1
|
Lainé CMS, AbdElgawad H, Beemster GTS. Cellular dynamics in the maize leaf growth zone during recovery from chilling depends on the leaf developmental stage. PLANT CELL REPORTS 2024; 43:38. [PMID: 38200224 DOI: 10.1007/s00299-023-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves.
Collapse
Affiliation(s)
- Cindy M S Lainé
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
2
|
Chen M, Guo L, Ramakrishnan M, Fei Z, Vinod KK, Ding Y, Jiao C, Gao Z, Zha R, Wang C, Gao Z, Yu F, Ren G, Wei Q. Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. THE PLANT CELL 2022; 34:3577-3610. [PMID: 35766883 PMCID: PMC9516176 DOI: 10.1093/plcell/koac193] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/24/2022] [Indexed: 05/09/2023]
Abstract
Moso bamboo (Phyllostachys edulis) shows remarkably rapid growth (114.5 cm/day), but the underlying biological mechanisms remain unclear. After examining more than 12,750 internodes from more than 510 culms from 17 Moso populations, we identified internode 18 as a representative internode for rapid growth. This internode includes a 2-cm cell division zone (DZ), a cell elongation zone up to 12 cm, and a secondary cell wall (SCW) thickening zone. These zones elongated 11.8 cm, produced approximately 570,000,000 cells, and deposited ∼28 mg g-1 dry weight (DW) lignin and ∼44 mg g-1 DW cellulose daily, far exceeding vegetative growth observed in other plants. We used anatomical, mathematical, physiological, and genomic data to characterize development and transcriptional networks during rapid growth in internode 18. Our results suggest that (1) gibberellin may directly trigger the rapid growth of Moso shoots, (2) decreased cytokinin and increased auxin accumulation may trigger cell DZ elongation, and (3) abscisic acid and mechanical pressure may stimulate rapid SCW thickening via MYB83L. We conclude that internode length involves a possible tradeoff mediated by mechanical pressure caused by rapid growth, possibly influenced by environmental temperature and regulated by genes related to cell division and elongation. Our results provide insight into the rapid growth of Moso bamboo.
Collapse
Affiliation(s)
- Ming Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lin Guo
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA
| | - Kunnummal K Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | | | - Zhipeng Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ruofei Zha
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunyue Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhimin Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang, Jiangxi 330045, China
| | - Guodong Ren
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
3
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
4
|
Bertels J, Huybrechts M, Hendrix S, Bervoets L, Cuypers A, Beemster GTS. Cadmium inhibits cell cycle progression and specifically accumulates in the maize leaf meristem. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6418-6428. [PMID: 32822498 DOI: 10.1093/jxb/eraa385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
It is well known that cadmium (Cd) pollution inhibits plant growth, but how this metal impacts leaf growth processes at the cellular and molecular level is still largely unknown. In the current study, we show that Cd specifically accumulates in the meristematic tissue of the growing maize leaf, while Cd concentration in the elongation zone rapidly declines as the deposition rates diminish and cell volumes increase due to cell expansion. A kinematic analysis shows that, at the cellular level, a lower number of meristematic cells together with a significantly longer cell cycle duration explain the inhibition of leaf growth by Cd. Flow cytometry analysis suggests an inhibition of the G1/S transition, resulting in a lower proportion of cells in the S phase and reduced endoreduplication in expanding cells under Cd stress. Lower cell cycle activity is also reflected by lower expression levels of key cell cycle genes (putative wee1, cyclin-B2-4, and minichromosome maintenance4). Cell elongation rates are also inhibited by Cd, which is possibly linked to the inhibited endoreduplication. Taken together, our results complement studies on Cd-induced growth inhibition in roots and link inhibited cell cycle progression to Cd deposition in the leaf meristem.
