1
|
Sondgeroth K, Boyman E, Pathare R, Porta M. Voltage-Gated Calcium Channels and the Parity-Dependent Differential Uterine Response to Oxytocin in Rats. Reprod Sci 2025; 32:300-315. [PMID: 39806167 PMCID: PMC11825554 DOI: 10.1007/s43032-024-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin. Dose-inhibition responses to mibefradil (TTCC inhibitor) and verapamil (LTCC inhibitor) were conducted on isolated V and PB uterine strips. These experiments were followed by dose-response curves to oxytocin (10-10 to 10-5 M) in the presence of 10 µM of each inhibitor. Area-under-the-curve (AUC), amplitude, frequency, and duration of contractions were measured. V uteri generally showed a greater dependence on VGCCs, especially TTCCs. However, PB uteri exhibited a stronger frequency response to oxytocin. Blocking TTCCs had a more pronounced impact on the differential oxytocin response, particularly affecting the frequency component of contractions. The stronger frequency response in PB uteri may be due to a higher concentration of TTCCs in their myometrial pacemaker cells. This study provides supporting evidence that pregnancy induces lasting changes in uterine calcium handling. Our findings suggest that TTCCs play a more important role than LTCC in the parity-dependent differential response to oxytocin. The impact of ORAI and TRP channels still needs to be evaluated, to gain a more comprehensive understanding of the relative impact of voltage-gated calcium channels vs. storage-operated calcium entry channels on this phenomenon.
Collapse
Affiliation(s)
- Korie Sondgeroth
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Elisabeth Boyman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Riya Pathare
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Maura Porta
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
2
|
Ulrich CC, Parker LL, Lambert JA, Baldwin L, Buxton ILO, Etezadi-Amoli N, Leblanc N, Burkin HR. Matrix Metallopeptidase 9 Promotes Contraction in Human Uterine Myometrium. Reprod Sci 2025; 32:444-454. [PMID: 39776427 PMCID: PMC11825266 DOI: 10.1007/s43032-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Matrix metallopeptidase 9 (MMP9) is a secreted zinc-dependent peptidase known for extracellular remodeling. MMP9 is elevated in tissues from women experiencing preterm labor, and previous research has shown that the addition of combined matrix metallopeptidases 2 and 9 (MMP2/9) enhances uterine contractions. We hypothesized that adding MMP9 alone would enhance myometrial contractions and that specific MMP9 inhibition would suppress uterine contractions. In myometrial tissue from women undergoing term Caesarean sections, we observed an increased contractile response as measured by area under the curve over time in tissues treated with MMP9 compared to vehicle-treated controls (p = 0.0003). This effect was primarily due to increased contraction frequency in MMP9-treated tissues compared to controls (p < 0.0001). Specific inhibition of MMP9 with the highly selective MMP9 inhibitor 1 (AG-L-66085) reduced contractile responses in myometrial tissues from pregnant women. We observed a reduction in the oxytocin-induced contractile response as measured by area under the curve over time (p < 0.0001) and contraction amplitude (p < 0.0068) in AG-L-66085-treated tissues compared to vehicle-treated controls. To determine the effects of MMP9 inhibition in the absence of exogenous oxytocin, we tested the effects of AG-L-66085 on spontaneous contractions. The area under the curve (p = 0.0415) and amplitude (p = 0.0354) of spontaneous contractions were reduced in response to 1 μM AG-L-66085, and the inhibitory effects increased as the AG-L-66085 concentration increased. Together, these data support the hypothesis that elevated MMP9 promotes myometrial contractions and labor, while its inhibition promotes relaxation.
Collapse
Affiliation(s)
- Craig C Ulrich
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lauren L Parker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Janet A Lambert
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Lexa Baldwin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Iain L O Buxton
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Neda Etezadi-Amoli
- Department of Obstetrics and Gynecology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA
| | - Heather R Burkin
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
3
|
Maxey AP, Wheeler SJ, Travis JM, McCain ML. Contractile responses of engineered human μmyometrium to prostaglandins and inflammatory cytokines. APL Bioeng 2024; 8:046115. [PMID: 39734362 PMCID: PMC11672207 DOI: 10.1063/5.0233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024] Open
Abstract
Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (μmyometrium) on compliant hydrogels designed for traction force microscopy. We then measured μmyometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our μmyometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.
