1
|
Hwang J, Kiick KL, Sullivan MO. VEGF-Encoding, Gene-Activated Collagen-Based Matrices Promote Blood Vessel Formation and Improved Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16434-16447. [PMID: 36961242 PMCID: PMC10154048 DOI: 10.1021/acsami.2c23022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Disruption in vascularization during wound repair can severely impair healing. Proangiogenic growth factor therapies have shown great healing potential; however, controlling growth factor activity and cellular behavior over desired healing time scales remains challenging. In this study, we evaluated collagen-mimetic peptide (CMP) tethers for their capacity to control growth factor gene transfer and growth factor activity using our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes that were retained on hyaluronic acid (HA)-collagen hydrogels using CMPs. We hypothesized that using CMP-collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene delivery in fibroblasts would provide a powerful strategy to modulate the proangiogenic behaviors of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound repair. In co-culture experiments, we observed that CMP-modified GAHCM induced tunable gene delivery in fibroblasts as predicted, and correspondingly, VEGF-A produced by the fibroblasts led to increased growth and persistent migration of ECs for at least 7 days, as compared to non-CMP-modified GAHCM. Moreover, when ECs were exposed to fibroblast-containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, or 50 CP), high CD31 expression was stimulated, resulting in the formation of an interconnected EC network with a significantly higher network volume and a larger diameter network structure than controls. Application of VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged prohealing and proangiogenic responses resulting in increased blood vessel formation, improved granulation tissue formation, faster re-epithelialization, and overall enhanced repair. These findings suggest the benefits of CMP-collagen tethers as useful tools to control gene transfer and growth factor activity for improved treatment of wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA, 19716
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA, 19716
| |
Collapse
|
2
|
Sharma P, Beck D, Murtha LA, Figtree G, Boyle A, Gentile C. Fibulin-3 Deficiency Protects Against Myocardial Injury Following Ischaemia/ Reperfusion in in vitro Cardiac Spheroids. Front Cardiovasc Med 2022; 9:913156. [PMID: 35795376 PMCID: PMC9251181 DOI: 10.3389/fcvm.2022.913156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Myocardial infarction (MI, or heart attack) is a leading cause of death worldwide. Myocardial ischaemia reperfusion (I/R) injury typical of MI events is also associated with the development of cardiac fibrosis and heart failure in patients. Fibulin-3 is an extracellular matrix component that plays a role in regulating MI response in the heart. In this study, we generated and compared in vitro cardiac spheroids (CSs) from wild type (WT) and fibulin-3 knockout (Fib-3 KO) mice. These were then exposed to pathophysiological changes in oxygen (O2) concentrations to mimic an MI event. We finally measured changes in contractile function, cell death, and mRNA expression levels of cardiovascular disease genes between WT and Fib-3 KO CSs. Our results demonstrated that there are significant differences in growth kinetics and endothelial network formation between WT and Fib-3 KO CSs, however, they respond similarly to changes in O2 concentrations. Fib-3 deficiency resulted in an increase in viability of cells and improvement in contraction frequency and fractional shortening compared to WT I/R CSs. Gene expression analyses demonstrated that Fib-3 deficiency inhibits I/R injury and cardiac fibrosis and promotes angiogenesis in CSs. Altogether, our findings suggest that Fib-3 deficiency makes CSs resistant to I/R injury and associated cardiac fibrosis and helps to improve the vascular network in CSs.
