1
|
Fernandez-Hubeid LE, Albrecht PA, Aschner M, Virgolini MB. Enduring Ethanol-Induced Behavioral Alterations in Caenorhabditis elegans After Developmental Lead Exposure. Methods Mol Biol 2024; 2753:307-316. [PMID: 38285346 DOI: 10.1007/978-1-0716-3625-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The roundworm Caenorhabditis elegans (C. elegans) has become a powerful tool to evaluate the deleterious effects of early-life exposure to xenobiotics, including metals. The present chapter describes a detailed protocol for developmental lead (Pb)-exposure in C. elegans. Preliminary assays as well as the final procedure are described in detail. In addition, further protocols aimed to assess ethanol exposure at later stages of life demonstrate the impact of this drug on locomotor behavior, revealing the enduring effects that Pb can imprint on this organism when exposure occurs during development.
Collapse
Affiliation(s)
- Lucía E Fernandez-Hubeid
- IFEC-CONICET, Córdoba, Argentina
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paula A Albrecht
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miriam B Virgolini
- IFEC-CONICET, Córdoba, Argentina.
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
2
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Virgolini MB. The intertwining between lead and ethanol in the model organism Caenorhabditis elegans. FRONTIERS IN TOXICOLOGY 2022; 4:991787. [PMID: 36204698 PMCID: PMC9531147 DOI: 10.3389/ftox.2022.991787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a model organism widely used to evaluate the mechanistic aspects of toxicants with the potential to predict responses comparable to those of mammals. We report here the consequences of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH) in C. elegans. In addition, we present data on morphological alterations in the dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the neurobiological mechanisms that underlie the relationship between these neurotoxicants. Finally, the escalation to superior animals that parallels the observed effects in both experimental models with references to EtOH metabolism and oxidative stress is also discussed. Overall, the literature revised here underpins the usefulness of C. elegans to evidence behavioral responses to a combination of neurotoxicants in mechanistic-orientated studies.
Collapse
Affiliation(s)
- P A Albrecht
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R Deza-Ponzio
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
3
|
Mathies LD, Blackwell G, Bettinger JC. New alleles of the SWI/SNF chromatin remodeling complex gene phf-10. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000533. [PMID: 35622521 PMCID: PMC9010112 DOI: 10.17912/micropub.biology.000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
SWI/SNF chromatin remodeling complexes regulate many aspects of metazoan development and mutations in SWI/SNF genes are associated with diverse human diseases including cancer and alcohol use disorder. In C. elegans, SWI/SNF subunits are required for viability, somatic gonad development, and normal behavioral responses to ethanol. SWI/SNF complexes can be classified as BAF (BRG1/Brm-associated factors) or PBAF (Polybromo-associated BAF) based on their subunit composition. While there are loss-of-function alleles for most SWI/SNF family members, strong loss of function mutations have not previously been reported for the PBAF gene phf-10. Here we describe two new alleles of phf-10 that we generated using CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
,
Correspondence to: Laura D Mathies (
)
| | - GinaMari Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Mathies LD, Lindsay JH, Handal AP, Blackwell GG, Davies AG, Bettinger JC. SWI/SNF complexes act through CBP-1 histone acetyltransferase to regulate acute functional tolerance to alcohol. BMC Genomics 2020; 21:646. [PMID: 32957927 PMCID: PMC7507291 DOI: 10.1186/s12864-020-07059-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Background SWI/SNF chromatin remodeling genes are required for normal acute responses to alcohol in C. elegans and are associated with alcohol use disorder in two human populations. In an effort to discover the downstream genes that are mediating this effect, we identified SWI/SNF-regulated genes in C. elegans. Results To identify SWI/SNF-regulated genes in adults, we compared mRNA expression in wild type and swsn-1(os22ts) worms under conditions that produce inactive swsn-1 in mature cells. To identify SWI/SNF-regulated genes in neurons, we compared gene expression in swsn-9(ok1354) null mutant worms that harbor a neuronal rescue or a control construct. RNA sequencing was performed to an average depth of 25 million reads per sample using 50-base, paired-end reads. We found that 6813 transcripts were significantly differentially expressed between swsn-1(os22ts) mutants and wild-type worms and 2412 transcripts were significantly differentially expressed between swsn-9(ok1354) mutants and swsn-9(ok1354) mutants with neuronal rescue. We examined the intersection between these two datasets and identified 603 genes that were differentially expressed in the same direction in both comparisons; we defined these as SWI/SNF-regulated genes in neurons and in adults. Among the differentially expressed genes was cbp-1, a C. elegans homolog of the mammalian CBP/p300 family of histone acetyltransferases. CBP has been implicated in the epigenetic regulation in response to alcohol in animal models and a polymorphism in the human CBP gene, CREBBP, has been associated with alcohol-related phenotypes. We found that cbp-1 is required for the development of acute functional tolerance to alcohol in C. elegans. Conclusions We identified 603 transcripts that were regulated by two different SWI/SNF complex subunits in adults and in neurons. The SWI/SNF-regulated genes were highly enriched for genes involved in membrane rafts, suggesting an important role for this membrane microdomain in the acute alcohol response. Among the differentially expressed genes was cbp-1; CBP-1 homologs have been implicated in alcohol responses across phyla and we found that C. elegans cbp-1 was required for the acute alcohol response in worms.
