1
|
Villalba-Orero M, Jiménez-Riobóo RJ, Gontán N, Sanderson D, López-Olañeta M, García-Pavía P, Desco M, Lara-Pezzi E, Gómez-Gaviro MV. Assessment of myocardial viscoelasticity with Brillouin spectroscopy in myocardial infarction and aortic stenosis models. Sci Rep 2021; 11:21369. [PMID: 34725389 PMCID: PMC8560820 DOI: 10.1038/s41598-021-00661-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
Heart diseases are associated with changes in the biomechanical properties of the myocardial wall. However, there is no modality available to assess myocardial stiffness directly. Brillouin microspectroscopy (mBS) is a consolidated mechanical characterization technique, applied to the study of the viscoelastic and elastic behavior of biological samples and may be a valuable tool for assessing the viscoelastic properties of the cardiac tissue. In this work, viscosity and elasticity were assessed using mBS in heart samples obtained from healthy and unhealthy mice (n = 6 per group). Speckle-tracking echocardiography (STE) was performed to evaluate heart deformation. We found that mBS was able to detect changes in stiffness in the ventricles in healthy myocardium. The right ventricle showed reduced stiffness, in agreement with its increased compliance. mBS measurements correlated strongly with STE data, highlighting the association between displacement and stiffness in myocardial regions. This correlation was lost in pathological conditions studied. The scar region in the infarcted heart presented changes in stiffness when compared to the rest of the heart, and the hypertrophied left ventricle showed increased stiffness following aortic stenosis, compared to the right ventricle. We demonstrate that mBS can be applied to determine myocardial stiffness, that measurements correlate with functional parameters and that they change with disease.
Collapse
Affiliation(s)
- María Villalba-Orero
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain
| | - Rafael J Jiménez-Riobóo
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain
| | - Marina López-Olañeta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Pablo García-Pavía
- Hospital Puerta de Hierro Majadahonda, Madrid, Spain.,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.,Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcon, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain. .,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007, Madrid, Spain.
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red Cardiovascular (CIBERCV), Madrid, Spain.
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. .,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, Madrid, Spain. .,Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007, Madrid, Spain.
| |
Collapse
|
2
|
Rioboó RJJ, Gontán N, Sanderson D, Desco M, Gómez-Gaviro MV. Brillouin Spectroscopy: From Biomedical Research to New Generation Pathology Diagnosis. Int J Mol Sci 2021; 22:8055. [PMID: 34360822 PMCID: PMC8347166 DOI: 10.3390/ijms22158055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 01/06/2023] Open
Abstract
Brillouin spectroscopy has recently gained considerable interest within the biomedical field as an innovative tool to study mechanical properties in biology. The Brillouin effect is based on the inelastic scattering of photons caused by their interaction with thermodynamically driven acoustic modes or phonons and it is highly dependent on the material's elasticity. Therefore, Brillouin is a contactless, label-free optic approach to elastic and viscoelastic analysis that has enabled unprecedented analysis of ex vivo and in vivo mechanical behavior of several tissues with a micrometric resolution, paving the way to a promising future in clinical diagnosis. Here, we comprehensively review the different studies of this fast-moving field that have been performed up to date to provide a quick guide of the current literature. In addition, we offer a general view of Brillouin's biomedical potential to encourage its further development to reach its implementation as a feasible, cost-effective pathology diagnostic tool.
Collapse
Affiliation(s)
- Rafael J. Jiménez Rioboó
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain;
| | - Nuria Gontán
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; (N.G.); (D.S.)
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III, 28911 Madrid, Spain
| |
Collapse
|
3
|
Bailey M, Alunni-Cardinali M, Correa N, Caponi S, Holsgrove T, Barr H, Stone N, Winlove CP, Fioretto D, Palombo F. Viscoelastic properties of biopolymer hydrogels determined by Brillouin spectroscopy: A probe of tissue micromechanics. SCIENCE ADVANCES 2020; 6:eabc1937. [PMID: 33127678 PMCID: PMC7608813 DOI: 10.1126/sciadv.abc1937] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/16/2020] [Indexed: 05/09/2023]
Abstract
Many problems in mechanobiology urgently require characterization of the micromechanical properties of cells and tissues. Brillouin light scattering has been proposed as an emerging optical elastography technique to meet this need. However, the information contained in the Brillouin spectrum is still a matter of debate because of fundamental problems in understanding the role of water in biomechanics and in relating the Brillouin data to low-frequency macroscopic mechanical parameters. Here, we investigate this question using gelatin as a model system in which the macroscopic physical properties can be manipulated to mimic all the relevant biological states of matter, ranging from the liquid to the gel and the glassy phase. We demonstrate that Brillouin spectroscopy is able to reveal both the elastic and viscous properties of biopolymers that are central to the structure and function of biological tissues.
