1
|
Macêdo Ferreira Santos LD, Cardim Barreto B, Costa Quadros H, Santana Meira C, Siqueira Ferraz-Carvalho RD, Souza Rebouças JD, Garcia Macambira S, Fraga Vasconcelos J, Freitas Souza BSD, Botelho Pereira Soares M, Stela Santos-Magalhães N, Rocha Formiga F. Tissue response and retention of micro- and nanosized liposomes in infarcted mice myocardium after ultrasound-guided transthoracic injection. Eur J Pharm Biopharm 2022; 173:141-149. [DOI: 10.1016/j.ejpb.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
|
2
|
Wang M, Misgeld T, Brill MS. Neural labeling and manipulation by neonatal intraventricular viral injection in mice. STAR Protoc 2022; 3:101081. [PMID: 35059654 PMCID: PMC8760487 DOI: 10.1016/j.xpro.2021.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This step-by-step protocol provides a fast and easy technique to label and/or genetically manipulate neural cells, achieved by intraventricular injection of viral vectors into neonatal mice under ultrasound guidance. Successful injection of adeno-associated viral vectors (AAV) induces neural transduction as fast as 3 days post injection (dpi) in both the central and peripheral nervous systems. Virally driven expression persists until early adulthood. The same setup enables injection of other viral vectors as well as intramuscular injection. For complete details on the use and execution of this protocol, please refer to Wang et al. (2021) and Brill et al. (2016).
Collapse
Affiliation(s)
- Mengzhe Wang
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377 Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany
| |
Collapse
|
3
|
Echocardiography-guided percutaneous left ventricular intracavitary injection as a cell delivery approach in infarcted mice. Mol Cell Biochem 2021; 476:2135-2148. [PMID: 33547546 DOI: 10.1007/s11010-021-04077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
In the field of cell therapy for heart disease, a new paradigm of repeated dosing of cells has recently emerged. However, the lack of a repeatable cell delivery method in preclinical studies in rodents is a major obstacle to investigating this paradigm. We have established and standardized a method of echocardiography-guided percutaneous left ventricular intracavitary injection (echo-guided LV injection) as a cell delivery approach in infarcted mice. Here, we describe the method in detail and address several important issues regarding it. First, by integrating anatomical and echocardiographic considerations, we have established strategies to determine a safe anatomical window for injection in infarcted mice. Second, we summarize our experience with this method (734 injections). The overall survival rate was 91.4%. Third, we examined the efficacy of this cell delivery approach. Compared with vehicle treatment, cardiac mesenchymal cells (CMCs) delivered via this method improved cardiac function assessed both echocardiographically and hemodynamically. Furthermore, repeated injections of CMCs via this method yielded greater cardiac function improvement than single-dose administration. Echo-guided LV injection is a feasible, reproducible, relatively less invasive and effective delivery method for cell therapy in murine models of heart disease. It is an important approach that could move the field of cell therapy forward, especially with regard to repeated cell administrations.
Collapse
|
4
|
Gou Z, Yan X, Jia H, Sun K, Li P, Zhang Q, Deng X. Modulation of SERCA2a expression and function by ultrasound-guided myocardial gene transfection. Exp Ther Med 2020; 20:132. [PMID: 33082864 PMCID: PMC7557332 DOI: 10.3892/etm.2020.9261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca²+-ATPase (SERCA2a) is important for cardiac physiological function and pathological progression. However, intravenous injection, a commonly applied approach for gene delivery in most studies investigating the expression of SERCA2a in cardiomyocytes, has not been particularly satisfactory. Therefore, in the present study, a modified method was used to transfect this gene into the heart. Specifically, a SERCA2a-knockdown lentivirus was directly injected into the myocardium of adult rats under ultrasound guidance, following which the effectiveness and feasibility of this proposed approach were evaluated. The results demonstrated that compared with traditional intravenous injection, the modified gene delivery method resulted in markedly higher transfection efficiency. In addition, the SERCA2a-knockdown rats exhibited higher rates of arrhythmia and weaker ventricular wall motions compared with those in the control rats, with these symptoms more evident in the rats that received a direct injection into the myocardium compared with those that were intravenously injected. These results suggest that ultrasound-guided injection into the myocardium is an efficient and safe method for gene delivery and for inducing the knockdown of SERCA2a protein expression in cardiomyocytes in their native environment.
Collapse
Affiliation(s)
- Zhongshan Gou
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Xinxin Yan
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Hongjing Jia
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Ping Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Xuedong Deng
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
5
|
LI C, DAI J, WU F, ZHANG H. Impacts of Different Anesthetic Agents on Left Ventricular Systolic Function in Mice Assessed by Echocardiography. Physiol Res 2019; 68:365-374. [DOI: 10.33549/physiolres.933940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The present experiments were performed to study the effects and time trends of different anesthetic agents on the left ventricular (LV) systolic function and heart rate by high-resolution echocardiography in mice. Ten male C57BL/6J mice were submitted to echocardiography imaging separated by 72-hour intervals under the following conditions: 1) conscious mice, 2) mice anesthetized with isoflurane (ISO, inhaled), 3) mice anesthetized with tribromoethanol (TBE, intraperitoneal), 4) mice anesthetized with chloral hydrate (CH, intraperitoneal), and 5) mice anesthetized with pentobarbital sodium (PS, intraperitoneal). The effect of ISO, TBE, CH, and PS on LV systolic function was measured at 0, 1, 2, 3, 4, 6, 8, and 10 min after anesthesia. The results showed that LV systolic function and heart rate (HR) of anesthetized mice were reduced significantly (P<0.05), compared with results in the same mice studied in the conscious state. In addition, the results indicated that the anesthetic with the least effect on LV function was CH, and followed by TBE, PS, ISO. We conclude that different anesthetic agents always depressed the HR and LV systolic function of mice, and, furthermore, the effects and time trends of different anesthetics on LV function are different. In echocardiographic experiments, we should choose proper anesthetic agents according to the experimental requirements.