Collapse
Affiliation(s)
- Antonina P. Maxey
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Sage J. Wheeler
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Jaya M. Travis
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | | |
Collapse
|
4
|
Lammers SM, Peczkowski KK, Patel N, Abdelwahab M, Summerfield TL, Costantine MM, Janssen PML, Kniss DA, Frey HA. Maternal Body Mass Index, Myometrium Contractility and Uterotonic Receptor Expression in Pregnancy. Reprod Sci 2024; 31:3016-3025. [PMID: 39060750 PMCID: PMC11438831 DOI: 10.1007/s43032-024-01661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pregnant individuals with obesity (body mass index, BMI ≥ 30 kg/m2) are more likely to experience prolonged labor and have double the risk of cesarean compared with individuals with normal weight (BMI < 25 kg/m2). The aim of this study was to evaluate whether obesity in pregnancy is associated with reduced spontaneous and oxytocin-stimulated myometrial contractile activity using ex vivo preparations. We also assessed the relationship between maternal BMI and the expression of oxytocin (OXTR) and prostaglandin (FP) receptors in the myometrial tissue. We enrolled 73 individuals with a singleton gestation undergoing scheduled cesarean delivery at term in a prospective cohort study. This included 49 individuals with a pre-pregnancy BMI ≥ 30 kg/m2 and 24 with BMI < 25.0 kg/m2. After delivery, a small strip of myometrium was excised from the upper edge of the hysterotomy. Baseline spontaneous and oxytocin stimulated myometrial contractile activity was measured using ex vivo preparations. Additionally, expression of oxytocin and prostaglandin receptors from myometrial samples were compared using qRT-PCR and western blot techniques. Spontaneous and oxytocin-stimulated contraction frequency, duration, and force were not significantly different in myometrial samples from the obese and normal-weight individuals. Myometrial OXTR gene and protein expression was also similar in the two groups. While FP gene expression was lower in the myometrial samples from the obese group, protein expression did not differ. These data help to address an important knowledge gap related to the biological mechanisms underlying the association between maternal obesity and dysfunctional labor.
Collapse
Affiliation(s)
- Sydney M Lammers
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Kyra K Peczkowski
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, OH, USA
| | - Niharika Patel
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Mahmoud Abdelwahab
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Taryn L Summerfield
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Maged M Costantine
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, College of Medicine, Columbus, OH, USA
| | - Douglas A Kniss
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA
- Laboratory of Perinatal Research, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Heather A Frey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, 395 W. 12Th Ave, 5Th Floor, Columbus, OH, USA.
| |
Collapse
|
5
|
Bao J, Ma X, Kent LN, Wakle-Prabagaran M, McCarthy R, England SK. BKCa channels are involved in spontaneous and lipopolysaccharide-stimulated uterine contraction in late gestation mice†. Biol Reprod 2024; 110:798-807. [PMID: 38134962 PMCID: PMC11017124 DOI: 10.1093/biolre/ioad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/27/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The large-conductance, voltage-gated, calcium (Ca2+)-activated potassium channel (BKCa) is one of the most abundant potassium channels in the myometrium. Previous work conducted by our group has identified a link between inflammation, BKCa channels and excitability of myometrial smooth muscle cells. Here, we investigate the role of BKCa channels in spontaneous and lipopolysaccharide (LPS)-stimulated uterine contraction to gain a better understanding of the relationship between the BKCa channel and uterine contraction in basal and inflammatory states. Uteri of C57BL/6 J mice on gestational day 18.5 (GD18.5) were obtained and either fixed in formalin or used immediately for tension recording or isolation of primary myocytes for patch-clamp. Paraffin sections were used for immunofluorescenctdetection of BKCa and Toll-like receptor (TLR4). For tension recordings, LPS was administered to determine its effect on uterine contractions. Paxilline, a BKCa inhibitor, was used to dissect the role of BKCa in uterine contraction in basal and inflammatory states. Finally, patch-clamp recordings were performed to investigate the relationship between LPS, the BKCa channel and membrane currents in mouse myometrial smooth muscle cells (mMSMCs). We confirmed the expression of BKCa and TLR4 in the myometrium of GD18.5 mice and found that inhibiting BKCa channels with paxilline suppressed both spontaneous and LPS-stimulated uterine contractions. Furthermore, application of BKCa inhibitors (paxilline or iberiotoxin) after LPS inhibited BKCa channel activity in mMSMCs. Moreover, pretreatment with BKCa inhibitor or the TLR4 inhibitor suppressed LPS-activated BKCa currents. Our study demonstrates that BKCa channels are involved in both basal and LPS-stimulated uterine contraction in pregnant mice.