Collapse
Affiliation(s)
- Michelle Bailey
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK
| | | | - Noemi Correa
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK
| | - Silvia Caponi
- CNR-IOM-Istituto Officina dei Materiali-Research Unit in Perugia, Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | | | - Hugh Barr
- Gloucestershire Royal Hospital, Gloucester GL1 3NN, UK
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK
| | - C Peter Winlove
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK
| | - Daniele Fioretto
- University of Perugia, Department of Physics and Geology, Perugia I-06123, Italy.
| | - Francesca Palombo
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK.
| |
Collapse
|
4
|
Antonacci G, Beck T, Bilenca A, Czarske J, Elsayad K, Guck J, Kim K, Krug B, Palombo F, Prevedel R, Scarcelli G. Recent progress and current opinions in Brillouin microscopy for life science applications. Biophys Rev 2020; 12:615-624. [PMID: 32458371 PMCID: PMC7311586 DOI: 10.1007/s12551-020-00701-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Many important biological functions and processes are reflected in cell and tissue mechanical properties such as elasticity and viscosity. However, current techniques used for measuring these properties have major limitations, such as that they can often not measure inside intact cells and/or require physical contact-which cells can react to and change. Brillouin light scattering offers the ability to measure mechanical properties in a non-contact and label-free manner inside of objects with high spatial resolution using light, and hence has emerged as an attractive method during the past decade. This new approach, coined "Brillouin microscopy," which integrates highly interdisciplinary concepts from physics, engineering, and mechanobiology, has led to a vibrant new community that has organized itself via a European funded (COST Action) network. Here we share our current assessment and opinion of the field, as emerged from a recent dedicated workshop. In particular, we discuss the prospects towards improved and more bio-compatible instrumentation, novel strategies to infer more accurate and quantitative mechanical measurements, as well as our current view on the biomechanical interpretation of the Brillouin spectra.
Collapse
Affiliation(s)
- Giuseppe Antonacci
- Photonics Research Group, INTEC, Ghent University-imec, 9052, Ghent, Belgium
- Present address: Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133, Milan, Italy
| | - Timon Beck
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Alberto Bilenca
- Biomedical Engineering Department, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, TU Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Kareem Elsayad
- Advanced Microscopy, Vienna Biocenter Core Facilities (VBCF), Vienna, Austria.
| | - Jochen Guck
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Kyoohyun Kim
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Benedikt Krug
- Laboratory of Measurement and Sensor System Technique, TU Dresden, Dresden, Germany
| | | | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Giuliano Scarcelli
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Abstract
Brillouin spectroscopy and imaging are emerging techniques in analytical science, biophotonics, and biomedicine. They are based on Brillouin light scattering from acoustic waves or phonons in the GHz range, providing a nondestructive contactless probe of the mechanics on a microscale. Novel approaches and applications of these techniques to the field of biomedical sciences are discussed, highlighting the theoretical foundations and experimental methods that have been developed to date. Acknowledging that this is a fast moving field, a comprehensive account of the relevant literature is critically assessed here.
Collapse
Affiliation(s)
- Francesca Palombo
- School
of Physics and Astronomy, University of
Exeter, Stocker Road, EX4 4QL Exeter, U.K.
| | - Daniele Fioretto
- Department
of Physics and Geology, University of Perugia, via Alessandro Pascoli, I-06123 Perugia, Italy
| |
Collapse
|
6
|
Riobóo RJJ, Desco M, Gómez-Gaviro MV. Impact of optical tissue clearing on the Brillouin signal from biological tissue samples. BIOMEDICAL OPTICS EXPRESS 2019; 10:2674-2683. [PMID: 31259043 PMCID: PMC6583338 DOI: 10.1364/boe.10.002674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/24/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
Brillouin spectroscopy is a well-established technology in condensed matter physics to characterize the mechanical properties of inert materials, and it has been extended very recently to the study of biological samples. Transparency is beneficial for samples to be properly analyzed by Brillouin spectroscopy. Here, we explored the efficacy of optical tissue clearing techniques to improve the acquisition of Brillouin spectra from biological tissues in order to analyze their biomechanical properties. We describe the first application of Brillouin scattering to optically cleared biological tissues with CUBIC protocol. We conclude that, within the range of error, tissue clearing does not modify the mechanical properties of the studied biological tissues.
