1
|
Brooks SD, Ruhl AP, Zeng X, Cruz P, Hassan SA, Kamenyeva O, Hakim MA, Ridley LA, Nagata BM, Kabat J, Ganesan S, Smith RL, Jackson M, Nino de Rivera J, McLure AJ, Jackson JM, Emeh RO, Tesfuzigta N, Laurence K, Joyce S, Yek C, Chea S, Alves DA, Isakson BE, Manning J, Davis JL, Ackerman HC. Sickle Trait and Alpha Thalassemia Increase NOS-Dependent Vasodilation of Human Arteries Through Disruption of Endothelial Hemoglobin-eNOS Interactions. Circulation 2025; 151:8-30. [PMID: 39633569 DOI: 10.1161/circulationaha.123.066003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/06/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Severe malaria is associated with impaired nitric oxide (NO) synthase (NOS)-dependent vasodilation, and reversal of this deficit improves survival in murine models. Malaria might have selected for genetic polymorphisms that increase endothelial NO signaling and now contribute to heterogeneity in vascular function among humans. One protein potentially selected for is alpha globin, which, in mouse models, interacts with endothelial NOS (eNOS) to negatively regulate NO signaling. We sought to evaluate the impact of alpha globin gene deletions on NO signaling and unexpectedly found human arteries use not only alpha but also beta globin to regulate eNOS. METHODS The eNOS-hemoglobin complex was characterized by multiphoton imaging, gene expression analysis, and coimmunoprecipitation studies of human resistance arteries. Novel contacts between eNOS and hemoglobin were mapped using molecular modeling and simulation. Pharmacological or genetic disruption of the eNOS-hemoglobin complex was evaluated using pressure myography. The association between alpha globin gene deletion and blood pressure was assessed in a population study. RESULTS Alpha and beta globin transcripts were detected in the endothelial layer of the artery wall. Imaging colocalized alpha and beta globin proteins with eNOS at myoendothelial junctions. Immunoprecipitation demonstrated that alpha globin and beta globin form a complex with eNOS and cytochrome b5 reductase. Modeling predicted negatively charged glutamic acids at positions 6 and 7 of beta globin to interact with positively charged arginines at positions 97 and 98 of eNOS. Arteries from donors with a glutamic acid-to-valine substitution at beta globin position 6 (sickle trait) exhibited increased NOS-dependent vasodilation. Alpha globin gene deletions were associated with decreased arterial alpha globin expression, increased NOS-dependent vasodilation, and lower blood pressure. Mimetic peptides that targeted the interactions between hemoglobin and eNOS recapitulated the effects of these genetic variants on human arterial vasoreactivity. CONCLUSIONS Alpha and beta globin subunits of hemoglobin interact with eNOS to restrict NO signaling in human resistance arteries. Malaria-protective genetic variants that alter the expression of alpha globin or the structure of beta globin are associated with increased NOS-dependent vasodilation. Targeting the hemoglobin-eNOS interface could potentially improve NO signaling in diseases of endothelial dysfunction such as severe malaria or chronic cardiovascular conditions.
Collapse
Affiliation(s)
- Steven D Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - A Parker Ruhl
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
- Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD (A.P.R.)
| | - Xianke Zeng
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (P.C., S.A.H.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (P.C., S.A.H.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Olena Kamenyeva
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD (O.K., J.K., S.G.)
| | - Md Abdul Hakim
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lauryn A Ridley
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section (B.M.N., D.A.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Juraj Kabat
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD (O.K., J.K., S.G.)
| | - Sundar Ganesan
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD (O.K., J.K., S.G.)
| | - Rachel L Smith
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Mary Jackson
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Jessica Nino de Rivera
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Alison J McLure
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Jarrett M Jackson
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Robert O Emeh
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Naomi Tesfuzigta
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Kyeisha Laurence
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Stacy Joyce
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD (S.J., J.L.D.)
| | - Christina Yek
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia (C.Y., S.C., J.M.)
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD (C.Y.)
