1
|
Aggarwal S, Mortensen OV. Discovery and Development of Monoamine Transporter Ligands. ADVANCES IN NEUROBIOLOGY 2023; 30:101-129. [PMID: 36928847 PMCID: PMC10074400 DOI: 10.1007/978-3-031-21054-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Monoamine transporters (MATs) are targets of a wide range of compounds that have been developed as therapeutic treatments for various neuropsychiatric and neurodegenerative disorders such as depression, ADHD, neuropathic pain, anxiety disorders, stimulant use disorders, epilepsy, and Parkinson's disease. The MAT family is comprised of three main members - the dopamine transporter (DAT), the norepinephrine transporter (NET), and the serotonin transporter (SERT). These transporters are through reuptake responsible for the clearance of their respective monoamine substrates from the extracellular space. The determination of X-ray crystal structures of MATs and their homologues bound with various substrates and ligands has resulted in a surge of structure-function-based studies of MATs to understand the molecular basis of transport function and the mechanism of various ligands that ultimately result in their behavioral effects. This review focusses on recent examples of ligand-based structure-activity relationship studies trying to overcome some of the challenges associated with previously developed MAT inhibitors. These studies have led to the discovery of unique and novel structurally diverse MAT ligands including allosteric modulators. These novel molecular scaffolds serve as leads for designing more effective therapeutic interventions by modulating the activities of MATs and ultimately their associated neurotransmission and behavioral effects.
Collapse
Affiliation(s)
- Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Yang D, Gouaux E. Illumination of serotonin transporter mechanism and role of the allosteric site. SCIENCE ADVANCES 2021; 7:eabl3857. [PMID: 34851672 PMCID: PMC8635421 DOI: 10.1126/sciadv.abl3857] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 05/10/2023]
Abstract
The serotonin transporter (SERT) terminates serotonin signaling by using sodium and chloride gradients to drive reuptake of serotonin into presynaptic neurons and is the target of widely used medications to treat neuropsychiatric disorders. Despite decades of study, the molecular mechanism of serotonin transport, the coupling to ion gradients, and the role of the allosteric site have remained elusive. Here, we present cryo–electron microscopy structures of SERT in serotonin-bound and serotonin-free states, in the presence of sodium or potassium, resolving all fundamental states of the transport cycle. From the SERT-serotonin complex, we localize the substrate-bound allosteric site, formed by an aromatic pocket positioned in the scaffold domain in the extracellular vestibule, connected to the central site via a short tunnel. Together with elucidation of multiple apo state conformations, we provide previously unseen structural understanding of allosteric modulation, demonstrating how SERT binds serotonin from synaptic volumes and promotes unbinding into the presynaptic neurons.
Collapse
Affiliation(s)
- Dongxue Yang
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Howard Hughes Medical Institute, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
3
|
Santra S, Kortagere S, Vedachalam S, Gogoi S, Antonio T, Reith ME, Dutta AK. Novel Potent Dopamine-Norepinephrine and Triple Reuptake Uptake Inhibitors Based on Asymmetric Pyran Template and Their Molecular Interactions with Monoamine Transporters. ACS Chem Neurosci 2021; 12:1406-1418. [PMID: 33844493 DOI: 10.1021/acschemneuro.1c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have carried out a structural exploration of (2S,4R,5R)-2-(bis(4-fluorophenyl)methyl)-5-((4-methoxybenzyl)amino)tetrahydro-2H-pyran-4-ol (D-473) to investigate the influence of various functional groups on its aromatic ring, the introduction of heterocyclic aromatic rings, and the alteration of the stereochemistry of functional group on the pyran ring. The novel compounds were tested for their affinities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting monoamine neurotransmitter uptake. Our studies identified some of the most potent dopamine-norepinephrine reuptake inhibitors known to-date like D-528 and D-529. The studies also led to development of potent triple reuptake inhibitors such as compounds D-544 and D-595. A significant influence from the alteration of the stereochemistry of the hydroxyl group on the pyran ring of D-473 on transporters affinities was observed indicating stereospecific preference for interaction. The inhibitory profiles and structure-activity relationship of lead compounds were further corroborated by molecular docking studies at the primary binding sites of monoamine transporters. The nature of interactions found computationally correlated well with their affinities for the transporters.
