1
|
Thomas DJ, Rainbow J, Bartley LE. The rapid-tome, a 3D-printed microtome, and an updated hand-sectioning method for high-quality plant sectioning. PLANT METHODS 2023; 19:12. [PMID: 36739429 PMCID: PMC9898918 DOI: 10.1186/s13007-023-00986-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Microscopic analysis of plant anatomy is a common procedure in biology to study structure and function that requires high-quality sections for accurate measurements. Hand sectioning of specimens is typically limited to moderately soft tissue while harder samples prohibit sectioning by hand and/or result in inconsistent thicknesses. RESULTS Here we present both a clearly described hand-sectioning method and a novel microtome design that together provide the means to section a variety of plant sample types. The described hand-sectioning method for herbaceous stems works well for softer subjects but is less suitable for samples with secondary growth (e.g., wood production). Instead, the "Rapid-Tome" is a novel tool for sectioning both soft and tougher high-aspect-ratio samples, such as stems and roots, with excellent sample control. The Rapid-Tome can be 3D-printed in approximately 18 h on a mid-quality printer common at university maker spaces. After printing and trimming, Rapid-Tome assembly takes a few minutes with five metal parts common at hardware stores. Users sectioned a variety of plant samples including the hollow internodes of switchgrass (Panicum virgatum), fibrous switchgrass roots containing aerenchyma, and woody branches of eastern red cedar (Juniperus virginiana) and American sycamore (Platanus occidentalis). A comparative analyses with Rapid-Tome-produced sections readily revealed a significant difference in seasonal growth of sycamore xylem vessel area in spring (49%) vs. summer (23%). Additionally, high school students with no prior experience produced sections with the Rapid-Tome adequate for comparative analyses of various plant samples in less than an hour. CONCLUSIONS The described hand-sectioning method is suitable for softer tissues, including hollow-stemmed grasses and similar samples. In addition, the Rapid-Tome provides capacity to safely produce high-quality sections of tougher plant materials at a fraction of the cost of traditional microtomes combined with excellent sample control. The Rapid-Tome features rapid sectioning, sample advancement, blade changes, and sample changes; it is highly portable and can be used easily with minimal training making production of thin sections accessible for classroom and outreach use, in addition to research.
Collapse
Affiliation(s)
- David J Thomas
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Jordan Rainbow
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Laura E Bartley
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Su L, Cheng S, Liu Y, Xie Y, He Z, Jia M, Zhou X, Zhang R, Li C. Transcriptome and Metabolome Analysis Provide New Insights into the Process of Tuberization of Sechium edule Roots. Int J Mol Sci 2022; 23:ijms23126390. [PMID: 35742832 PMCID: PMC9224348 DOI: 10.3390/ijms23126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Chayote (Sechium edule) produces edible tubers with high starch content after 1 year of growth but the mechanism of chayote tuberization remains unknown. ‘Tuershao’, a chayote cultivar lacking edible fruits but showing higher tuber yield than traditional chayote cultivars, was used to study tuber formation through integrative analysis of the metabolome and transcriptome profiles at three tuber-growth stages. Starch biosynthesis- and galactose metabolism-related genes and metabolites were significantly upregulated during tuber bulking, whereas genes encoding sugars will eventually be exported transporter (SWEET) and sugar transporter (SUT) were highly expressed during tuber formation. Auxin precursor (indole-3-acetamide) and ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, were upregulated, suggesting that both hormones play pivotal roles in tuber development and maturation. Our data revealed a similar tuber-formation signaling pathway in chayote as in potatoes, including complexes BEL1/KNOX and SP6A/14-3-3/FDL. Down-regulation of the BEL1/KNOX complex and upregulation of 14-3-3 protein implied that these two complexes might have distinct functions in tuber formation. Finally, gene expression and microscopic analysis indicated active cell division during the initial stages of tuber formation. Altogether, the integration of transcriptome and metabolome analyses unraveled an overall molecular network of chayote tuberization that might facilitate its utilization.
Collapse
Affiliation(s)
- Lihong Su
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Shaobo Cheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Yuhang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China;
| | - Zhongqun He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
- Correspondence:
| | - Mingyue Jia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Xiaoting Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Ruijie Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| | - Chunyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (S.C.); (Y.L.); (M.J.); (X.Z.); (R.Z.); (C.L.)
