1
|
Holst MR, Richner M, Arenshøj PO, Alam P, Hyldig K, Nielsen MS. Ex vivo nanoscale abluminal mapping of putative cargo receptors at the blood-brain barrier of expanded brain capillaries. Fluids Barriers CNS 2024; 21:80. [PMID: 39402596 PMCID: PMC11475543 DOI: 10.1186/s12987-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Receptor mediated transport of therapeutic antibodies through the blood-brain barrier (BBB) give promise for drug delivery to alleviate brain diseases. We developed a low-cost method to obtain nanoscale localization data of putative cargo receptors. We combine existing ex vivo isolation methods with expansion microscopy (ExM) to analyze receptor localizations in brain microcapillaries. Using this approach, we show how to analyze receptor localizations in endothelial cells of brain microcapillaries in relation to the abluminal marker collagen IV. By choosing the thinnest capillaries, microcapillaries for analysis, we ensure the validity of collagen IV as an abluminal marker. With this tool, we confirm transferrin receptors as well as sortilin to be both luminally and abluminally localized. Furthermore, we identify basigin to be an abluminal receptor. Our methodology can be adapted to analyze different types of isolated brain capillaries and we anticipate that this approach will be very useful for the research community to gain new insight into cargo receptor trafficking in the slim brain endothelial cells to elucidate novel paths for future drug design.
Collapse
Affiliation(s)
| | - Mette Richner
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
| | | | - Parvez Alam
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
- Laboratory of Neurological Infection and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Kathrine Hyldig
- Department of Biomedicine, Aarhus University, Aarhus C, 8000, Denmark
- Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Copenhagen, 2500, Denmark
| | | |
Collapse
|
2
|
Nielsen SSE, Holst MR, Langthaler K, Bruun EH, Brodin B, Nielsen MS. Apicobasal transferrin receptor localization and trafficking in brain capillary endothelial cells. Fluids Barriers CNS 2023; 20:2. [PMID: 36624498 PMCID: PMC9830855 DOI: 10.1186/s12987-022-00404-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The detailed mechanisms by which the transferrin receptor (TfR) and associated ligands traffic across brain capillary endothelial cells (BECs) of the CNS-protective blood-brain barrier constitute an important knowledge gap within maintenance and regulation of brain iron homeostasis. This knowledge gap also presents a major obstacle in research aiming to develop strategies for efficient receptor-mediated drug delivery to the brain. While TfR-mediated trafficking from blood to brain have been widely studied, investigation of TfR-mediated trafficking from brain to blood has been limited. In this study we investigated TfR distribution on the apical and basal plasma membranes of BECs using expansion microscopy, enabling sufficient resolution to separate the cellular plasma membranes of these morphological flat cells, and verifying both apical and basal TfR membrane domain localization. Using immunofluorescence-based transcellular transport studies, we delineated endosomal sorting of TfR endocytosed from the apical and basal membrane, respectively, as well as bi-directional TfR transcellular transport capability. The findings indicate different intracellular sorting mechanisms of TfR, depending on the apicobasal trafficking direction across the BBB, with the highest transcytosis capacity in the brain-to-blood direction. These results are of high importance for the current understanding of brain iron homeostasis. Also, the high level of TfR trafficking from the basal to apical membrane of BECs potentially explains the low transcytosis which are observed for the TfR-targeted therapeutics to the brain parenchyma.
Collapse
Affiliation(s)
- Simone S. E. Nielsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel R. Holst
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Kristine Langthaler
- grid.5254.60000 0001 0674 042XCNS Drug Delivery and Barrier Modelling, University of Copenhagen, Copenhagen, Denmark ,grid.424580.f0000 0004 0476 7612Translational DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | - Elisabeth Helena Bruun
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| | - Birger Brodin
- grid.5254.60000 0001 0674 042XDepartment of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Morten S. Nielsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
3
|
Holloway PM. Novel, Emerging Chip Models of the Blood-Brain Barrier and Future Directions. Methods Mol Biol 2022; 2492:193-224. [PMID: 35733046 DOI: 10.1007/978-1-0716-2289-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of microfluidic chips is now allowing for more advanced modelling of the blood-brain barrier (BBB) in vitro, recapitulating heterotypic interactions, 3D architecture, and physiological flow. This chapter will give an introduction to these new technologies and how they are being applied to model the BBB and neurovascular unit (NVU). A foundational understanding of the fluid dynamics germane to the effective use of these chips will be set and an overview of how physical phenomena at the microscale can be exploited to enable new possibilities to control the cell culture environment. The four main approaches to construct microfluidic blood vessel mimetics will be discussed with examples of how these techniques are being applied to model the BBB and more recently to study specific neurovascular disease processes. Finally, practical guidance will be given for researchers wishing to adopt these new techniques along with a summary of the challenges, limitations faced, and new opportunities opened up by these advanced cell culture systems.