Collapse
Affiliation(s)
- Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaofeng Ma
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey N Kent
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Monali Wakle-Prabagaran
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Wu L, Yang Y, Lin M, Wang H, Li L, Wu H, Wang X, Yan M. Unraveling the anti-primary dysmenorrhea mechanism of Ainsliaea fragrans Champ. extract by the integrative approach of network pharmacology and experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155213. [PMID: 37980805 DOI: 10.1016/j.phymed.2023.155213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND The plant Ainsliaea fragrans Champ. (A. fragrans) named "Xingxiang Tuerfeng", is a traditional herb with a long history of therapeutic practice in southern China in the treatment of gynecological diseases. PURPOSE The anti-inflammatory extract of Ainsliaea fragrans Champ. (AF-ext) exhibited anti-primary dysmenorrhea (PD) activity in oxytocin-induced mice. This study aimed to unravel the underlying mechanisms of AF-ext on PD by the integrative approach of network pharmacology and experimental verification. METHODS First, the therapeutic targets of AF-ext are predicted using network pharmacology and molecular docking methods. Second, activity screening and immunoblotting methods were used for target validation. Then, the therapeutic effect of AF-ext on PD was evaluated using oxytocin-induced mice and uterine strips model. RESULTS AF-p1, and AF-p2, the active ingredients of AF-ext, showed inhibitory effects on COX1/2 and EGFR, and all five active components showed antagonistic activity on TRPV1. AF-ext (25, 50, 100 mg/kg) could significantly reduce the number of writhing times and prolong writhing latencies in a dose-dependent manner. AF-ext inhibited spasmolytic activity in uterine strips induced by oxytocin and Ca2+ stimulation. AF-ext inhibited NF-κB/COX-2/PG pathway and activation of the NLRP3 inflammasome in PD mice. It significantly downregulated the PD-induced overexpression of p-p65/p65, p-IκBα, and COX-2 by inhibiting the NF-κB pathway. Moreover, the overexpression of NLRP3, p20/pro-Caspase 1, and p17/pro-IL-1β was greatly downregulated. CONCLUSIONS AF-ext demonstrated anti-inflammatory, analgesic, and spasmolytic activity in the treatment of PD. It inhibited the NF-κB/COX-2/PG pathway and NLRP3 inflammasome activation in PD mice with a multi-target approach.
Collapse
Affiliation(s)
- Liang Wu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China; Shenzhen Research Institute of China, Pharmaceutical University, Shenzhen 518057, China
| | - Ying Yang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Min Lin
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Haiqing Wang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Luqian Li
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Haixia Wu
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Xue Wang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China
| | - Ming Yan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
7
|
Arman BM, Binder NK, de Alwis N, Beard S, Debruin DA, Hayes A, Tong S, Kaitu'u-Lino TJ, Hannan NJ. Assessment of the tocolytic nifedipine in preclinical primary models of preterm birth. Sci Rep 2023; 13:5646. [PMID: 37024530 PMCID: PMC10079980 DOI: 10.1038/s41598-023-31077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used in cases of imminent preterm birth to inhibit uterine contractions. Nifedipine is a calcium channel blocking agent used to delay threatened spontaneous preterm birth, however, has limited efficacy and lacks preclinical data regarding mechanisms of action. It is unknown if nifedipine affects the pro-inflammatory environment associated with preterm labour pathophysiology and we hypothesise nifedipine only targets myometrial contraction rather than also mitigating inflammation. We assessed anti-inflammatory and anti-contractile effects of nifedipine on human myometrium using in vitro and ex vivo techniques, and a mouse model of preterm birth. We show that nifedipine treatment inhibited contractions in myometrial in vitro contraction assays (P = 0.004 vs. vehicle control) and potently blocked spontaneous and oxytocin-induced contractions in ex vivo myometrial tissue in muscle myography studies (P = 0.01 vs. baseline). Nifedipine treatment did not reduce gene expression or protein secretion of pro-inflammatory cytokines in either cultured myometrial cells or ex vivo tissues. Although nifedipine could delay preterm birth in some mice, this was not consistent in all dams and was overall not statistically significant. Our data suggests nifedipine does not modulate preterm birth via inflammatory pathways in the myometrium, and this may account for its limited clinical efficacy.