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia (C.Y., S.C., J.M.)
| | - Derron A Alves
- Infectious Disease Pathogenesis Section (B.M.N., D.A.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center (B.E.I.), University of Virginia School of Medicine, Charlottesville
- Department of Molecular Physiology and Biological Physics (B.E.I.), University of Virginia School of Medicine, Charlottesville
| | - Jessica Manning
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia (C.Y., S.C., J.M.)
| | - Jeremy L Davis
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD (S.J., J.L.D.)
| | - Hans C Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research (S.D.B., A.P.R., X.Z., M.A.H., L.A.R., R.L.S., M.J., J.N.d.R., A.J.M., J.M.J., R.O.E., N.T., K.L., H.C.A.), National Institute of Allergy and Infectious Diseases, Rockville, MD
| |
Collapse
|
2
|
J D Moreira N, Dos Santos F, Li JB, Aletti F, Irigoyen MCC, Kistler EB. Enteral administration of the protease inhibitor gabexate mesilate preserves vascular function in experimental trauma/hemorrhagic shock. Sci Rep 2023; 13:10148. [PMID: 37349360 PMCID: PMC10287748 DOI: 10.1038/s41598-023-36021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023] Open
Abstract
Preserving vascular function is crucial for preventing multiorgan failure and death in ischemic and low-pressure states such as trauma/hemorrhagic shock (T/HS). It has recently been reported that inhibiting circulating proteases released from the bowel to the circulation during T/HS may preserve vascular function and improve outcomes following T/HS. This study aimed to evaluate the role of the serine protease inhibitor gabexate mesilate (GM) in preserving vascular function during T/HS when given enterally. We studied the vascular reactivity of mesenteric arteries from male Wistar rats treated with enteral GM (10 mg/kg) (GM-treated, n = 6) or control (Shock-control, n = 6) following (T/HS) using pressure myography. Concentration-response curves of endothelial-dependent and endothelial-independent agonists (e.g., acetylcholine, sodium nitroprusside) ranging from 10-10 to 10-5 M were performed. In a second set of experiments, ex-vivo arteries from healthy rats were perfused with plasma from shocked animals from both groups and vascular performance was similarly measured. Arteries from the GM-treated group demonstrated a preserved concentration-response curve to the α1 adrenergic agonist phenylephrine compared to arteries from Shock-control animals (- logEC50: - 5.73 ± 0.25 vs. - 6.48 ± 0.2, Shock-control vs. GM-treated, p = 0.04). When perfused with plasma from GM-treated rats, healthy arteries exhibited an even greater constriction and sensitivity to phenylephrine (- logEC50: - 6.62 ± 0.21 vs. - 7.13 ± 0.21, Shock-control vs. GM-treated, p = 0.02). Enteral GM also preserved the endothelium-dependent vascular response to agonists following T/HS and limited syndecan-1 shedding as a marker of glycocalyx compromise (41.84 ± 9 vs. 17.63 ± 3.97 ng/mL, Shock-control vs. GM-treated, p = 0.02). Syndecan-1 cleavage was correlated with plasma trypsin-like activity (r2 = 0.9611). Enteral gabexate mesilate was able to maintain vascular function in experimental T/HS, which was reflected by improved hemodynamics (mean arterial pressure 50.39 ± 7.91 vs. 64.95 ± 3.43 mmHg, Shock-control vs. GM treated, p = 0.0001). Enteral serine protease inhibition may be a potential therapeutic intervention in the treatment of T/HS.
Collapse
Affiliation(s)
- Nathalia J D Moreira
- Instituto do Coração, Hospital das ClínicasFaculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Dos Santos
- Department of Anesthesiology and Critical Care, University of California, San Diego, La Jolla, CA, USA
| | - Joyce B Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Federico Aletti
- Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - Maria Claudia C Irigoyen
- Instituto do Coração, Hospital das ClínicasFaculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Erik B Kistler
- Department of Anesthesiology and Critical Care, University of California, San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
3
|
Dos Santos F, Li JB, Moreira NJ, Mazor R, Aletti F, Kistler EB. Enteral gabexate mesilate improves volume requirements and autonomic cardiovascular function after experimental trauma/hemorrhagic shock in the absence of blood reperfusion. Am J Transl Res 2022; 14:7391-7402. [PMID: 36398214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/20/2022] [Indexed: 06/16/2023]
Abstract
The standard of care for fluid resuscitation of trauma/hemorrhagic shock (T/HS) is the infusion of blood. However, in many instances, blood product transfusion may not be feasible. Consequently, crystalloid solutions may be utilized as temporizing cost-effective resuscitation fluids. In this study, we explored an alternative therapeutic strategy of enteral protease inhibition adjunctive to intravenous Lactated Ringer's (LR) reperfusion after T/HS. Male Wistar rats underwent midline laparotomy (trauma) and an enteral catheter was inserted orally and positioned post-pyloric for the infusion of vehicle (Golytely®) with or without the serine protease inhibitor gabexate mesilate (GM) (n=8/group). Hemorrhagic shock was induced by blood removal to reduce the mean arterial blood pressure (MAP) to 35-40 mmHg for 90 minutes, before resuscitation with LR. Animals treated with enteral GM required significantly less crystalloid volume to achieve hemodynamic stability and displayed improvements in both blood pressure and autonomic function (via increased baroreflex sensitivity to vasopressors, heightened vascular sympathetic modulation, elevated levels of circulating catecholamines, and increased α1-adrenergic receptor density) compared to untreated (control) shocked animals. Resistance arteries isolated from healthy donor animals and perfused with plasma from untreated T/HS animals revealed impaired vascular response to the α1 adrenergic agonist phenylephrine and decreased reactivity to sodium nitroprusside that was preserved in the GM-treated group. These findings suggest that blockade of serine proteases within the intestinal lumen in non-blood resuscitated experimental T/HS preserves and enhances peripheral sympathetic modulation, improving hemodynamics. Enteral infusion of gabexate mesilate may be a new and promising approach to the management of trauma/hemorrhagic shock.