Collapse
Affiliation(s)
- Paul M Holloway
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2632. [PMID: 34685073 PMCID: PMC8538557 DOI: 10.3390/nano11102632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood-brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.
Collapse
Affiliation(s)
- Mark J. Lynch
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Oliviero L. Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Building, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
5
|
Christensen SC, Hudecz D, Jensen A, Christensen S, Nielsen MS. Basigin Antibodies with Capacity for Drug Delivery Across Brain Endothelial Cells. Mol Neurobiol 2021; 58:4392-4403. [PMID: 34014436 DOI: 10.1007/s12035-021-02421-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) poses challenges for delivering antibody-based therapeutics to the brain and is a main obstacle for the successful application of biotherapeutics for the treatment of brain disorders. As only a small fraction of monoclonal antibodies (mAbs) is penetrating the BBB, high doses of therapeutics are required to elicit a pharmacological effect. This limitation has evoked research to improve transport across the BBB through receptor-mediated transcytosis, and several receptors have been explored for mediating this process. A recently suggested candidate is the brain endothelial cells (BECs) expressed basigin. Here, we explore the transcytosis capacity of different basigin mAbs targeting distinct epitopes using the porcine in vitro BBB models and provide data showing the intracellular vesicle sorting of these basigin mAbs in porcine BECs. Our data suggest that basigin mAbs avoid the lysosomal degradation pathway and are internalized to vesicles used by recycling receptors. Engagement of basigin mAbs with basigin led to the translocation of the mAbs across the tight BECs into the astrocytes in our in vitro BBB co-culture model. Although mAbs with higher binding affinity to basigin showed a greater astrocyte internalization, based on our experiments, it is not clear whether the transcytosis is affinity- or epitope-dependent or a combination of both. Overall, this study provides information about the intra- and intercellular fate of basigin mAbs in BECs, which are valuable for the future design of basigin-mediated drug delivery platforms.
Collapse
Affiliation(s)
- Sarah Christine Christensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.,Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Diána Hudecz
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark
| | - Allan Jensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Søren Christensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Morten Schallburg Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.
| |
Collapse
|
6
|
Christensen B, Toth AE, Nielsen SSE, Scavenius C, Petersen SV, Enghild JJ, Rasmussen JT, Nielsen MS, Sørensen ES. Transport of a Peptide from Bovine α s1-Casein across Models of the Intestinal and Blood-Brain Barriers. Nutrients 2020; 12:nu12103157. [PMID: 33081105 PMCID: PMC7602804 DOI: 10.3390/nu12103157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
The effect of food components on brain growth and development has attracted increasing attention. Milk has been shown to contain peptides that deliver important signals to the brains of neonates and infants. In order to reach the brain, milk peptides have to resist proteolytic degradation in the gastrointestinal tract, cross the gastrointestinal barrier and later cross the highly selective blood–brain barrier (BBB). To investigate this, we purified and characterized endogenous peptides from bovine milk and investigated their apical to basal transport by using human intestinal Caco-2 cells and primary porcine brain endothelial cell monolayer models. Among 192 characterized milk peptides, only the αS1-casein peptide 185PIGSENSEKTTMPLW199, and especially fragments of this peptide processed during the transport, could cross both the intestinal barrier and the BBB cell monolayer models. This peptide was also shown to resist simulated gastrointestinal digestion. This study demonstrates that a milk derived peptide can cross the major biological barriers in vitro and potentially reach the brain, where it may deliver physiological signals.
Collapse
Affiliation(s)
- Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- iFood Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Andrea E. Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Simone S. E. Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Steen V. Petersen
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jan T. Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
| | - Morten S. Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, DK-8000 Aarhus, Denmark; (A.E.T.); (S.S.E.N.); (S.V.P.); (M.S.N.)
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; (B.C.); (C.S.); (J.J.E.); (J.T.R.)