Collapse
Affiliation(s)
- Bridget M Arman
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | - Danielle A Debruin
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 3000, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St AlbansVictoria, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, 3000, Australia
- Australian Institute for Musculoskeletal Science, Victoria University, St AlbansVictoria, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, University of Melbourne, St Albans, Victoria, 3021, Australia
| | - Stephen Tong
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia
| | | | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, 163 Studley Rd, Heidelberg, Victoria, 3084, Australia.
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, 3084, Australia.
| |
Collapse
|
8
|
Garrett AS, Means SA, Roesler MW, Miller KJW, Cheng LK, Clark AR. Modeling and experimental approaches for elucidating multi-scale uterine smooth muscle electro- and mechano-physiology: A review. Front Physiol 2022; 13:1017649. [PMID: 36277190 PMCID: PMC9585314 DOI: 10.3389/fphys.2022.1017649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus provides protection and nourishment (via its blood supply) to a developing fetus, and contracts to deliver the baby at an appropriate time, thereby having a critical contribution to the life of every human. However, despite this vital role, it is an under-investigated organ, and gaps remain in our understanding of how contractions are initiated or coordinated. The uterus is a smooth muscle organ that undergoes variations in its contractile function in response to hormonal fluctuations, the extreme instance of this being during pregnancy and labor. Researchers typically use various approaches to studying this organ, such as experiments on uterine muscle cells, tissue samples, or the intact organ, or the employment of mathematical models to simulate the electrical, mechanical and ionic activity. The complexity exhibited in the coordinated contractions of the uterus remains a challenge to understand, requiring coordinated solutions from different research fields. This review investigates differences in the underlying physiology between human and common animal models utilized in experiments, and the experimental interventions and computational models used to assess uterine function. We look to a future of hybrid experimental interventions and modeling techniques that could be employed to improve the understanding of the mechanisms enabling the healthy function of the uterus.
Collapse
Affiliation(s)
| | | | | | | | | | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Upchurch WJ, Iaizzo PA. In vitro contractile studies within isolated tissue baths: Translational research from Visible Heart ® Laboratories. Exp Biol Med (Maywood) 2022; 247:584-597. [PMID: 35068214 PMCID: PMC9014520 DOI: 10.1177/15353702211070535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
The isolated tissue bath research methodology was first developed in 1904. Since then, it has been recognized as an important tool in pharmacology and physiology research, including investigations into neuromuscular disorders. The tissue bath is still used routinely as the instrument for performing the "gold standard" test for clinical diagnosis of malignant hyperthermia susceptibility - the caffeine-halothane contracture test. Our research group has utilized this tool for several decades for a range of research studies, and we are currently one of four North American diagnostic centers for determining susceptibility for malignant hyperthermia. This review provides a brief summary of some of the historical uses of the tissue bath. Important experimental considerations for the operation of the tissue bath are further described. Finally, we discuss the different studies our group has performed using isolated tissue baths to highlight the broad potential applications.