Collapse
Affiliation(s)
- Fernando Dos Santos
- Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA, USA
| | - Joyce B Li
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathalia Jd Moreira
- Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo São Paulo, Brazil
| | - Rafi Mazor
- Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA, USA
| | - Federico Aletti
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo São José dos Campos, Brazil
| | - Erik B Kistler
- Department of Anesthesiology & Critical Care, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System San Diego, CA, USA
| |
Collapse
|
4
|
Molina SA, Maier-Begandt D, Isakson BE, Koval M. Electrophysiological Measurements of Isolated Blood Vessels. Bio Protoc 2022; 12:e4359. [PMID: 35434187 PMCID: PMC8983162 DOI: 10.21769/bioprotoc.4359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/12/2021] [Accepted: 02/07/2022] [Indexed: 10/07/2023] Open
Abstract
The lumen of blood vessels is covered by endothelial cells, which regulate their permeability to ions and solutes. Endothelial permeability depends on the vascular bed and cell phenotype, and is influenced by different disease states. Most characterization of endothelial permeability has been carried out using isolated cells in culture. While analysis of cultured cells is a valuable approach, it does not account for factors of the native cell environment. Building on Ussing chamber studies of intact tissue specimens, here we describe a method to measure the electrophysiological properties of intact arteriole and venule endothelia, including transendothelial electrical resistance (TEER) and ion permselectivity. As an example, vessels isolated from the mesentery were treated ex vivo, then mounted in a custom-made tissue cassette that enable their analysis by classical approaches with an Ussing chamber. This method enables a detailed analysis of electrophysiological vessel responses to stresses such as proinflammatory cytokines, in the context of an intact vessel. Graphic abstract.
Collapse
Affiliation(s)
- Samuel A Molina
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniela Maier-Begandt
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Walter Brendel Center of Experimental Medicine, University Hospital, and Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Automated Detection and Diameter Estimation for Mouse Mesenteric Artery Using Semantic Segmentation. J Vasc Res 2021; 58:379-387. [PMID: 34182554 DOI: 10.1159/000516842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pressurized myography is useful for the assessment of small artery structures and function. However, this procedure requires technical expertise for sample preparation and effort to choose an appropriate sized artery. In this study, we developed an automatic artery/vein differentiation and a size measurement system utilizing machine learning algorithms. METHODS AND RESULTS We used 654 independent mouse mesenteric artery images for model training. The model yielded an Intersection-over-Union of 0.744 ± 0.031 and a Dice coefficient of 0.881 ± 0.016. The vessel size and lumen size calculated from the predicted vessel contours demonstrated a strong linear correlation with manually determined vessel sizes (R = 0.722 ± 0.048, p < 0.001 for vessel size and R = 0.908 ± 0.027, p < 0.001 for lumen size). Last, we assessed the relation between the vessel size before and after dissection using a pressurized myography system. We observed a strong positive correlation between the wall/lumen ratio before dissection and the lumen expansion ratio (R = 0.832, p < 0.01). Using multivariate binary logistic regression, 2 models estimating whether the vessel met the size criteria (lumen size of 160-240 μm) were generated with an area under the receiver operating characteristic curve of 0.761 for the upper limit and 0.747 for the lower limit. CONCLUSION The U-Net-based image analysis method could streamline the experimental approach.