Collapse
Affiliation(s)
- Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA.
| | - Jonathan H Lindsay
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Amal P Handal
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA, 23298, USA
| |
Collapse
|
5
|
BK channel clustering is required for normal behavioral alcohol sensitivity in C. elegans. Sci Rep 2019; 9:10224. [PMID: 31308408 PMCID: PMC6629859 DOI: 10.1038/s41598-019-46615-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
Abstract
The large conductance, calcium- and voltage-activated potassium channel, known as the BK channel, is one of the central proteins that mediate alcohol intoxication and tolerance across species. Although ethanol targets BK channels through direct interaction, how ethanol-mediated BK channel activation causes behavioral intoxication is poorly understood. In. C. elegans, loss of function in SLO-1, the BK channel ortholog, confers profound ethanol resistance in movement and egg-laying behaviors. Here, we show that depletion of SLO-1 channels clustered at the active zones with no change in the overall channel expression level results in locomotory resistance to the intoxicating effect of ethanol, equivalent to that of slo-1 loss-of-function mutants. Likewise, depletion of clustered SLO-1 channels in the sarcolemma and neurons leads to ethanol-resistant egg-laying behavior. By contrast, reduction in the overall SLO-1 channel level by over 70% causes only moderate ethanol resistance in movement, and minimal, if any, resistance in egg laying. Our findings strongly suggest that behavioral ethanol sensitivity is conferred by local, but not global, depression of excitability via clustered BK channels. Given that clustered BK channels are functionally coupled to, and localize near, calcium channels, ethanol may mediate its behavioral effects by targeting BK channels and their coupled calcium channels.
Collapse
|
6
|
Katner SN, Bredhold KE, Steagall KB, Bell RL, Neal-Beliveau BS, Cheong MC, Engleman EA. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders. Behav Brain Res 2019; 365:7-16. [PMID: 30802531 DOI: 10.1016/j.bbr.2019.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/15/2019] [Accepted: 02/10/2019] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) cause serious problems in society and few effective treatments are available. Caenorhabditis elegans (C. elegans) is an excellent invertebrate model to study the neurobiological basis of human behavior with a conserved, fully tractable genome, and a short generation time for fast generation of data at a fraction of the cost of other organisms. C. elegans demonstrate movement toward, and concentration-dependent self-exposure to various psychoactive drugs. The discovery of opioid receptors in C. elegans provided the impetus to test the hypothesis that C. elegans may be used as a medications screen to identify new AUD treatments. We tested the effects of naltrexone, an opioid antagonist and effective treatment for AUDs, on EtOH preference in C. elegans. Six-well agar test plates were prepared with EtOH placed in a target zone on one side and water in the opposite target zone of each well. Worms were treated with naltrexone before EtOH preference testing and then placed in the center of each well. Wild-type worms exhibited a concentration-dependent preference for 50, 70 and 95% EtOH. Naltrexone blocked acute EtOH preference, but had no effect on attraction to food or benzaldehyde in wild-type worms. Npr-17 opioid receptor knockout mutants did not display a preference for EtOH. In contrast, npr-17 opioid receptor rescue mutants exhibited significant EtOH preference behavior, which was attenuated by naltrexone. Chronic EtOH exposure induced treatment resistance and compulsive-like behavior. These data indicate that C. elegans can serve as a model system to identify compounds to treat AUDs.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA.