Collapse
Affiliation(s)
- Weston J Upchurch
- Department of Surgery, University of
Minnesota, Minneapolis, MN 55455, USA
- Bioinformatics and Computational
Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul A Iaizzo
- Department of Surgery, University of
Minnesota, Minneapolis, MN 55455, USA
- Bioinformatics and Computational
Biology Program, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Engineering in Medicine,
University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Hansen CJ, Siricilla S, Boatwright N, Rogers JH, Kumi ME, Herington J. Effects of Solvents, Emulsions, Cosolvents, and Complexions on Ex Vivo Mouse Myometrial Contractility. Reprod Sci 2022; 29:586-595. [PMID: 33852137 PMCID: PMC8782813 DOI: 10.1007/s43032-021-00576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
A great need exists to develop tocolytic and uterotonic drugs that combat poor, labor-related maternal and fetal outcomes. A widely utilized method to assess novel compounds for their tocolytic and uterotonic efficacy is the isometric organ bath contractility assay. Unfortunately, water-insoluble compounds can be difficult to test using the physiological, buffer-based, organ bath assay. Common methods for overcoming solubility issues include solvent variation, cosolvency, surfactant or complexion use, and emulsification. However, these options for drug delivery or formulation can impact tissue function. Therefore, the goal of this study was to evaluate the ability of common solvents, surfactants, cosolvents, and emulsions to adequately solubilize compounds in the organ bath assay without affecting mouse myometrial contractility. We found that acetone, acetonitrile, and ethanol had the least effect, while dimethylacetamide, ethyl acetate, and isopropanol displayed the greatest inhibition of myometrial contractility based on area under the contractile curve analyses. The minimum concentration of surfactants, cosolvents, and human serum albumin required to solubilize nifedipine, a current tocolytic drug, resulted in extensive bubbling in the organ bath assay, precluding their use. Finally, we report that an oil-in-water base emulsion containing no drug has no statistical effect beyond the control (water), while the drug emulsion yielded the same potency and efficacy as the freely solubilized drug.
Collapse
Affiliation(s)
- Christopher J Hansen
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, 2215B Garland Ave, 1125 Light Hall, Nashville, TN, 37232, USA
| | - Shajila Siricilla
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, 2215B Garland Ave, 1125 Light Hall, Nashville, TN, 37232, USA
| | - Naoko Boatwright
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, 2215B Garland Ave, 1125 Light Hall, Nashville, TN, 37232, USA
| | - Jackson H Rogers
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, 2215B Garland Ave, 1125 Light Hall, Nashville, TN, 37232, USA
| | - Melissa E Kumi
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, 2215B Garland Ave, 1125 Light Hall, Nashville, TN, 37232, USA
| | - Jennifer Herington
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, 2215B Garland Ave, 1125 Light Hall, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Qu M, Lu P, Bellve K, Lifshitz LM, ZhuGe R. Mode Switch of Ca 2 + Oscillation-Mediated Uterine Peristalsis and Associated Embryo Implantation Impairments in Mouse Adenomyosis. Front Physiol 2021; 12:744745. [PMID: 34803733 PMCID: PMC8599363 DOI: 10.3389/fphys.2021.744745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Adenomyosis is a debilitating gynecological disease of the uterus with no medicinal cure. The tissue injury and repair hypothesis for adenomyosis suggests that uterine hyperperistalsis or dysperistalsis plays a pivotal role in establishing adenomyotic lesions. However, specific impairments in uterine peristalsis and the underlying cellular signals for these changes in adenomyosis remain elusive. Here, we report a precision-cut uterine slice preparation that preserves in vivo uterine architecture and generates peristalsis similar to that seen in the whole uterus. We found that uterine peristalsis in neonatal mice at day 14 and adult mice at day 55 presents as bursts with multiple peaks induced by intracellular Ca2+ oscillations. Using a mouse model of adenomyosis induced by tamoxifen, a selective estrogen receptor modulator, we discovered that uterine peristalsis and Ca2+ oscillations from adenomyotic uteri on days 14 and 55 become spikes (single peaks) with smaller amplitudes. The peak frequency of Ca2+ oscillations or peristalsis does not show a difference between control and adenomyotic mice. However, both the estimated force generated by uterine peristalsis and the total Ca2+ raised by Ca2+ oscillations are smaller in uteri from adenomyotic mice. Uteri from adenomyotic mice on day 14, but not on day 55, exhibit hyperresponsiveness to oxytocin. Embryo implantations are decreased in adenomyotic adult mice. Our results reveal a mode switch from bursts to spikes (rather than an increased peak frequency) of uterine Ca2+ oscillations and peristalsis and concurrent hyperresponsiveness to oxytocin in the neonatal stage are two characteristics of adenomyosis. These characteristics may contribute to embryo implantation impairments and decreased fertility in adenomyosis.