| |
Collapse
|
3
|
Zheng Y, Xiao J, Zheng K, Ma J, He M, Li J, Li M. Transcriptome Profiling Reveals the Effects of Nitric Oxide on the Growth and Physiological Characteristics of Watermelon under Aluminum Stress. Genes (Basel) 2021; 12:genes12111735. [PMID: 34828340 PMCID: PMC8622656 DOI: 10.3390/genes12111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Excessive aluminum ions (Al3+) in acidic soil can have a toxic effect on watermelons, restricting plant growth and reducing yield and quality. In this study, we found that exogenous application of nitric oxide (NO) could increase the photochemical efficiency of watermelon leaves under aluminum stress by promoting closure of leaf stomata, reducing malondialdehyde and superoxide anion in leaves, and increasing POD and CAT activity. These findings showed that the exogenous application of NO improved the ability of watermelon to withstand aluminum stress. To further reveal the mitigation mechanism of NO on watermelons under aluminum stress, the differences following different types of treatments—normal growth, Al, and Al + NO—were shown using de novo sequencing of transcriptomes. In total, 511 differentially expressed genes (DEGs) were identified between the Al + NO and Al treatment groups. Significantly enriched biological processes included nitrogen metabolism, phenylpropane metabolism, and photosynthesis. We selected 23 genes related to antioxidant enzymes and phenylpropane metabolism for qRT-PCR validation. The results showed that after exogenous application of NO, the expression of genes encoding POD and CAT increased, consistent with the results of the physiological indicators. The expression patterns of genes involved in phenylpropanoid metabolism were consistent with the transcriptome expression abundance. These results indicate that aluminum stress was involved in the inhibition of the photosynthetic pathway, and NO could activate the antioxidant enzyme defense system and phenylpropane metabolism to protect cells and scavenge reactive oxygen species. This study improves our current understanding by comprehensively analyzing the molecular mechanisms underlying NO-induced aluminum stress alleviation in watermelons.
Collapse
|
4
|
Identification and characterization of the stunted sterile (ss) mutant in rice. Genes Genomics 2020; 42:869-882. [PMID: 32506267 DOI: 10.1007/s13258-020-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proper organ development is pivotal for normal rice growth and production. Many genes are involved in this process, and these genes provide a basis for rice breeding. OBJECTIVE To identify a novel mutation causing developmental defects in rice. METHODS The phenotype of a rice mutant, stunted sterile (ss), identified from the japonica rice cultivar Samkwang treated with N-methyl-N-nitrosourea, was characterized, including anatomical and pollen activity analyses. A genetic analysis and fine mapping were performed to identify a candidate locus, followed by a sequence analysis to determine the causal mutation for the phenotype. RESULTS Compared with wild-type plants, the mutant exhibited a 34% reduction in height, 46% reduction in flag leaf width, and complete panicle sterility. Cell proliferation in the leaf and pollen viability were significantly inhibited in the mutant. The mutant phenotypes were controlled by a single recessive gene that was fine-mapped to an 84 kb region between two SNP markers on the short arm of chromosome 5. A candidate gene analysis determined that the mutant carries an 11 bp insertion in the coding region of LOC_Os05g03550, which encodes a protein containing two SANT domains, resulting in a premature termination codon before the conserved domain. CONCLUSIONS We identified a novel rice gene, Stunted sterile, involved in the regulation of various developmental processes. Our findings improve our understanding of the role of chromatin remodeling in organ development and have implications for breeding owing to the broad effects of the gene on plant growth.
Collapse
|
5
|
Chen JC, Tong CG, Lin HY, Fang SC. Phalaenopsis LEAFY COTYLEDON1-Induced Somatic Embryonic Structures Are Morphologically Distinct From Protocorm-Like Bodies. FRONTIERS IN PLANT SCIENCE 2019; 10:1594. [PMID: 31850050 PMCID: PMC6896055 DOI: 10.3389/fpls.2019.01594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 05/27/2023]
Abstract
Somatic embryogenesis is commonly used for clonal propagation of a wide variety of plant species. Induction of protocorm-like-bodies (PLBs), which are capable of developing into individual plants, is a routine tissue culture-based practice for micropropagation of orchid plants. Even though PLBs are often regarded as somatic embryos, our recent study provides molecular evidence to argue that PLBs are not derived from somatic embryogenesis. Here, we report and characterize the somatic embryonic tissues induced by Phalaenopsis aphrodite LEAFY COTYLEDON1 (PaLEC1) in Phalaenopsis equestris. We found that PaLEC1-induced somatic tissues are morphologically different from PLBs, supporting our molecular study that PLBs are not of somatic embryonic origin. The embryonic identity of PaLEC1-induced embryonic tissues was confirmed by expression of the embryonic-specific transcription factors FUSCA3 (FUS3) and ABSCISIC ACID INSENSITIVE3 (ABI3), and seed storage proteins 7S GLOBULIN and OLEOSIN. Moreover, PaLEC1-GFP protein was found to be associated with the Pa7S-1 and PaFUS3 promoters containing the CCAAT element, supporting that PaLEC1 directly regulates embryo-specific processes to activate the somatic embryonic program in P. equestris. Despite diverse embryonic structures, PaLEC1-GFP-induced embryonic structures are pluripotent and capable of generating new shoots. Our study resolves the long-term debate on the developmental identity of PLB and suggests that somatic embryogenesis may be a useful approach to clonally propagate orchid seedlings.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chii-Gong Tong