Collapse
Affiliation(s)
- Poonam Sharma
- College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Dominik Beck
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Lucy A. Murtha
- College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Gemma Figtree
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Boyle
- College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Carmine Gentile
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
- Faculty of Medicine and Health, Northern Clinical School, The University of Sydney, Sydney, NSW, Australia
- Faculty of Engineering and IT, School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Carmine Gentile
| |
Collapse
|
3
|
Anandhapadman A, Venkateswaran A, Jayaraman H, Ghone NV. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog 2022; 38:e3234. [PMID: 35037419 DOI: 10.1002/btpr.3234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues.This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry & gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Ajay Venkateswaran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, Tamil Nadu, India
| |
Collapse
|
4
|
Quint JP, Mostafavi A, Endo Y, Panayi A, Russell CS, Nourmahnad A, Wiseman C, Abbasi L, Samandari M, Sheikhi A, Nuutila K, Sinha I, Tamayol A. In Vivo Printing of Nanoenabled Scaffolds for the Treatment of Skeletal Muscle Injuries. Adv Healthc Mater 2021; 10:e2002152. [PMID: 33644996 PMCID: PMC8137605 DOI: 10.1002/adhm.202002152] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 01/24/2023]
Abstract
Extremity skeletal muscle injuries result in substantial disability. Current treatments fail to recoup muscle function, but properly designed and implemented tissue engineering and regenerative medicine techniques can overcome this challenge. In this study, a nanoengineered, growth factor-eluting bioink that utilizes Laponite nanoclay for the controlled release of vascular endothelial growth factor (VEGF) and a GelMA hydrogel for a supportive and adhesive scaffold that can be crosslinked in vivo is presented. The bioink is delivered with a partially automated handheld printer for the in vivo formation of an adhesive and 3D scaffold. The effect of the controlled delivery of VEGF alone or paired with adhesive, supportive, and fibrilar architecture has not been studied in volumetric muscle loss (VML) injuries. Upon direct in vivo printing, the constructs are adherent to skeletal muscle and sustained release of VEGF. The in vivo printing of muscle ink in a murine model of VML injury promotes functional muscle recovery, reduced fibrosis, and increased anabolic response compared to untreated mice. The in vivo construction of a therapeutic-eluting 3D scaffold paves the way for the immediate treatment of a variety of soft tissue traumas.
Collapse
Affiliation(s)
- Jacob P. Quint
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carina S. Russell
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chris Wiseman
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Laleh Abbasi
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT 06030, USA
| |
Collapse
|
5
|
Nensat C, Songjang W, Tohtong R, Suthiphongchai T, Phimsen S, Rattanasinganchan P, Metheenukul P, Kumphune S, Jiraviriyakul A. Porcine placenta extract improves high-glucose-induced angiogenesis impairment. BMC Complement Med Ther 2021; 21:66. [PMID: 33602182 PMCID: PMC7893890 DOI: 10.1186/s12906-021-03243-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background High glucose (HG)-induced reactive oxygen species (ROS) overproduction impairs angiogenesis that is one pivotal factor of wound healing process. Angiogenesis impairment induces delayed wound healing, whereby it eventually leads to amputation in cases of poorly controlled diabetes with diabetic ulceration. Porcine placenta extract (PPE) is a natural waste product that comprises plenty of bioactive agents including growth factors and antioxidants. It was reported as an effective compound that prevents ROS generation. The goal of this study was to investigate the in vitro effect of PPE on HG-induced ROS-mediated angiogenesis impairment. Methods Primary endothelial cells (HUVECs) and endothelial cell line (EA.hy926) were treated with HG in the presence of PPE. The endothelial cells (ECs) viability, intracellular ROS generation, migration, and angiogenesis were determined by MTT assay, DCFDA reagent, wound healing assay, and tube formation assay, respectively. Additionally, the molecular mechanism of PPE on HG-induced angiogenesis impairment was investigated by Western blot. The angiogenic growth factor secretion was also investigated by the sandwich ELISA technique. Results HG in the presence of PPE significantly decreased intracellular ROS overproduction compared to HG alone. HG in the presence of PPE significantly increased ECs viability, migration, and angiogenesis compared to HG alone by showing recovery of PI3K/Akt/ERK1/2 activation. HG in the presence of PPE also decreased ECs apoptosis compared to HG alone by decreasing p53/Bax/cleaved caspase 9/cleaved caspase 3 levels and increasing Bcl 2 level. Conclusion PPE attenuated HG-induced intracellular ROS overproduction that improved ECs viability, proliferation, migration, and angiogenesis by showing recovery of PI3K/Akt/ERK1/2 activation and inhibition of ECs apoptosis. This study suggests PPE ameliorated HG-induced ROS-mediated angiogenesis impairment, whereby it potentially provides an alternative treatment for diabetic wounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03243-z.