- iFood Center, Aarhus University, DK-8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-87155461
| |
Collapse
|
7
|
Wainwright L, Hargreaves IP, Georgian AR, Turner C, Dalton RN, Abbott NJ, Heales SJR, Preston JE. CoQ 10 Deficient Endothelial Cell Culture Model for the Investigation of CoQ 10 Blood-Brain Barrier Transport. J Clin Med 2020; 9:jcm9103236. [PMID: 33050406 PMCID: PMC7601674 DOI: 10.3390/jcm9103236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Primary coenzyme Q10 (CoQ10) deficiency is unique among mitochondrial respiratory chain disorders in that it is potentially treatable if high-dose CoQ10 supplements are given in the early stages of the disease. While supplements improve peripheral abnormalities, neurological symptoms are only partially or temporarily ameliorated. The reasons for this refractory response to CoQ10 supplementation are unclear, however, a contributory factor may be the poor transfer of CoQ10 across the blood-brain barrier (BBB). The aim of this study was to investigate mechanisms of CoQ10 transport across the BBB, using normal and pathophysiological (CoQ10 deficient) cell culture models. The study identifies lipoprotein-associated CoQ10 transcytosis in both directions across the in vitro BBB. Uptake via SR-B1 (Scavenger Receptor) and RAGE (Receptor for Advanced Glycation Endproducts), is matched by efflux via LDLR (Low Density Lipoprotein Receptor) transporters, resulting in no "net" transport across the BBB. In the CoQ10 deficient model, BBB tight junctions were disrupted and CoQ10 "net" transport to the brain side increased. The addition of anti-oxidants did not improve CoQ10 uptake to the brain side. This study is the first to generate in vitro BBB endothelial cell models of CoQ10 deficiency, and the first to identify lipoprotein-associated uptake and efflux mechanisms regulating CoQ10 distribution across the BBB. The results imply that the uptake of exogenous CoQ10 into the brain might be improved by the administration of LDLR inhibitors, or by interventions to stimulate luminal activity of SR-B1 transporters.
Collapse
Affiliation(s)
- Luke Wainwright
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Iain P. Hargreaves
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK;
- Department of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool L3 5UA, UK
| | - Ana R. Georgian
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK; (A.R.G.); (N.J.A.)
| | - Charles Turner
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (C.T.); (R.N.D.)
| | - R. Neil Dalton
- Evelina London Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK; (C.T.); (R.N.D.)
| | - N. Joan Abbott
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK; (A.R.G.); (N.J.A.)
| | - Simon J. R. Heales
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London WC1N 3BG, UK;
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK;
| | - Jane E. Preston
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK; (A.R.G.); (N.J.A.)
- Correspondence: ; Tel.: +44-207-848-4881
| |
Collapse
|
8
|
Christensen SC, Krogh BO, Jensen A, Andersen CBF, Christensen S, Nielsen MS. Characterization of basigin monoclonal antibodies for receptor-mediated drug delivery to the brain. Sci Rep 2020; 10:14582. [PMID: 32884039 PMCID: PMC7471916 DOI: 10.1038/s41598-020-71286-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The brain uptake of biotherapeutics for brain diseases is hindered by the blood–brain barrier (BBB). The BBB selectively regulates the transport of large molecules into the brain and thereby maintains brain homeostasis. Receptor-mediated transcytosis (RMT) is one mechanism to deliver essential proteins into the brain parenchyma. Receptors expressed in the brain endothelial cells have been explored to ferry therapeutic antibodies across the BBB in bifunctional antibody formats. In this study, we generated and characterized monoclonal antibodies (mAbs) binding to the basigin receptor, which recently has been proposed as a target for RMT across the BBB. Antibody binding properties such as affinity have been demonstrated to be important factors for transcytosis capability and efficiency. Nevertheless, studies of basigin mAb properties' effect on RMT are limited. Here we characterize different basigin mAbs for their ability to associate with and subsequently internalize human brain endothelial cells. The mAbs were profiled to determine whether receptor binding epitope and affinity affected receptor-mediated uptake efficiency. By competitive epitope binning studies, basigin mAbs were categorized into five epitope bins. mAbs from three of the epitope bins demonstrated properties required for RMT candidates judged by binding characteristics and their superior level of internalization in human brain endothelial cells.