Collapse
Affiliation(s)
- Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Seenuvasan Vedachalam
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sanjib Gogoi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, United States
| | - Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Colas C. Toward a Systematic Structural and Functional Annotation of Solute Carriers Transporters-Example of the SLC6 and SLC7 Families. Front Pharmacol 2020; 11:1229. [PMID: 32973497 PMCID: PMC7466448 DOI: 10.3389/fphar.2020.01229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
SLC transporters are emerging key drug targets. One important step for drug development is the profound understanding of the structural determinants defining the substrate selectivity of each transporter. Recently, the improvement of computational power and experimental methods such as X-ray and cryo-EM crystallography permitted to conduct structure-based studies on specific transporters having important pharmacological impact. However, a lot remains to be discovered regarding their dynamics, transport modulation and ligand recognition. A detailed functional characterization of transporters would provide opportunities to develop new compounds targeting these key drug targets. Here, we are giving an overview of two major human LeuT-fold families, SLC6 and SLC7, with an emphasis on the most relevant members of each family for drug development. We gather the most recent understanding on the structural determinants of selectivity within and across the two families. We then use this information to discuss the benefits of a more generalized structural and functional annotation of the LeuT fold and the implications of such mapping for drug discovery.
Collapse
Affiliation(s)
- Claire Colas
- University of Vienna, Department of Pharmaceutical Chemistry, Vienna, Austria
| |
Collapse
|
5
|
Coleman JA, Navratna V, Antermite D, Yang D, Bull JA, Gouaux E. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. eLife 2020; 9:56427. [PMID: 32618269 PMCID: PMC7470834 DOI: 10.7554/elife.56427] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/02/2020] [Indexed: 11/13/2022] Open
Abstract
Antidepressants target the serotonin transporter (SERT) by inhibiting serotonin reuptake. Structural and biochemical studies aiming to understand binding of small-molecules to conformationally dynamic transporters like SERT often require thermostabilizing mutations and antibodies to stabilize a specific conformation, leading to questions about relationships of these structures to the bonafide conformation and inhibitor binding poses of wild-type transporter. To address these concerns, we determined the structures of ∆N72/∆C13 and ts2-inactive SERT bound to paroxetine analogues using single-particle cryo-EM and x-ray crystallography, respectively. We synthesized enantiopure analogues of paroxetine containing either bromine or iodine instead of fluorine. We exploited the anomalous scattering of bromine and iodine to define the pose of these inhibitors and investigated inhibitor binding to Asn177 mutants of ts2-active SERT. These studies provide mutually consistent insights into how paroxetine and its analogues bind to the central substrate-binding site of SERT, stabilize the outward-open conformation, and inhibit serotonin transport.
Collapse
Affiliation(s)
- Jonathan A Coleman
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Vikas Navratna
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - Daniele Antermite
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Dongxue Yang
- Vollum Institute, Oregon Health & Science University, Portland, United States
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, United States.,Howard Hughes Medical Institute, Oregon Health & Science University, Portland, United States
| |
Collapse
|
6
|
Jones BE, Tovar KR, Goehring A, Jalali-Yazdi F, Okada NJ, Gouaux E, Westbrook GL. Autoimmune receptor encephalitis in mice induced by active immunization with conformationally stabilized holoreceptors. Sci Transl Med 2019; 11:eaaw0044. [PMID: 31292262 PMCID: PMC6729143 DOI: 10.1126/scitranslmed.aaw0044] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Autoimmunity to membrane proteins in the central nervous system has been increasingly recognized as a cause of neuropsychiatric disease. A key recent development was the discovery of autoantibodies to N-methyl-d-aspartate (NMDA) receptors in some cases of encephalitis, characterized by cognitive changes, memory loss, and seizures that could lead to long-term morbidity or mortality. Treatment approaches and experimental studies have largely focused on the pathogenic role of these autoantibodies. Passive antibody transfer to mice has provided useful insights but does not produce the full spectrum of the human disease. Here, we describe a de novo autoimmune mouse model of anti-NMDA receptor encephalitis. Active immunization of immunocompetent mice with conformationally stabilized, native-like NMDA receptors induced a fulminant encephalitis, consistent with the behavioral and pathologic characteristics of human cases. Our results provide evidence for neuroinflammation and immune cell infiltration as components of the autoimmune response in mice. Use of transgenic mice indicated that mature T cells and antibody-producing cells were required for disease induction. This active immunization model may provide insights into disease induction and a platform for testing therapeutic approaches.