Collapse
Affiliation(s)
- Chatchai Nensat
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Worawat Songjang
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Suchada Phimsen
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Pornphimon Metheenukul
- Department of Veterinary Technology, Faculty of Veterinery Technology, Kasetsart University, Bangkok, 10900, Thailand
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.,Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arunya Jiraviriyakul
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand. .,Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
6
|
Changchien C, Chen Y, Chang H, Chang S, Tsai W, Tsai H, Wang C, Lee H, Tsai C. Effect of malignant-associated pleural effusion on endothelial viability, motility and angiogenesis in lung cancer. Cancer Sci 2020; 111:3747-3758. [PMID: 32706142 PMCID: PMC7541005 DOI: 10.1111/cas.14584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Malignant pleural effusion (MPE) and paramalignant pleural effusion (PPE) remain debilitating complications in lung cancer patients with poor prognosis and limited treatment options. The role of vascular endothelial cells has not been explored in the pleural environment of lung cancer. By integrating MPE and PPE as malignant-associated pleural fluid (MAPF), the current study aimed to evaluate the effect of MAPF on cell proliferation, migration and angiogenesis of HUVEC. First, increased capillaries were identified in the subpleural layer of lung adenocarcinoma. Compatible with pathological observations, the ubiquitous elevation of HUVEC survival was identified in MAPF culture regardless of the underlying cancer type, the driver gene mutation, prior treatments and evidence of malignant cells in pleural fluid. Moreover, MAPF enhanced HUVEC motility with the formation of lamellipodia and filopodia and focal adhesion complex. Tube formation assay revealed angiogenic behavior with the observation of sheet-like structures. HUVEC cultured with MAPF resulted in a significant increase in MAPK phosphorylation. Accompanied with VEGFR2 upregulation in MAPF culture, there was increased expressions of p-STAT3, HIF-1α and Nf-kB. VEGF/VEGFR2 blockade regressed endothelial migration and angiogenesis but not cell proliferation. Our data indicate the angiogenic activities of MAPF on vascular endothelial cells that revealed increased pleural capillaries in lung cancer. Targeting the VEGF/VEGFR2 pathway might modulate the angiogenic propensity of MAPF in future clinical investigations.
Collapse
MESH Headings
- Aged
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation/genetics
- Cell Survival/genetics
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Human Umbilical Vein Endothelial Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Lung Neoplasms/complications
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- NF-kappa B/genetics
- Neovascularization, Pathologic/complications
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Pleural Effusion/genetics
- Pleural Effusion, Malignant/complications
- Pleural Effusion, Malignant/genetics
- Pleural Effusion, Malignant/pathology
- STAT3 Transcription Factor/genetics
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-2/genetics
Collapse
Affiliation(s)
- Chih‐Ying Changchien
- Department of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
- Department of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Ying Chen
- Department of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Hsin‐Han Chang
- Department of Biology and AnatomyNational Defense Medical CenterTaipeiTaiwan
| | - Shan‐Yueh Chang
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Wen‐Chiuan Tsai
- Department of PathologyTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Hao‐Chung Tsai
- Division of Chest MedicineDepartment of Internal MedicineTri‐Service General Hospital Songshan Branch, National Defense Medical CenterTaipeiTaiwan
| | - Chieh‐Yung Wang
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| | - Herng‐Sheng Lee
- Department of Pathology and Laboratory MedicineKaohsiung Veterans General HospitalKaohsiungTaiwan
| | - Chen‐Liang Tsai
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineTri‐Service General Hospital, National Defense Medical CenterTaipeiTaiwan
| |
Collapse
|
7
|
Wei Y, Song S, Duan N, Wang F, Wang Y, Yang Y, Peng C, Li J, Nie D, Zhang X, Guo S, Zhu C, Yu M, Gan Y. MT1-MMP-Activated Liposomes to Improve Tumor Blood Perfusion and Drug Delivery for Enhanced Pancreatic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902746. [PMID: 32995113 PMCID: PMC7507343 DOI: 10.1002/advs.201902746] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/23/2020] [Indexed: 05/14/2023]