Collapse
Affiliation(s)
- Akinori Higaki
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Department of Cardiology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Ahmad U M Mahmoud
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
6
|
Ottolini M, Daneva Z, Chen YL, Cope EL, Kasetti RB, Zode GS, Sonkusare SK. Mechanisms underlying selective coupling of endothelial Ca 2+ signals with eNOS vs. IK/SK channels in systemic and pulmonary arteries. J Physiol 2020; 598:3577-3596. [PMID: 32463112 DOI: 10.1113/jp279570] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Endothelial cell TRPV4 (TRPV4EC ) channels exert a dilatory effect on the resting diameter of resistance mesenteric and pulmonary arteries. Functional intermediate- and small-conductance K+ (IK and SK) channels and endothelial nitric oxide synthase (eNOS) are present in the endothelium of mesenteric and pulmonary arteries. TRPV4EC sparklets preferentially couple with IK/SK channels in mesenteric arteries and with eNOS in pulmonary arteries. TRPV4EC channels co-localize with IK/SK channels in mesenteric arteries but not in pulmonary arteries, which may explain TRPV4EC -IK/SK channel coupling in mesenteric arteries and its absence in pulmonary arteries. The presence of the nitric oxide-scavenging protein, haemoglobin α, limits TRPV4EC -eNOS signalling in mesenteric arteries. Spatial proximity of TRPV4EC channels with eNOS and the absence of haemoglobin α favour TRPV4EC -eNOS signalling in pulmonary arteries. ABSTRACT Spatially localized Ca2+ signals activate Ca2+ -sensitive intermediate- and small-conductance K+ (IK and SK) channels in some vascular beds and endothelial nitric oxide synthase (eNOS) in others. The present study aimed to uncover the signalling organization that determines selective Ca2+ signal to vasodilatory target coupling in the endothelium. Resistance-sized mesenteric arteries (MAs) and pulmonary arteries (PAs) were used as prototypes for arteries with predominantly IK/SK channel- and eNOS-dependent vasodilatation, respectively. Ca2+ influx signals through endothelial transient receptor potential vanilloid 4 (TRPV4EC ) channels played an important role in controlling the baseline diameter of both MAs and PAs. TRPV4EC channel activity was similar in MAs and PAs. However, the TRPV4 channel agonist GSK1016790A (10 nm) selectively activated IK/SK channels in MAs and eNOS in PAs, revealing preferential TRPV4EC -IK/SK channel coupling in MAs and TRPV4EC -eNOS coupling in PAs. IK/SK channels co-localized with TRPV4EC channels at myoendothelial projections (MEPs) in MAs, although they lacked the spatial proximity necessary for their activation by TRPV4EC channels in PAs. Additionally, the presence of the NO scavenging protein haemoglobin α (Hbα) within nanometer proximity to eNOS limits TRPV4EC -eNOS signalling in MAs. By contrast, co-localization of TRPV4EC channels and eNOS at MEPs, and the absence of Hbα, favour TRPV4EC -eNOS coupling in PAs. Thus, our results reveal that differential spatial organization of signalling elements determines TRPV4EC -IK/SK vs. TRPV4EC -eNOS coupling in resistance arteries.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Eric L Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience and the North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
7
|
Rodríguez-Rodríguez R, Ackermann TN, Plaza JA, Simonsen U, Matchkov V, Llobera A, Munoz-Berbel X. Ultrasensitive Photonic Microsystem Enabling Sub-micrometric Monitoring of Arterial Oscillations for Advanced Cardiovascular Studies. Front Physiol 2019; 10:940. [PMID: 31396105 PMCID: PMC6664303 DOI: 10.3389/fphys.2019.00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Jose Antonio Plaza
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Spain
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Andreu Llobera
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Spain
| | - Xavier Munoz-Berbel
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Spain
- *Correspondence: Xavier Munoz-Berbel
| |
Collapse
|
8
|
Li SC, Wang QH, Chen LF, Feng SY, Wu YX, Yan XW. High Sodium Intake Impairs Small Artery Vasoreactivity in vivo in Dahl Salt-Sensitive Rats. J Vasc Res 2019; 56:65-76. [PMID: 31079107 DOI: 10.1159/000498895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/13/2019] [Indexed: 11/19/2022] Open
Abstract
The effects of high sodium intake on the functionality of resistance arteries have been repeatedly studied in vitro, but no study has focused on salt-sensitive hypertension in vivo. We studied the in vivo reactivity of mesenteric small arteries (MSAs) to vasoactive agents in Dahl salt-sensitive (DS) rats with various sodium diets. Twenty-four male DS rats were randomized into 3 groups: LS (0.3% NaCl diet), NS (0.6% NaCl diet), and HS (8% NaCl diet). After a 12-week intervention, the diameter changes of the MSAs after noradrenaline (NA) and acetylcholine (ACh) exposure were detected by a microscope, and changes in blood perfusion through the MSAs were measured by full-field laser perfusion imaging. HS enhanced the constrictive response of the MSAs to NA and attenuated the relaxing response to ACh. Low sodium intake reduced the response of the MSAs to NA and promoted ACh-induced vasodilatation. HS also aggravated NA-induced blood perfusion reduction and impaired ACh-induced hyperperfusion of the MSAs. Pathologically, HS was associated with arteriolar structural damage and fibrosis of the MSAs. We conclude that sodium intake affects the responsiveness of the MSAs to vasoactive agents in DS rats and might play important roles in modulating blood pressure in hypertensive individuals.
