdrD protein and heterologous expression of SdrD in Lactococcus lactis promoted bacterial survival in human blood. SdrD contributes to bacterial virulence in vivo, since fewer S. aureus subsp. aureus NCTC8325-4 ΔsdrD bacteria than bacteria of the parent strain were recovered from blood and several organs using a murine intravenous infection model. Collectively, our findings reveal a new property of SdrD as an important key contributor to S. aureus survival and the ability to escape the innate immune system in blood.
Collapse
|
16
|
LukMF' is the major secreted leukocidin of bovine Staphylococcus aureus and is produced in vivo during bovine mastitis. Sci Rep 2016; 6:37759. [PMID: 27886237 PMCID: PMC5123576 DOI: 10.1038/srep37759] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is a major human and animal pathogen and a common cause of mastitis in cattle. S. aureus secretes several leukocidins that target bovine neutrophils, crucial effector cells in the defence against bacterial pathogens. In this study, we investigated the role of staphylococcal leukocidins in the pathogenesis of bovine S. aureus disease. We show that LukAB, in contrast to the γ-hemolysins, LukED, and LukMF′, was unable to kill bovine neutrophils, and identified CXCR2 as a bovine receptor for HlgAB and LukED. Furthermore, we assessed functional leukocidin secretion by bovine mastitis isolates and observed that, although leukocidin production was strain dependent, LukMF′ was most abundantly secreted and the major toxin killing bovine neutrophils. To determine the role of LukMF′ in bovine mastitis, cattle were challenged with high (S1444) or intermediate (S1449, S1463) LukMF′-producing isolates. Only animals infected with S1444 developed severe clinical symptoms. Importantly, LukM was produced in vivo during the course of infection and levels in milk were associated with the severity of mastitis. Altogether, these findings underline the importance of LukMF′ as a virulence factor and support the development of therapeutic approaches targeting LukMF′ to control S. aureus mastitis in cattle.
Collapse
|
17
|
Bovine Staphylococcus aureus Secretes the Leukocidin LukMF' To Kill Migrating Neutrophils through CCR1. mBio 2015; 6:e00335. [PMID: 26045537 PMCID: PMC4462618 DOI: 10.1128/mbio.00335-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although Staphylococcus aureus is best known for infecting humans, bovine-specific strains are a major cause of mastitis in dairy cattle. The bicomponent leukocidin LukMF′, exclusively harbored by S. aureus of ruminant origin, is a virulence factor associated with bovine infections. In this study, the molecular basis of the host specificity of LukMF′ is elucidated by identification of chemokine receptor CCR1 as its target. Bovine neutrophils, the major effector cells in the defense against staphylococci, express significant cell surface levels of CCR1, whereas human neutrophils do not. This causes the particular susceptibility of bovine neutrophils to pore formation induced by LukMF′. Bovine S. aureus strains produce high levels of LukMF′ in vitro. In culture supernatant of the mastitis field isolate S1444, LukMF′ was the most important cytotoxic agent for bovine neutrophils. In a fibrin gel matrix, the effects of the in situ secreted toxins on neutrophils migrating toward S. aureus were visualized. Under these physiological ex vivo conditions, bovine S. aureus S1444 efficiently killed approaching neutrophils at a distance through secretion of LukMF′. Altogether, our findings illustrate the coevolution of pathogen and host, provide new targets for therapeutic and vaccine approaches to treat staphylococcal diseases in the cow, and emphasize the importance of staphylococcal toxins in general. This study explains the mechanism of action of LukMF′, a bicomponent toxin found in bovine lineages of S. aureus that is associated with mastitis in cattle. At a molecular level, we describe how LukMF′ can specifically kill bovine neutrophils. Here, we demonstrate the contribution of toxins in the determination of host specificity and contribute to the understanding of mechanisms of coevolution of pathogen and host. Our study provides new targets that can be used in therapeutic and vaccine approaches to treat staphylococcal diseases in the cow. We also demonstrate the importance of toxins in specific elimination of immune cells, which has broader implications, especially in human infections.
Collapse
|
18
|
Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions. J Bacteriol 2014; 197:807-18. [PMID: 25512311 DOI: 10.1128/jb.02221-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis.
Collapse
|