1
|
Heiligenstein X, de Beer M, Heiligenstein J, Eyraud F, Manet L, Schmitt F, Lamers E, Lindenau J, Kea-Te Lindert M, Salamero J, Raposo G, Sommerdijk N, Belle M, Akiva A. HPM live μ for a full CLEM workflow. Methods Cell Biol 2021; 162:115-149. [PMID: 33707009 DOI: 10.1016/bs.mcb.2020.10.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
With the development of advanced imaging methods that took place in the last decade, the spatial correlation of microscopic and spectroscopic information-known as multimodal imaging or correlative microscopy (CM)-has become a broadly applied technique to explore biological and biomedical materials at different length scales. Among the many different combinations of techniques, Correlative Light and Electron Microscopy (CLEM) has become the flagship of this revolution. Where light (mainly fluorescence) microscopy can be used directly for the live imaging of cells and tissues, for almost all applications, electron microscopy (EM) requires fixation of the biological materials. Although sample preparation for EM is traditionally done by chemical fixation and embedding in a resin, rapid cryogenic fixation (vitrification) has become a popular way to avoid the formation of artifacts related to the chemical fixation/embedding procedures. During vitrification, the water in the sample transforms into an amorphous ice, keeping the ultrastructure of the biological sample as close as possible to the native state. One immediate benefit of this cryo-arrest is the preservation of protein fluorescence, allowing multi-step multi-modal imaging techniques for CLEM. To minimize the delay separating live imaging from cryo-arrest, we developed a high-pressure freezing (HPF) system directly coupled to a light microscope. We address the optimization of sample preservation and the time needed to capture a biological event, going from live imaging to cryo-arrest using HPF. To further explore the potential of cryo-fixation related to the forthcoming transition from imaging 2D (cell monolayers) to imaging 3D samples (tissue) and the associated importance of homogeneous deep vitrification, the HPF core technology has been revisited to allow easy modification of the environmental parameters during vitrification. Lastly, we will discuss the potential of our HPM within CLEM protocols especially for correlating live imaging using the Zeiss LSM900 with electron microscopy.
Collapse
Affiliation(s)
| | - Marit de Beer
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | - Mariska Kea-Te Lindert
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jean Salamero
- SERPICO Inria Team/UMR 144 CNRS & National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France; Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, France
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Biochemistry, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cell Biology, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Dovgaliuk I, Dyadkin V, Donckt MV, Filinchuk Y, Chernyshov D. Non-Isothermal Kinetics of Kr Adsorption by Nanoporous γ-Mg(BH 4) 2 from in Situ Synchrotron Powder Diffraction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7710-7716. [PMID: 31967778 DOI: 10.1021/acsami.9b19239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Crystalline materials with pore dimensions comparable to the kinetic diameters of the guest molecules are attractive for their potential use in adsorption and separation applications. The nanoporous γ-Mg(BH4)2 features one-dimensional channels matching this criterion for Kr uptake, which has been probed using synchrotron powder diffraction at various pressures and temperatures. It results in two coexisting crystalline phases with the limiting composition Mg(BH4)2·0.66Kr expecting the highest Kr content (50.7 wt % in the crystalline phase) reported for porous materials. Quasi-equilibrium isobars built from Rietveld refinements of Kr site occupancies were rationalized with a noncooperative lattice gas model, yielding the values of the thermodynamic parameters. The latter were independently confirmed from Kr fluorescence. We have also parameterized the pronounced kinetic hysteresis with a modified mean-field model adopted for the Arrhenius kinetics.
Collapse
Affiliation(s)
- Iurii Dovgaliuk
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility , 71 avenue des Martyrs , Grenoble 38000 , France
- Institut des Matériaux Poreux de Paris, UMR 8004 CNRS, Ecole Normale Supérieure, Ecole Supérieure de Physique et de Chimie Industrielles de Paris , PSL Université , Paris 75005 , France
| | - Vadim Dyadkin
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility , 71 avenue des Martyrs , Grenoble 38000 , France
| | - Mathieu Vander Donckt
- Institute of Condensed Matter and Nanosciences , Université Catholique de Louvain , Place L. Pasteur 1 , B-1348 Louvain-la-Neuve , Belgium
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences , Université Catholique de Louvain , Place L. Pasteur 1 , B-1348 Louvain-la-Neuve , Belgium
| | - Dmitry Chernyshov
- Swiss-Norwegian Beamlines at the European Synchrotron Radiation Facility , 71 avenue des Martyrs , Grenoble 38000 , France
| |
Collapse
|
3
|
Dispersibility of phospholipids and their optimization for the efficient production of liposomes using supercritical fluid technology. Int J Pharm 2019; 563:174-183. [PMID: 30940503 DOI: 10.1016/j.ijpharm.2019.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 01/16/2023]
Abstract
Liposomes are promising delivery vehicles and offer the added drawcard of being able to be made functional to target tissues such as cardiac muscle and cancerous cells. Current methods to manufacture liposomes need to be improved and supercritical fluid (SCF) technologies may offer a solution. Herein, the dispersibility of six different phospholipids (PLs) was determined in supercritical carbon dioxide (scCO2). 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) showed the highest post-processing dispersibility, while 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) showed no dispersibility in scCO2 at the assessed experimental conditions. The zetasizer results showed that the SCF conditions at 37 °C, 250 bar and 200 RPM for 60 min provided nanoparticles with the narrowest polydispersity index (PDI) and a spherical shape as shown by cryo-transmission electron microscopy (Cryo-TEM). The mean diameter of liposomes using the SCF method for DSPC-PEGylated and DOPC-PEGylated liposomes was 98.3 ± 3.3 nm and 124.5 ± 4.1 nm, while using the thin film method it was 153.6 ± 4.5 nm and 131.3 ± 3.4 nm, respectively. A size-based stability evaluation of the scCO2-prepared liposomes stored at different temperatures (25 °C, 4 °C and -20 °C) was compared to that of the thin film method over a period of 3 months. The current study provides a possible green alternative SCF method to preparing liposomes that is less laborious, time saving, and a low energy process.
Collapse
|