Collapse
Affiliation(s)
- Brian E Jones
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Kenneth R Tovar
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Farzad Jalali-Yazdi
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Nana J Okada
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
7
|
Navratna V, Tosh DK, Jacobson KA, Gouaux E. Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. PLoS One 2018; 13:e0200085. [PMID: 29965988 PMCID: PMC6028122 DOI: 10.1371/journal.pone.0200085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/19/2018] [Indexed: 12/17/2022] Open
Abstract
The human dopamine transporter (hDAT) plays a major role in dopamine homeostasis and regulation of neurotransmission by clearing dopamine from the extracellular space using secondary active transport. Dopamine is an essential monoamine chemical messenger that regulates reward seeking behavior, motor control, hormonal release, and emotional response in humans. Psychostimulants such as cocaine primarily target the central binding site of hDAT and lock the transporter in an outward-facing conformation, thereby inhibiting dopamine reuptake. The inhibition of dopamine reuptake leads to accumulation of dopamine in the synapse causing heightened signaling. In addition, hDAT is implicated in various neurological disorders and disease-associated neurodegeneration. Despite its significance, the structural studies of hDAT have proven difficult. Instability of hDAT in detergent micelles has been a limiting factor in its successful biochemical, biophysical, and structural characterization. To overcome this hurdle, we identified ligands that stabilize hDAT in detergent micelles. We then screened ~200 single residue mutants of hDAT using a high-throughput scintillation proximity assay and identified a thermostable variant (I248Y). Here we report a robust strategy to overexpress and successfully purify a thermostable variant of hDAT in an inhibitor and allosteric ligand bound conformation.
Collapse
Affiliation(s)
- Vikas Navratna
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric Gouaux
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Howard Hughes Medical Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
8
|
Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat Struct Mol Biol 2018; 25:170-175. [PMID: 29379174 DOI: 10.1038/s41594-018-0026-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022]
Abstract
Selective serotonin reuptake inhibitors are clinically prescribed antidepressants that act by increasing the local concentrations of neurotransmitters at synapses and in extracellular spaces via blockade of the serotonin transporter. Here we report X-ray structures of engineered thermostable variants of the human serotonin transporter bound to the antidepressants sertraline, fluvoxamine, and paroxetine. The drugs prevent serotonin binding by occupying the central substrate-binding site and stabilizing the transporter in an outward-open conformation. These structures explain how residues within the central site orchestrate binding of chemically diverse inhibitors and mediate transporter drug selectivity.
Collapse
|
9
|
Ma J, Yanez-Orozco IS, Rezaei Adariani S, Dolino D, Jayaraman V, Sanabria H. High Precision FRET at Single-molecule Level for Biomolecule Structure Determination. J Vis Exp 2017. [PMID: 28570518 DOI: 10.3791/55623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A protocol on how to perform high-precision interdye distance measurements using Förster resonance energy transfer (FRET) at the single-molecule level in multiparameter fluorescence detection (MFD) mode is presented here. MFD maximizes the usage of all "dimensions" of fluorescence to reduce photophysical and experimental artifacts and allows for the measurement of interdye distance with an accuracy up to ~1 Å in rigid biomolecules. This method was used to identify three conformational states of the ligand-binding domain of the N-methyl-D-aspartate (NMDA) receptor to explain the activation of the receptor upon ligand binding. When comparing the known crystallographic structures with experimental measurements, they agreed within less than 3 Å for more dynamic biomolecules. Gathering a set of distance restraints that covers the entire dimensionality of the biomolecules would make it possible to provide a structural model of dynamic biomolecules.
Collapse
Affiliation(s)
- Junyan Ma
- Department of Chemistry, Clemson University
| | | | | | - Drew Dolino
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, Graduate School for Biomedical Sciences, University of Texas Health Science Center
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University;
| |
Collapse
|
10
|
Lü W, Du J, Goehring A, Gouaux E. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science 2017; 355:science.aal3729. [PMID: 28232581 DOI: 10.1126/science.aal3729] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/02/2017] [Indexed: 11/02/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are heterotetrameric ion channels assembled as diheteromeric or triheteromeric complexes. Here, we report structures of the triheteromeric GluN1/GluN2A/GluN2B receptor in the absence or presence of the GluN2B-specific allosteric modulator Ro 25-6981 (Ro), determined by cryogenic electron microscopy (cryo-EM). In the absence of Ro, the GluN2A and GluN2B amino-terminal domains (ATDs) adopt "closed" and "open" clefts, respectively. Upon binding Ro, the GluN2B ATD clamshell transitions from an open to a closed conformation. Consistent with a predominance of the GluN2A subunit in ion channel gating, the GluN2A subunit interacts more extensively with GluN1 subunits throughout the receptor, in comparison with the GluN2B subunit. Differences in the conformation of the pseudo-2-fold-related GluN1 subunits further reflect receptor asymmetry. The triheteromeric NMDAR structures provide the first view of the most common NMDA receptor assembly and show how incorporation of two different GluN2 subunits modifies receptor symmetry and subunit interactions, allowing each subunit to uniquely influence receptor structure and function, thus increasing receptor complexity.
Collapse
Affiliation(s)
- Wei Lü
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Juan Du
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - April Goehring
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Eric Gouaux
- Vollum Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. .,Howard Hughes Medical Institute, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|