Collapse
Affiliation(s)
- Jonas Bertels
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium
| | - Michiel Huybrechts
- Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Sophie Hendrix
- Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences (CMK), Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium
| |
Collapse
|
5
|
Aydinoglu F. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. PLANTA 2020; 251:38. [PMID: 31907623 DOI: 10.1007/s00425-019-03331-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION: miRNAs control leaf size of maize crop during chilling stress tolerance by regulating developmentally important transcriptional factors and sustaining redox homeostasis of cells. Chilling temperature (0-15 °C) is a major constraint for the cultivation of maize (Zea mays) which inhibits the early growth of maize leading to reduction in leaf size. Growth and development take place in meristem, elongation, and mature zones that are linearly located along the leaf base to tip. To prevent shortening of leaf caused by chilling, this study aims to elucidate the regulatory roles of microRNA (miRNA) genes in the controlling process switching between growth and developmental stages. In this respect, hybrid maize ADA313 seedlings were treated to the chilling temperature which caused 26% and 29% reduction in the final leaf length and a decline in cell production of the fourth leaf. The flow cytometry data integrated with the expression analysis of cell cycle genes indicated that the reason for the decline was a failure proceeding from G2/M rather than G1/S. Through an miRNome analysis of 321 known maize miRNAs, 24, 6, and 20 miRNAs were assigned to putative meristem, elongation, and mature zones, respectively according to their chilling response. To gain deeper insight into decreased cell production, in silico, target prediction analysis was performed for meristem specific miRNAs. Among the miRNAs, miR160, miR319, miR395, miR396, miR408, miR528, and miR1432 were selected for confirming the potential of negative regulation with their predicted targets by qRT-PCR. These findings indicated evidence for improvement of growth and yield under chilling stress of the maize.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
6
|
Bertels J, Beemster GT. leafkin-An R package for automated kinematic data analysis of monocot leaves. QUANTITATIVE PLANT BIOLOGY 2020; 1:e2. [PMID: 37077328 PMCID: PMC10095969 DOI: 10.1017/qpb.2020.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/18/2020] [Accepted: 09/16/2020] [Indexed: 05/03/2023]
Abstract
Growth is one of the most studied plant responses. At the cellular level, plant growth is driven by cell division and cell expansion. A means to quantify these two cellular processes is through kinematic analysis, a methodology that has been developed and perfected over the past decades, with in-depth descriptions of the methodology available. Unfortunately, after performing the lab work, researchers are required to perform time-consuming, repetitive and error-prone calculations. To lower the barrier towards this final step in the analysis and to aid researchers currently applying this technique, we have created leafkin, an R-package to perform all the calculations involved in the kinematic analysis of monocot leaves using only four functions. These functions support leaf elongation rate calculations, fitting of cell length profiles, extraction of fitted cell lengths and execution of kinematic equations. With the leafkin package, kinematic analysis of monocot leaves becomes more accessible than before.
Collapse
Affiliation(s)
- Jonas Bertels
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gerrit T.S. Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
- Author for correspondence: Gerrit T. S. Beemster, E-mail:
| |
Collapse
|
7
|
Sprangers K, Thys S, van Dusschoten D, Beemster GTS. Gibberellin Enhances the Anisotropy of Cell Expansion in the Growth Zone of the Maize Leaf. FRONTIERS IN PLANT SCIENCE 2020; 11:1163. [PMID: 32849718 PMCID: PMC7417610 DOI: 10.3389/fpls.2020.01163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 05/20/2023]
Abstract
Although plant organ shapes are defined by spatio-temporal variations of directional tissue expansion, this is a little characterized aspect of organ growth regulation. Although it is well known that the plant hormone gibberellin increases the leaf length/with ratio, its effects on cell expansion in the growing leaf are largely unknown. To understand how variations in rate and anisotropy of growth establish the typical monocotelydonous leaf shape, we studied the leaf growth zone of maize (Zea mays) with a kinematic analysis of cell expansion in the three directions of growth: proximo-distal, medio-lateral, and dorso-ventral. To determine the effect of gibberellin, we compared a gibberellin-deficient dwarf3 mutant and the overproducing UBI::GA20OX-1 line with their wild types. We found that, as expected, longitudinal growth was dominant throughout the growth zone. The highest degree of anisotropy occurred in the division zone, where relative growth rates in width and thickness were almost zero. Growth anisotropy was smaller in the elongation zone, due to higher lateral and dorso-ventral growth rates. Growth in all directions stopped at the same position. Gibberellin increased the size of the growth zone and the degree of growth anisotropy by stimulating longitudinal growth rates. Inversely, the duration of expansion was negatively affected, so that mature cell length was unaffected, while width and height of cells were reduced. Our study provides a detailed insight in the dynamics of growth anisotropy in the maize leaf and demonstrates that gibberellin specifically stimulates longitudinal growth rates throughout the growth zone.