Collapse
Affiliation(s)
- Sarah Christine Christensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.,Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Berit Olsen Krogh
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Allan Jensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Søren Christensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Morten Schallburg Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.
| |
Collapse
|
9
|
Mapping Receptor Antibody Endocytosis and Trafficking in Brain Endothelial Cells. Methods Mol Biol 2020. [PMID: 32813236 DOI: 10.1007/7651_2020_312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Drug delivery to the brain is a tremendous problem for the academic society and the industry. One solution with a huge potential is to use endocytic receptors as carriers. Here we describe how endocytic activity and subcellular trafficking of a specific receptor in brain endothelial cells can be characterized in three steps. (1) Labeling, endocytosis, and trafficking of a specific receptor at given time points in a pulse-chase experiment. (2) Fixed antibody labeling and co-staining of subcellular markers for image acquisition. (3) Analysis and quantification of co-localization between the receptor and subcellular markers in ImageJ.
Collapse
|
10
|
Bergman L, Torres-Vergara P, Penny J, Wikström J, Nelander M, Leon J, Tolcher M, Roberts JM, Wikström AK, Escudero C. Investigating Maternal Brain Alterations in Preeclampsia: the Need for a Multidisciplinary Effort. Curr Hypertens Rep 2019; 21:72. [PMID: 31375930 DOI: 10.1007/s11906-019-0977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To provide insight into the mechanisms underlying cerebral pathophysiology and to highlight possible methods for evaluation, screening, and surveillance of cerebral complications in preeclampsia. RECENT FINDINGS The pathophysiology of eclampsia remains enigmatic. Animal studies show that the cerebral circulation in pregnancy and preeclampsia might be affected with increased permeability over the blood-brain barrier and altered cerebral blood flow due to impaired cerebral autoregulation. The increased blood pressure cannot be the only underlying cause of eclampsia and cerebral edema, since some cases of eclampsia arise without simultaneous hypertension. Findings from animal studies need to be confirmed in human tissues. Evaluation of brain alterations in preeclampsia and eclampsia is challenging and demands a multidisciplinary collaboration, since no single method can accurately and fully describe how preeclampsia affects the brain. Cerebral complications of preeclampsia are significant factors in maternal morbidity and mortality worldwide. No single method can accurately describe the full picture of how preeclampsia affects the brain vasculature and parenchyma. We recommend an international and multidisciplinary effort not only to overcome the issue of limited sample availability but also to optimize the quality of research.
Collapse
Affiliation(s)
- Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
- Center for Clinical Research Dalarna, Falun, Uppsala, Sweden.
| | - Pablo Torres-Vergara
- Pharmacy Department, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Maria Nelander
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Jose Leon
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - Mary Tolcher
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - James M Roberts
- Magee Womens Research Institute, Dept of Obstetrics Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.
- Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile.
| |
Collapse
|
11
|
Toth AE, Nielsen SSE, Tomaka W, Abbott NJ, Nielsen MS. The endo-lysosomal system of bEnd.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS 2019; 16:14. [PMID: 31142333 PMCID: PMC6542060 DOI: 10.1186/s12987-019-0134-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Brain endothelial cell-based in vitro models are among the most versatile tools in blood–brain barrier research for testing drug penetration to the central nervous system. Transcytosis of large pharmaceuticals across the brain capillary endothelium involves the complex endo-lysosomal system. This system consists of several types of vesicle, such as early, late and recycling endosomes, retromer-positive structures, and lysosomes. Since the endo-lysosomal system in endothelial cell lines of in vitro blood–brain barrier models has not been investigated in detail, our aim was to characterize this system in different models. Methods For the investigation, we have chosen two widely-used models for in vitro drug transport studies: the bEnd.3 mouse and the hCMEC/D3 human brain endothelial cell line. We compared the structures and attributes of their endo-lysosomal system to that of primary porcine brain endothelial cells. Results We detected significant differences in the vesicular network regarding number, morphology, subcellular distribution and lysosomal activity. The retromer-positive vesicles of the primary cells were distinct in many ways from those of the cell lines. However, the cell lines showed higher lysosomal degradation activity than the primary cells. Additionally, the hCMEC/D3 possessed a strikingly unique ratio of recycling endosomes to late endosomes. Conclusions Taken together our data identify differences in the trafficking network of brain endothelial cells, essentially mapping the endo-lysosomal system of in vitro blood–brain barrier models. This knowledge is valuable for planning the optimal route across the blood–brain barrier and advancing drug delivery to the brain. Electronic supplementary material The online version of this article (10.1186/s12987-019-0134-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| | - Simone S E Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Weronika Tomaka