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Lin YJ, Li MJ, Hsing HC, Chen TK, Yang TT, Ko SS. Spike Activator 1, Encoding a bHLH, Mediates Axillary Bud Development and Spike Initiation in Phalaenopsis aphrodite. Int J Mol Sci 2019; 20:ijms20215406. [PMID: 31671600 PMCID: PMC6862315 DOI: 10.3390/ijms20215406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Double-spikes Phalaenopsis orchids have greater market value than those with single-spike. In this study, a gene designated as Spike Activator 1 (SPK1), which encodes a basic helix-loop-helix (bHLH) transcription factor, was isolated and characterized from Phalaenopsis aphrodite (moth orchid). SPK1 was highly expressed in the meristematic tissues. In the axillary bud, SPK1 was highly upregulated by a moderately low temperature of 20 °C but downregulated by a spike inhibition temperature of 30 °C. SPK1 protein is localized in the nucleus. Another bHLH, bHLH35, which is also highly expressed in young tissues in the same way as SPK1 was also identified. In contrast to SPK1, bHLH35 transcripts are downregulated at 20 °C but upregulated at 30 °C. Bimolecular florescence complementation assay and yeast two-hybrid assays indicated that SPK1 interacts with bHLH35 and forms a heterodimer. Virus-induced gene silencing (VIGS) showed that 7 out of 15 vector control plants produced double spikes but that only 1 out of 15 VIGS-spk1 plants produced double spikes. RT-qPCR results indicated that VIGS-spk1 downregulated gene expression levels of SPK1, FT, CYCB, and EXPA8. Overall, we propose that SPK1 plays an essential role in early axillary bud development and spike initiation of P. aphrodite.
Collapse
Affiliation(s)
- Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Hung-Chien Hsing
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
| | - Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
7
|
Qin C, Bai Y, Zeng Z, Wang L, Luo Z, Wang S, Zou S. The Cutting and Floating Method for Paraffin-embedded Tissue for Sectioning. J Vis Exp 2018:58288. [PMID: 30247474 PMCID: PMC6235097 DOI: 10.3791/58288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sectioning of the paraffin-embedded tissue is widely used in histology and pathology. However, it is tedious. To improve this method, several commercial companies have devised complex section transfer systems using fluid water. To simplify this technology, we created a simple method using homemade equipment that combines cutting and floating within a simple thermostatic chamber; therefore, the sections automatically enter the water bath on the water surface. The hippocampus from adult mouse brains, adult mouse kidneys, embryonic mouse brains, and adult zebrafish eyes were cut using both conventional paraffin sectioning and the presented method for comparison. Statistical analysis shows that our improved method saved time and produced higher quality sections. In addition, paraffin sectioning of a whole specimen in a short time is easy for junior operators.
Collapse
Affiliation(s)
- Cheng Qin
- Institute of Life Science, Nanchang University; Queen Mary School, Medical Department, Nanchang University
| | - Yijiang Bai
- Institute of Life Science, Nanchang University; Queen Mary School, Medical Department, Nanchang University
| | - Zhen Zeng
- Institute of Life Science, Nanchang University; Queen Mary School, Medical Department, Nanchang University
| | - Liao Wang
- Institute of Life Science, Nanchang University; Queen Mary School, Medical Department, Nanchang University
| | - Zhiwen Luo
- Institute of Life Science, Nanchang University; Queen Mary School, Medical Department, Nanchang University
| | - Shunqi Wang
- Institute of Life Science, Nanchang University; School of Life Science, Nanchang University
| | - Suqi Zou
- Institute of Life Science, Nanchang University; School of Life Science, Nanchang University;
| |
Collapse
|
8
|
Lin HY, Chen JC, Fang SC. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids. FRONTIERS IN PLANT SCIENCE 2018; 9:843. [PMID: 29988409 PMCID: PMC6024019 DOI: 10.3389/fpls.2018.00843] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein-protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Liu M, Lei L, Miao F, Powers C, Zhang X, Deng J, Tadege M, Carver BF, Yan L. The STENOFOLIA gene from Medicago alters leaf width, flowering time and chlorophyll content in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:186-196. [PMID: 28509374 PMCID: PMC5785358 DOI: 10.1111/pbi.12759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/15/2023]
Abstract
Molecular genetic analyses revealed that the WUSCHEL-related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n /(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA-binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n /(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
School of Life ScienceJiangsu Normal UniversityXuzhouJiangsuChina
| | - Lei Lei
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Fang Miao
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
College of Life ScienceNorthwest A&F UniversityYanglingShaanxi712100China
| | - Carol Powers
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Xiaoyu Zhang
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Jungpeng Deng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOKUSA
| | - Million Tadege
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Brett F. Carver
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|