| | | | - Kevin B Steagall
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | - Richard L Bell
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| | | | - Mi C Cheong
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Eric A Engleman
- Department of Psychiatry & Institute of Psychiatric Research, Indianapolis, IN, 46202, USA
| |
Collapse
|
7
|
Singulani JL, Scorzoni L, de Oliveira HC, Marcos CM, Assato PA, Fusco-Almeida AM, Mendes-Giannini MJS. Applications of Invertebrate Animal Models to Dimorphic Fungal Infections. J Fungi (Basel) 2018; 4:jof4040118. [PMID: 30347646 PMCID: PMC6308930 DOI: 10.3390/jof4040118] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
Dimorphic fungi can be found in the yeast form during infection and as hyphae in the environment and are responsible for a large number of infections worldwide. Invertebrate animals have been shown to be convenient models in the study of fungal infections. These models have the advantages of being low cost, have no ethical issues, and an ease of experimentation, time-efficiency, and the possibility of using a large number of animals per experiment compared to mammalian models. Invertebrate animal models such as Galleria mellonella, Caenorhabditis elegans, and Acanthamoebacastellanii have been used to study dimorphic fungal infections in the context of virulence, innate immune response, and the efficacy and toxicity of antifungal agents. In this review, we first summarize the features of these models. In this aspect, the growth temperature, genome sequence, availability of different strains, and body characteristics should be considered in the model choice. Finally, we discuss the contribution and advances of these models, with respect to dimorphic fungi Paracoccidioides spp., Histoplasma capsulatum, Blastomyces dermatitidis, Sporothrix spp., and Talaromyces marneffei (Penicillium marneffei).
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Haroldo C de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Caroline M Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Patricia A Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil.
| | | |
Collapse
|
8
|
Chen YH, Ge CL, Wang H, Ge MH, He QQ, Zhang Y, Tian W, Wu ZX. GCY-35/GCY-36-TAX-2/TAX-4 Signalling in O 2 Sensory Neurons Mediates Acute Functional Ethanol Tolerance in Caenorhabditis elegans. Sci Rep 2018; 8:3020. [PMID: 29445226 PMCID: PMC5813177 DOI: 10.1038/s41598-018-20477-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/18/2018] [Indexed: 11/29/2022] Open
Abstract
Ethanol is a widely used beverage and abused drug. Alcoholism causes severe damage to human health and creates serious social problems. Understanding the mechanisms underlying ethanol actions is important for the development of effective therapies. Alcohol has a wide spectrum of effects on physiological activities and behaviours, from sensitization to sedation and even intoxication with increasing concentrations. Animals develop tolerance to ethanol. However, the underlying mechanisms are not well understood. In Caenorhabditis elegans, NPR-1 negatively regulates the development of acute tolerance to ethanol. Here, using in vivo Ca2+ imaging, behavioural tests and chemogenetic manipulation, we show that the soluble guanylate cyclase complex GCY-35/GCY-36-TAX-2/TAX-4 signalling pathway in O2 sensory neurons positively regulates acute functional tolerance in npr-1 worms.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Chang-Li Ge
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Hong Wang
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Qing-Qin He
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yu Zhang
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics, Ministry of Education, and Department of Biophysics and Molecular Physiology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
9
|
Shipley AT, Imeh-Nathaniel A, Orfanakos VB, Wormack LN, Huber R, Nathaniel TI. The Sensitivity of the Crayfish Reward System to Mammalian Drugs of Abuse. Front Physiol 2017; 8:1007. [PMID: 29270131 PMCID: PMC5723678 DOI: 10.3389/fphys.2017.01007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 12/27/2022] Open
Abstract
The idea that addiction occurs when the brain is not able to differentiate whether specific reward circuits were triggered by adaptive natural rewards or falsely activated by addictive drugs exist in several models of drug addiction. The suitability of crayfish (Orconectes rusticus) for drug addiction research arises from developmental variation of growth, life span, reproduction, behavior and some quantitative traits, especially among isogenic mates reared in the same environment. This broad spectrum of traits makes it easier to analyze the effect of mammalian drugs of abuse in shaping behavioral phenotype. Moreover, the broad behavioral repertoire allows the investigation of self-reinforcing circuitries involving appetitive and exploratory motor behavior, while the step-wise alteration of the phenotype by metamorphosis allows accurate longitudinal analysis of different behavioral states. This paper reviews a series of recent experimental findings that evidence the suitability of crayfish as an invertebrate model system for the study of drug addiction. Results from these studies reveal that unconditioned exposure to mammalian drugs of abuse produces a variety of stereotyped behaviors. Moreover, if presented in the context of novelty, drugs directly stimulate exploration and appetitive motor patterns along with molecular processes for drug conditioned reward. Findings from these studies indicate the existence of drug sensitive circuitry in crayfish that facilitates exploratory behavior and appetitive motor patterns via increased incentive salience of environmental stimuli or by increasing exploratory motor patterns. This work demonstrates the potential of crayfish as a model system for research into the neural mechanisms of addiction, by contributing an evolutionary, comparative context to our understanding of natural reward as an important life-sustaining process.
Collapse
Affiliation(s)
- Adam T Shipley
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | | | - Vasiliki B Orfanakos
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Leah N Wormack
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, United States
| | - Thomas I Nathaniel
- Department of Biomedical Sciences, University of South Carolina School of Medicine, Greenville, SC, United States
| |
Collapse
|