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark
| | - N Joan Abbott
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| |
Collapse
|
12
|
Galla HJ. Monocultures of primary porcine brain capillary endothelial cells: Still a functional in vitro model for the blood-brain-barrier. J Control Release 2018; 285:172-177. [PMID: 30005905 DOI: 10.1016/j.jconrel.2018.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
The main obstacle for the treatment of brain diseases is the restriction of the passage of pharmaceuticals across the blood-brain barrier. Endothelial cells line up the cerebral micro vessels and prevent the uncontrolled transfer of polar substances by intercellular tight junctions. In addition to this physical barrier, active transporters of the multi-drug-resistance prevent the passage of hydrophobic substances by refluxing them back to the blood stream. This paper reviews the development and selected applications of an in vitro porcine brain derived primary cell culture system established in the authors lab that closely resembles the BBB in vivo and could thus be used to study beyond other applications drug delivery to the brain. An essential technique to control the intactness or destruction of the barrier, the impedance spectroscopy, will be introduced. It will be shown that nanoparticles can cross the blood brain barrier by two mechanisms: opening the tight junctions and thus allowing parallel import of substances into the brain as well as receptor mediated endocytosis using brain specific target molecules. However cytotoxic effects have to be considered as well which beside standard cytotoxicity assays could be also determined by impedance technology. Moreover it will be shown that enzymes e.g. for enzyme replacement therapy could be transferred across the barrier by proper tuning or chemical modification of the enzyme. Since this review is based on a conference presentation it will mainly focus on applications of the monoculture system developed in the authors lab which under given culture conditions is useful due to its easy availability, robustness, good reproducibility and also due to its simplicity. Improvements of this model made by other groups will be acknowledged but not discussed here in detail.
Collapse
Affiliation(s)
- Hans-Joachim Galla
- Institute for Biochemistry, Westfälische Wilhems Universität,Münster, Wilhelm Klemm Str. 2, 48149 Münster, Germany.
| |
Collapse
|
13
|
Toth AE, Siupka P, P Augustine TJ, Venø ST, Thomsen LB, Moos T, Lohi HT, Madsen P, Lykke-Hartmann K, Nielsen MS. The Endo-Lysosomal System of Brain Endothelial Cells Is Influenced by Astrocytes In Vitro. Mol Neurobiol 2018; 55:8522-8537. [PMID: 29560581 DOI: 10.1007/s12035-018-0988-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/05/2018] [Indexed: 12/28/2022]
Abstract
Receptor- and adsorptive-mediated transport through brain endothelial cells (BEC) of the blood-brain barrier (BBB) involves a complex array of subcellular vesicular structures, the endo-lysosomal system. It consists of several types of vesicles, such as early, recycling, and late endosomes, retromer-positive structures, and lysosomes. Since this system is important for receptor-mediated transcytosis of drugs across brain capillaries, our aim was to characterise the endo-lysosomal system in BEC with emphasis on their interactions with astrocytes. We used primary porcine BEC in monoculture and in co-culture with primary rat astrocytes. The presence of astrocytes changed the intraendothelial vesicular network and significantly impacted vesicular number, morphology, and distribution. Additionally, gene set enrichment analysis revealed that 60 genes associated with vesicular trafficking showed altered expression in co-cultured BEC. Cytosolic proteins involved in subcellular trafficking were investigated to mark transport routes, such as RAB25 for transcytosis. Strikingly, the adaptor protein called AP1-μ1B, important for basolateral sorting in epithelial cells, was not expressed in BEC. Altogether, our data pin-point unique features of BEC trafficking network, essentially mapping the endo-lysosomal system of in vitro BBB models. Consequently, our findings constitute a valuable basis for planning the optimal route across the BBB when advancing drug delivery to the brain.
Collapse
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Piotr Siupka
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Thomas J P Augustine
- Research Program for Molecular Neurology, Helsinki University, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Susanne T Venø
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark
| | - Louiza B Thomsen
- Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.,Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3, 9220, Aalborg, Denmark
| | - Torben Moos
- Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.,Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3, 9220, Aalborg, Denmark
| | - Hannes T Lohi
- Research Program for Molecular Neurology, Helsinki University, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Peder Madsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgårdsvej 21, 8200, Aarhus, Denmark.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Bartholins Alle 6, 8000, Aarhus, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Ole Worms Allé 3, 8000, Aarhus, Denmark. .,Lundbeck Foundation, Research Initiative on Brain Barriers and Drug Delivery, Scherfigsvej 7, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Toth AE, Nielsen MS. Analysis of the trafficking system in blood-brain barrier models by high content screening microscopy. Neural Regen Res 2018; 13:1883-1884. [PMID: 30233057 PMCID: PMC6183033 DOI: 10.4103/1673-5374.239435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Andrea E Toth
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|