Collapse
Affiliation(s)
- C. LI
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - J. DAI
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang, Hebei, China
| | - F. WU
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - H. ZHANG
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Giraldo A, Talavera López J, Fernandez-Del-Palacio MJ, García-Nicolás O, Seva J, Brooks G, Moraleda JM. Percutaneous Contrast Echocardiography-guided Intramyocardial Injection and Cell Delivery in a Large Preclinical Model. J Vis Exp 2018:56699. [PMID: 29443073 PMCID: PMC5908667 DOI: 10.3791/56699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cell and gene therapy are exciting and promising strategies for the purpose of cardiac regeneration in the setting of heart failure with reduced ejection fraction (HFrEF). Before they can be considered for use, and implemented in humans, extensive preclinical studies are required in large animal models to evaluate the safety, efficacy, and fate of the injectate (e.g., stem cells) once delivered into the myocardium. Small rodent models offer advantages (e.g., cost effectiveness, amenability for genetic manipulation); however, given inherent limitations of these models, the findings in these rarely translate into the clinic. Conversely, large animal models such as rabbits, have advantages (e.g., similar cardiac electrophysiology compared to humans and other large animals), whilst retaining a good cost-effective balance. Here, we demonstrate how to perform a percutaneous contrast echocardiography-guided intramyocardial injection (IMI) technique, which is minimally invasive, safe, well tolerated, and very effective in the targeted delivery of injectates, including cells, into several locations within the myocardium of a rabbit model. For the implementation of this technique, we also have taken advantage of a widely available clinical echocardiography system. After putting in practice the protocol described here, a researcher with basic ultrasound knowledge will become competent in the performance of this versatile and minimally invasive technique for routine use in experiments, aimed at hypothesis testing of the capabilities of cardiac regenerative therapeutics in the rabbit model. Once competency is achieved, the whole procedure can be performed within 25 min after anaesthetizing the rabbit.
Collapse
Affiliation(s)
- Alejandro Giraldo
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading;
| | - Jesús Talavera López
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Murcia;
| | | | - Obdulio García-Nicolás
- Institute of Virology and Immunology (IVI); Departamento de Anatomía y Anatomía Comparada, Facultad de Veterinaria, Universidad de Murcia
| | - Juan Seva
- Departamento de Anatomía y Anatomía Comparada, Facultad de Veterinaria, Universidad de Murcia
| | - Gavin Brooks
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading
| | - José María Moraleda
- Unidad de Trasplante Hematopoyético y Terapia Celular, Departamento de Hematología, Hospital Universitario Virgen de la Arrixaca, IMIB, Universidad de Murcia
| |
Collapse
|
7
|
Deddens JC, Feyen DA, Zwetsloot PP, Brans MA, Siddiqi S, van Laake LW, Doevendans PA, Sluijter JP. Targeting chronic cardiac remodeling with cardiac progenitor cells in a murine model of ischemia/reperfusion injury. PLoS One 2017; 12:e0173657. [PMID: 28319168 PMCID: PMC5358772 DOI: 10.1371/journal.pone.0173657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Translational failure for cardiovascular disease is a substantial problem involving both high research costs and an ongoing lack of novel treatment modalities. Despite the progress already made, cell therapy for chronic heart failure in the clinical setting is still hampered by poor translation. We used a murine model of chronic ischemia/reperfusion injury to examine the effect of minimally invasive application of cardiac progenitor cells (CPC) in cardiac remodeling and to improve clinical translation. METHODS 28 days after the induction of I/R injury, mice were randomized to receive either CPC (0.5 million) or vehicle by echo-guided intra-myocardial injection. To determine retention, CPC were localized in vivo by bioluminescence imaging (BLI) two days after injection. Cardiac function was assessed by 3D echocardiography and speckle tracking analysis to quantify left ventricular geometry and regional myocardial deformation. RESULTS BLI demonstrated successful injection of CPC (18/23), which were mainly located along the needle track in the anterior/septal wall. Although CPC treatment did not result in overall restoration of cardiac function, a relative preservation of the left ventricular end-diastolic volume was observed at 4 weeks follow-up compared to vehicle control (+5.3 ± 2.1 μl vs. +10.8 ± 1.5 μl). This difference was reflected in an increased strain rate (+16%) in CPC treated mice. CONCLUSIONS CPC transplantation can be adequately studied in chronic cardiac remodeling using this study set-up and by that provide a translatable murine model facilitating advances in research for new therapeutic approaches to ultimately improve therapy for chronic heart failure.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
| | - Dries A. Feyen
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter-Paul Zwetsloot
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maike A. Brans
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linda W. van Laake
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost P. Sluijter
- Department of Cardiology, Experimental Cardiology laboratory, University Medical Center Utrecht, Utrecht, The Netherlands
- Netherlands Heart Institute (ICIN), Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
8
|
Stem Cell Imaging: Tools to Improve Cell Delivery and Viability. Stem Cells Int 2016; 2016:9240652. [PMID: 26880997 PMCID: PMC4736428 DOI: 10.1155/2016/9240652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field.
Collapse
|