Collapse
Affiliation(s)
- Shi-Cheng Li
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Qing-Hai Wang
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Lian-Feng Chen
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Shu-Yi Feng
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan-Xiang Wu
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, China
| | - Xiao-Wei Yan
- Department of Cardiology, Peking Union Medical College Hospital (PUMCH), Beijing, China,
| |
Collapse
|
9
|
Lawton PF, Lee MD, Saunter CD, Girkin JM, McCarron JG, Wilson C. VasoTracker, a Low-Cost and Open Source Pressure Myograph System for Vascular Physiology. Front Physiol 2019; 10:99. [PMID: 30846942 PMCID: PMC6393368 DOI: 10.3389/fphys.2019.00099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/28/2019] [Indexed: 01/12/2023] Open
Abstract
Pressure myography, one of the most commonly used techniques in vascular research, measures the diameter of isolated, pressurized arteries to assess the functional activity of smooth muscle and endothelial cells. Despite the widespread adoption of this technique for assessing vascular function, there are only a small number of commercial systems and these are expensive. Here, we introduce a complete, open source pressure myograph system and analysis software, VasoTracker, that can be set-up for approximately 10% of the cost of commercial alternatives. We report on the development of VasoTracker and demonstrate its ability to assess various components of vascular reactivity. A unique feature of the VasoTracker platform is the publicly accessible website (http://www.vasotracker.com/) that documents how to assemble and use this affordable, adaptable, and expandable pressure myograph.
Collapse
Affiliation(s)
- Penelope F. Lawton
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, Durham, United Kingdom
| | - Matthew D. Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Christopher D. Saunter
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, Durham, United Kingdom
| | - John M. Girkin
- Centre for Advanced Instrumentation, Biophysical Sciences Institute, Department of Physics, Durham University, Durham, United Kingdom
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
10
|
Characterization of pressure-mediated vascular tone in resistance arteries from bile duct-ligated rats. Oncotarget 2018; 8:30706-30722. [PMID: 28430609 PMCID: PMC5458161 DOI: 10.18632/oncotarget.15409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/01/2017] [Indexed: 12/15/2022] Open
Abstract
In cirrhosis, changes in pressure-mediated vascular tone, a key determinant of systemic vascular resistance (SVR), are unknown. To address this gap in knowledge, we assessed ex vivo dynamics of pressurized mesenteric resistance arteries (diameter ~ 260 μm) from bile duct-ligated (BDL) and sham-operated (SHAM) rats and determined the underlying mechanisms. At isobaric intraluminal pressure (70 mmHg) as well as with step-wise increase in pressure (10-110 mmHg), arteries from SHAM-rats constricted more than BDL-rats, and had reduced luminal area. In both groups, incubation with LNAME (a NOS inhibitor) had no effect on pressure-mediated tone, and expression of NOS isoforms were similar. TEA, which enhances Ca2+ influx, augmented arterial tone only in SHAM-rats, with minimal effect in those from BDL-rats that was associated with reduced expression of Ca2+ channel TRPC6. In permeabilized arteries, high-dose Ca2+ and γGTP enhanced the vascular tone, which remained lower in BDL-rats that was associated with reduced ROCK2 and pMLC expression. Further, compared to SHAM-rats, in BDL-rats, arteries had reduced collagen expression which was associated with increased expression and activity of MMP-9. BDL-rats also had increased plasma reactive oxygen species (ROS). In vascular smooth muscle cells in vitro, peroxynitrite enhanced MMP-9 activity and reduced ROCK2 expression. These data provide evidence that in cirrhosis, pressure-mediated tone is reduced in resistance arteries, and suggest that circulating ROS play a role in reducing Ca2+ sensitivity and enhancing elasticity to induce arterial adaptations. These findings provide insights into mechanisms underlying attenuated SVR in cirrhosis.