Abstract
Promoting tumor angiogenesis effectively and specifically to resolve tumor-associated hypoperfusion holds promise for improving pancreatic cancer therapy. Herein, a doxorubicin (DOX) loaded smart liposome, MC-T-DOX, is constructed, that carries appropriately low-density cilengitide, an αvβ3 integrin-specific Arg-Gly-Asp (RGD)-mimetic cyclic peptide, via a membrane type 1-matrix metalloproteinase (MT1-MMP) cleavable peptide. After being administered systemically in a hypoperfused pancreatic cancer mouse model at a low dose of cilengitide, the proangiogenic activity of MC-T-DOX is specifically "turned on" in tumor vessels through cleavage by MT1-MMP on tumor endothelial cells to release cilengitide. This locally released cilengitide increases tumor blood perfusion, thereby improving the accumulation and distribution of MC-T-DOX in the tumor site. The loaded-DOX then displays enhanced penetration and increased cellular uptake upon heat-triggered release from MC-T-DOX in the tumor interstitium, contributing to the improved tumor therapy efficacy. Therefore, the strategy of combining the modulation of tumor vascular promotion with smart nanodrug delivery represents a promising approach to improving drug delivery and therapeutic efficacy in a wide range of hypoperfused tumors.
Collapse
Affiliation(s)
- Yan Wei
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Sha Song
- Department of Pharmacy Medical College of Nanchang University Nanchang 330066 China
| | - Nianxiu Duan
- Department of Pharmacy Medical College of Nanchang University Nanchang 330066 China
| | - Feng Wang
- Department of Medicinal Chemistry Shanghai Hansoh Biomedical R&D Inc. Shanghai 201203 China
| | - Yuxi Wang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Yiwei Yang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Chengyuan Peng
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Junjun Li
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Di Nie
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Xinxin Zhang
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Shiyan Guo
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Chunliu Zhu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Miaorong Yu
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| | - Yong Gan
- Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
| |
Collapse
|
8
|
Li Y, Liu Y, Du B, Cheng G. Reshaping Tumor Blood Vessels to Enhance Drug Penetration with a Multistrategy Synergistic Nanosystem. Mol Pharm 2020; 17:3151-3164. [PMID: 32787273 DOI: 10.1021/acs.molpharmaceut.0c00077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Genyang Cheng
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Buyandelger U, Walker DG, Yanagisawa D, Morimura T, Tooyama I. Effects of FTMT Expression by Retinal Pigment Epithelial Cells on Features of Angiogenesis. Int J Mol Sci 2020; 21:ijms21103635. [PMID: 32455741 PMCID: PMC7279371 DOI: 10.3390/ijms21103635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant angiogenesis is a pathological feature of a number of diseases and arises from the uncoordinated expression of angiogenic factors as response to different cellular stresses. Age-related macular degeneration (AMD), a leading cause of vision loss, can result from pathological angiogenesis. As a mutation in the mitochondrial ferritin (FTMT) gene has been associated with AMD, its possible role in modulating angiogenic factors and angiogenesis was investigated. FTMT is an iron-sequestering protein primarily expressed in metabolically active cells and tissues with high oxygen demand, including retina. In this study, we utilized the human retinal pigment epithelial cell line ARPE-19, both as undifferentiated and differentiated cells. The effects of proinflammatory cytokines, FTMT knockdown, and transient and stable overexpression of FTMT were investigated on expression of pro-angiogenic vascular endothelial growth factor (VEGF) and anti-angiogenic pigment epithelial-derived factor (PEDF). Proinflammatory cytokines induced FTMT and VEGF expression, while NF-κB inhibition significantly reduced FTMT expression. VEGF protein and mRNA expression were significantly increased in FTMT-silenced ARPE-19 cells. Using an in vitro angiogenesis assay with endothelial cells, we showed that conditioned media from FTMT-overexpressing cells had significant antiangiogenic effects. Collectively, our findings indicate that increased levels of FTMT inhibit angiogenesis, possibly by reducing levels of VEGF and increasing PEDF expression. The cellular models developed can be used to investigate if increased FTMT may be protective in angiogenic diseases, such as AMD.