Collapse
Affiliation(s)
- Katrien Sprangers
- Research Group for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Belgium
- *Correspondence: Sofie Thys, ; Gerrit T. S. Beemster,
| | - Dagmar van Dusschoten
- IBG-2: Plant Sciences, Institute for Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Gerrit T. S. Beemster
- Research Group for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
- *Correspondence: Sofie Thys, ; Gerrit T. S. Beemster,
| |
Collapse
|
8
|
Gupta S, Gupta V, Singh V, Varadwaj PK. Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress. Genes Genomics 2018; 40:973-990. [PMID: 30155715 DOI: 10.1007/s13258-018-0705-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 12/21/2022]
Abstract
A wide range of plant species growth influenced when they exposed to solar UV-B radiation. Leaves of the plant are highly affected by UV-B radiation lead to the reduction in the growth of the plant. Current work demonstrates the comparative transcriptional changes and visible symptoms occurred in the maize leaf growth zone (GZ). Primary objective of this study was to identify differentially expressed genes (DEGs) responsible for leaf growth and their association in the transcriptional regulatory network under UV-B stress. Whole transcriptomic data was analysed and the quality check was tested for each sample and further genome-wide mapping and DEGs were performed. Gene Ontology (GO) based functional annotation, associated transcriptional networks and molecular pathways were annotated. Reduction in cell production due to UV-B stress causes a decrease in leaf's length and size was observed. Further, the specific role of the DEGs, in UV-B signalling pathways and other molecular functions responsible for leaf cell death was discovered. Results also infer that the major changes occurred in the cell cycle, transcriptional regulation, post-transcriptional modification, phytohormones, flavonoids biosynthesis, and chromatin remodeling. UV-B signalling pathways and the transcriptional regulatory networks infer the different molecular steps along with downstream transcriptional and post-transcriptional control of metabolic enzymes used in long-term memory adoption and attainment resistance to UV-B stress identified. Effects of UV-B radiation on leaf growth was noted in this study. UV-B stress response genes and associated transcriptional regulatory networks were identified, can be used in developing the marker assist UB-B stress tolerant genotypes of the maize.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India
| | - Vikas Gupta
- Department of Molecular and Cellular Engineering, JIBB, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vishal Singh
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology-Allahabad, Devghat, Jhalwa, Allahabad, UP, 211015, India.
| |
Collapse
|
9
|
Fina J, Casadevall R, AbdElgawad H, Prinsen E, Markakis MN, Beemster GTS, Casati P. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels. PLANT PHYSIOLOGY 2017; 174:1110-1126. [PMID: 28400494 PMCID: PMC5462048 DOI: 10.1104/pp.17.00365] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/10/2017] [Indexed: 05/04/2023]
Abstract
Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family.
Collapse
Affiliation(s)
- Julieta Fina
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.)
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| | - Romina Casadevall
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.)
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| | - Hamada AbdElgawad
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.)
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| | - Els Prinsen
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.)
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| | - Marios N Markakis
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.)
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| | - Gerrit T S Beemster
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.)
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina (J.F., R.C., P.C.);
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000 Antwerp, Belgium (H.A., E.P., M.N.M., G.T.S.B.); and
- Department of Botany and Microbiology, Faculty of Science, University of Beni-Suef, 62511 Beni-Suef, Egypt (H.A.)
| |
Collapse
|