Collapse
Affiliation(s)
- Rafael J. Jiménez Riobóo
- Instituto de Ciencia de Materiales de Madrid ((ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Sor Juana Inés de la Cruz, 3, 28049 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 28029 Madrid, Spain
| | - María Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| |
Collapse
|
7
|
Correa N, Harding S, Bailey M, Brasselet S, Palombo F. Image analysis applied to Brillouin images of tissue-mimicking collagen gelatins. BIOMEDICAL OPTICS EXPRESS 2019; 10:1329-1338. [PMID: 30891349 PMCID: PMC6420274 DOI: 10.1364/boe.10.001329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/13/2019] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
Brillouin spectroscopy is an emerging analytical tool in biomedical and biophysical sciences. It probes viscoelasticity through the propagation of thermally induced acoustic waves at gigahertz frequencies. Brillouin light scattering (BLS) measurements have traditionally been performed using multipass Fabry-Pérot interferometers, which have high contrast and resolution, however, as they are scanning spectrometers they often require long acquisition times in poorly scattering media. In the last decade, a new concept of Brillouin spectrometer has emerged, making use of highly angle-dispersive virtually imaged phase array (VIPA) etalons, which enable fast acquisition times for minimally turbid materials, when high contrast is not imperative. The ability to acquire Brillouin spectra rapidly, together with long term system stability, make this system a viable candidate for use in biomedical applications, especially to probe live cells and tissues. While various methods are being developed to improve system contrast and speed, little work has been published discussing the details of imaging data analysis and spectral processing. Here we present a method that we developed for the automated retrieval of Brillouin line shape parameters from imaging data sets acquired with a dual-stage VIPA Brillouin microscope. We applied this method for the first time to BLS measurements of collagen gelatin hydrogels at different hydration levels and cross-linker concentrations. This work demonstrates that it is possible to obtain the relevant information from Brillouin spectra using software for real-time high-accuracy analysis.
Collapse
Affiliation(s)
- Noemi Correa
- School of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter, UK
| | | | - Michelle Bailey
- School of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter, UK
| | - Sophie Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Stocker Road, EX4 4QL Exeter, UK
| |
Collapse
|
8
|
Palombo F, Masia F, Mattana S, Tamagnini F, Borri P, Langbein W, Fioretto D. Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains. Analyst 2018; 143:6095-6102. [PMID: 30460364 PMCID: PMC6336087 DOI: 10.1039/c8an01291a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
A recent investigation on the architecture and chemical composition of amyloid-β (Aβ) plaques in ex vivo histological sections of an Aβ-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A correlation was highlighted between the biomechanical properties detected by Brillouin microscopy and the molecular make-up of Aβ plaques provided by FTIR spectroscopic imaging and Raman microscopy (with correlative immunofluorescence imaging) in this animal model of the disease. In the Brillouin spectra of heterogeneous materials such as biomedical samples, peaks are likely the result of multiple contributions, more or less overlaid on a spatial and spectral scale. The ability to disentangle these contributions is very important as it may give access to discrete components that would otherwise be buried within the Brillouin peak envelope. Here, we applied an unsupervised non-negative matrix factorization method to analyse the spontaneous Brillouin microscopy maps of Aβ plaques in transgenic mouse hippocampal sections. The method has already been proven successful in decomposing chemical images and is applied here for the first time to acoustic maps acquired with a Fabry-Perot Brillouin microscope. We extracted and visualised a decrease in tissue rigidity from the core through to the periphery of the plaque, with spatially distinct components that we assigned to specific entities. This work demonstrates that it is possible to reveal the structure and mechanical properties of Aβ plaques, with details visualized by the projection of the mechanical contrast into a few relevant channels.
Collapse
Affiliation(s)
- Francesca Palombo
- University of Exeter, School of Physics and Astronomy, Exeter EX4 4QL, UK.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mattana S, Caponi S, Tamagnini F, Fioretto D, Palombo F. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2017; 10:1742001. [PMID: 29151920 PMCID: PMC5687568 DOI: 10.1142/s1793545817420019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amyloidopathy is one of the most prominent hallmarks of Alzheimer's disease (AD), the leading cause of dementia worldwide, and is characterized by the accumulation of amyloid plaques in the brain parenchyma. The plaques consist of abnormal deposits mainly composed of an aggregation-prone protein fragment, β-amyloid 1-40/1-42, into the extracellular matrix. Brillouin microspectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons, giving access to the viscoelasticity of a sample on a subcellular scale. Here, we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stiffness of individual amyloid plaques in the hippocampal part of the brain of a β-amyloid overexpressing transgenic mouse. Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of β-pleated sheet conformation (β-amyloid) protein surrounded by a softer ring-shaped region richer in lipids and other protein conformations. These preliminary results give a new insight into the plaque biophysics and biomechanics, and a valuable contrast mechanism for the study and diagnosis of amyloidopathy.
Collapse
Affiliation(s)
- Sara Mattana
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Silvia Caponi
- Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Francesco Tamagnini
- Hatherly Laboratories, Medical School University of Exeter, Exeter EX4 4PS, UK
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Perugia I-06123, Italy
| | - Francesca Palombo
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|