Collapse
Affiliation(s)
| | | | | | | | - Ikuo Tooyama
- Correspondence: ; Tel.: +81-77-548-2330; Fax: +81-77-548-2331
| |
Collapse
|
10
|
Moran M, Cheng X, Shihabudeen Haider Ali MS, Wase N, Nguyen N, Yang W, Zhang C, DiRusso C, Sun X. Transcriptome analysis-identified long noncoding RNA CRNDE in maintaining endothelial cell proliferation, migration, and tube formation. Sci Rep 2019; 9:19548. [PMID: 31863035 PMCID: PMC6925215 DOI: 10.1038/s41598-019-56030-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Obesity is a leading risk factor for type-2 diabetes. Diabetes often leads to the dysregulation of angiogenesis, although the mechanism is not fully understood. Previously, long noncoding RNAs (lncRNAs) have been found to modulate angiogenesis. In this study, we asked how the expression levels of lncRNAs change in endothelial cells in response to excessive palmitic acid treatment, an obesity-like condition. Bioinformatics analysis revealed that 305 protein-coding transcripts were upregulated and 70 were downregulated, while 64 lncRNAs were upregulated and 46 were downregulated. Gene ontology and pathway analysis identified endoplasmic reticulum stress, HIF-1 signaling, and Toll-like receptor signaling as enriched after palmitic acid treatment. Moreover, we newly report enrichment of AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling, and cysteine and methionine metabolism by palmitic acid. One lncRNA, Colorectal Neoplasia Differentially Expressed (CRNDE), was selected for further investigation. Palmitic acid induces CRNDE expression by 1.9-fold. We observed that CRNDE knockdown decreases endothelial cell proliferation, migration, and capillary tube formation. These decreases are synergistic under palmitic acid stress. These data demonstrated that lncRNA CRNDE is a regulator of endothelial cell proliferation, migration, and tube formation in response to palmitic acid, and a potential target for therapies treating the complications of obesity-induced diabetes.
Collapse
Affiliation(s)
- Matthew Moran
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Xiao Cheng
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | | | - Nishikant Wase
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Nghi Nguyen
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Weilong Yang
- Center for Plant Science Innovation, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Chi Zhang
- Center for Plant Science Innovation, School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Concetta DiRusso
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA.,Nebraska Center for Integrated Biomolecular Communication, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA. .,Nebraska Center for the Prevention of Obesity Diseases through Dietary Molecules, University of Nebraska - Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
11
|
Lin Y, Li L, Liu J, Zhao X, Ye J, Reinach PS, Qu J, Yan D. SIRT1 Deletion Impairs Retinal Endothelial Cell Migration Through Downregulation of VEGF-A/VEGFR-2 and MMP14. Invest Ophthalmol Vis Sci 2019; 59:5431-5440. [PMID: 30452596 DOI: 10.1167/iovs.17-23558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Silent information regulator protein 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that is abundantly expressed in vascular endothelial cells (VECs), and it has an essential role in angiogenesis. However, its contribution to retinal vascular development remains unclear. Here we characterize its involvement in regulating this process under both physiological and pathologic conditions. Methods Endothelium-specific Sirt1 knockout mice were established using the Cre-lox system. VECs were isolated using magnetic beads and identified by immunostaining. Retinal whole-mount staining analyzed the retinal vascular patterns. SIRT1 was knocked down or overexpressed in human retinal microvascular endothelial cells (HRMECs) using small interfering RNA (siRNA) or lentivirus infection, respectively. Scratch assay, Transwell, and Matrigel angiogenesis assay evaluated cell migration and tube formation, respectively. Quantitative RT-PCR analyzed genes regulating VEC migration. Western blotting determined protein expression. Coimmunoprecipitation detected the interaction of hypoxia-inducible factor 1α (HIF-1α) and SIRT1 as well as acetylation status of HIF-1α. Results Specific deletion of Sirt1 in VECs dramatically delayed retinal vessel expansion and reduced vessel density. In the oxygen-induced retinopathy (OIR) mouse model, Sirt1 ablation markedly suppressed retinal revascularization and consequently increased retinal avascularity. SIRT1 downregulation in HRMECs inhibited cell migration and tube formation, while overexpression of SIRT1 had the opposite effects. Vascular endothelial growth factor-A (VEGF-A)/VEGF receptor-2 (VEGFR-2), and matrix metalloproteinases 14 (MMP14) expression significantly declined in Sirt1-null VECs, as well as SIRT1 siRNA-transfected HRMECs. SIRT1 downregulation upregulated the HIF-1α acetylation status. Conversely, SIRT1 overexpression decreased this response. Conclusions SIRT1 contributes to both physiological and pathologic retinal angiogenesis through promoting retinal VEC migration. Its underlying molecular mechanism involves SIRT1-mediated deacetylation of HIF-1α and subsequent upregulation of VEGF-A/VEGFR-2 and MMP14 expression.