Collapse
|
11
|
Farb MG, Park SY, Karki S, Gokce N. Assessment of Human Adipose Tissue Microvascular Function Using Videomicroscopy. J Vis Exp 2017. [PMID: 28994775 DOI: 10.3791/56079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
While obesity is closely linked to the development of metabolic and cardiovascular disease, little is known about mechanisms that govern these processes. It is hypothesized that pro-atherogenic mediators released from fat tissues particularly in association with central/visceral adiposity may promote pathogenic vascular changes locally and systemically, and the notion that cardiovascular disease may be the consequence of adipose tissue dysfunction continues to evolve. Here, we describe a unique method of videomicroscopy that involves analysis of vasodilator and vasoconstrictor responses of intact small human arterioles removed from the adipose depot of living human subjects. Videomicroscopy is used to examine functional properties of isolated microvessels in response to pharmacological or physiological stimuli using a pressured system that mimics in vivo conditions. The technique is a useful approach to gain understanding of the pathophysiology and molecular mechanisms that contribute to vascular dysfunction locally within the adipose tissue milieu. Moreover, abnormalities in the adipose tissue microvasculature have also been linked with systemic diseases. We applied this technique to examine depot-specific vascular responses in obese subjects. We assessed endothelium-dependent vasodilation to both increased flow and acetylcholine in adipose arterioles (50 - 350 µm internal diameter, 2 - 3 mm in length) isolated from two different adipose depots during bariatric surgery from the same individual. We demonstrated that arterioles from visceral fat exhibit impaired endothelium-dependent vasodilation compared to vessels isolated from the subcutaneous depot. The findings suggest that the visceral microenvironment is associated with vascular endothelial dysfunction which may be relevant to clinical observation linking increased visceral adiposity to systemic disease mechanisms. The videomicroscopy technique can be used to examine vascular phenotypes from different fat depots as well as compare findings across individuals with different degrees of obesity and metabolic dysfunction. The method can also be used to examine vascular responses longitudinally in response to clinical interventions.
Collapse
Affiliation(s)
- Melissa G Farb
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine
| | - Song-Young Park
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine
| | - Shakun Karki
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine
| | - Noyan Gokce
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine;
| |
Collapse
|
12
|
Hyperoxia does not directly affect vascular tone in isolated arteries from mice. PLoS One 2017; 12:e0182637. [PMID: 28796814 PMCID: PMC5552161 DOI: 10.1371/journal.pone.0182637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/22/2017] [Indexed: 01/10/2023] Open
Abstract
Hospitalized patients often receive oxygen supplementation, which can lead to a supraphysiological oxygen tension (hyperoxia). Hyperoxia can have hemodynamic effects, including an increase in systemic vascular resistance. This increase suggests hyperoxia-induced vasoconstriction, yet reported direct effects of hyperoxia on vessel tone have been inconsistent. Furthermore, hyperoxia-induced changes in vessel diameter have not been studied in mice, currently the most used mammal model of disease. In this study we set out to develop a pressure-myograph model using isolated vessels from mice for investigation of pathways involved in hyperoxic vasoconstriction. Isolated conduit and resistance arteries (femoral artery and gracilis arteriole, respectively) from C57BL/6 mice were exposed to normoxia (PO2 of 80 mmHg) and three levels of hyperoxia (PO2 of 215, 375 and 665 mmHg) in a no-flow pressure myograph setup. Under the different PO2 levels, dose-response agonist induced endothelium-dependent vasodilation (acetylcholine, arachidonic acid), endothelium-independent vasodilation (s-nitroprusside), as well as vasoconstriction (norepinephrine, prostaglandin F2α) were examined. The investigated arteries did not respond to oxygen by a change in vascular tone. In the dose-response studies, maximal responses and EC50 values to any of the aforementioned agonists were not affected by hyperoxia either. We conclude that arteries and arterioles from healthy mice are not intrinsically sensitive to hyperoxic conditions. The present ex-vivo model is therefore not suitable for further research into mechanisms of hyperoxic vasoconstriction.
Collapse
|