Collapse
Affiliation(s)
- Yong Lin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Li Li
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Junjie Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoting Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Juxiu Ye
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
12
|
The pyrrolopyrimidine colchicine-binding site agent PP-13 reduces the metastatic dissemination of invasive cancer cells in vitro and in vivo. Biochem Pharmacol 2019; 160:1-13. [DOI: 10.1016/j.bcp.2018.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 11/20/2022]
|
13
|
Vitale DL, Spinelli FM, Del Dago D, Icardi A, Demarchi G, Caon I, García M, Bolontrade MF, Passi A, Cristina C, Alaniz L. Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression. Oncotarget 2018; 9:36585-36602. [PMID: 30564299 PMCID: PMC6290962 DOI: 10.18632/oncotarget.26379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Hyaluronan, the main glycosaminoglycan of extracellular matrices, is concentrated in tissues with high cell proliferation and migration rates. In cancer, hyaluronan expression is altered and it becomes fragmented into low-molecular-weight forms, affecting mechanisms associated with cell proliferation, invasion, angiogenesis and multidrug resistance. Here, we analyzed the effect of low-molecular-weight hyaluronan on the response of T lymphoma, osteosarcoma, and mammary adenocarcinoma cell lines to the antineoplastic drug doxorubicin, and whether co-treatment with hyaluronan and doxorubicin modified the behavior of endothelial cells. Our aim was to associate the hyaluronan-doxorubicin response with angiogenic alterations in these tumors. After hyaluronan and doxorubicin co-treatment, hyaluronan altered drug accumulation and modulated the expression of ATP-binding cassette transporters in T-cell lymphoma cells. In contrast, no changes in drug accumulation were observed in cells from solid tumors, indicating that hyaluronan might not affect drug efflux. However, when we evaluated the effect on angiogenic mechanisms, the supernatant from tumor cells treated with doxorubicin exhibited a pro-angiogenic effect on endothelial cells. Hyaluronan-doxorubicin co-treatment increased migration and vessel formation in endothelial cells. This effect was independent of vascular endothelial growth factor but related to fibroblast growth factor-2 expression. Besides, we observed a pro-angiogenic effect on endothelial cells during hyaluronan and doxorubicin co-treatment in the in vivo murine model of T-cell lymphoma. Our results demonstrate for the first time that hyaluronan is a potential modulator of doxorubicin response by mechanisms that involve not only drug efflux but also angiogenic processes, providing an adverse tumor stroma during chemotherapy.
Collapse
Affiliation(s)
- Daiana L Vitale
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Fiorella M Spinelli
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Daiana Del Dago
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Antonella Icardi
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Gianina Demarchi
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Ilaria Caon
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Mariana García
- Laboratorio de Terapia Génica, IIMT-CONICET, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcela F Bolontrade
- Laboratorio de Células Madre-Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Alberto Passi
- Dipartimento di Medicina e Chirurgia, Universitá degli Studio dell'Insubria, Varese, Italia
| | - Carolina Cristina
- Laboratorio de Fisiopatología de la Hipófisis-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| | - Laura Alaniz
- Laboratorio de Microambiente Tumoral-Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CIT NOBA, UNNOBA-CONICET), Junín, Buenos Aires, Argentina
| |
Collapse
|