Collapse
Affiliation(s)
- Mingzi Qu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ping Lu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lawrence M Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
12
|
Human Myometrial Contractility Assays. Methods Mol Biol 2021. [PMID: 34550566 DOI: 10.1007/978-1-0716-1759-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Traditional contractility assays using an organ bath setup consist of several chambers (or baths) perfused with temperature-controlled, oxygenated physiological saline. Strips or rings of tissue (usually smooth or cardiac muscle) are mounted within the organ bath between a fixed hook and an isometric force transducer. The contraction force is recorded by the transducer and different parameters of contraction are analyzed. Different experimental protocols can be performed to investigate the effect of drugs and reagents on tissue contractility to investigate tissue physiology or determine the in vivo potential of novel pharmaceutical compounds. Here, the application of a modified organ bath to measure ex vivo contractions of small strips of human uterine smooth muscle (myometrium) is described, as well as protocols to study the effect of oxytocin and uterine relaxants on contraction.
Collapse
|
13
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
14
|
Maxey AP, McCain ML. Tools, techniques, and future opportunities for characterizing the mechanobiology of uterine myometrium. Exp Biol Med (Maywood) 2021; 246:1025-1035. [PMID: 33554648 DOI: 10.1177/1535370221989259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The myometrium is the smooth muscle layer of the uterus that generates the contractions that drive processes such as menstruation and childbirth. Aberrant contractions of the myometrium can result in preterm birth, insufficient progression of labor, or other difficulties that can lead to maternal or fetal complications or even death. To investigate the underlying mechanisms of these conditions, the most common model systems have conventionally been animal models and human tissue strips, which have limitations mostly related to relevance and scalability, respectively. Myometrial smooth muscle cells have also been isolated from patient biopsies and cultured in vitro as a more controlled experimental system. However, in vitro approaches have focused primarily on measuring the effects of biochemical stimuli and neglected biomechanical stimuli, despite the extensive evidence indicating that remodeling of tissue rigidity or excessive strain is associated with uterine disorders. In this review, we first describe the existing approaches for modeling human myometrium with animal models and human tissue strips and compare their advantages and disadvantages. Next, we introduce existing in vitro techniques and assays for assessing contractility and summarize their applications in elucidating the role of biochemical or biomechanical stimuli on human myometrium. Finally, we conclude by proposing the translation of "organ on chip" approaches to myometrial smooth muscle cells as new paradigms for establishing their fundamental mechanobiology and to serve as next-generation platforms for drug development.
Collapse
Affiliation(s)
- Antonina P Maxey
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Identification and validation of suitable reference genes for quantitative real-time PCR gene expression analysis in pregnant human myometrium. Mol Biol Rep 2021; 48:413-423. [PMID: 33386589 PMCID: PMC7884357 DOI: 10.1007/s11033-020-06066-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/12/2022]
Abstract
Accurate quantification of quantitative PCR (qPCR) data requires a set of stable reference genes (RGs) for normalisation. Despite its importance to mechanistic studies, no evaluation of RG stability has been conducted for pregnant human myometrium. A systematic search of the literature was performed to identify the most used RGs in human myometrial gene expression studies. The stability of these genes, and others, was then evaluated using geNorm and NormFinder algorithms, in samples of myometrium from singleton or twin pregnancies (n = 7 per group) delivering at term or preterm. The most frequently cited RGs were GAPDH, ACTB, B2M and 18s. There was strong agreement between algorithms on the most and least stable genes: Both indicated CYC1, YWHAZ and ATP5B were the most stably expressed. Despite being some of the most used RGs, B2M, 18s and ACTB expression was least stable and was too variable for use as accurate normalisation factors. Pairwise variation analysis determined that the optimal number of RGs for accurate normalisation is two. Validation of the choice of RGs by comparing relative expression of oxytocin receptors (OXTR) using the least stable 18s and B2M, with the most stable, CYC1 and YWHAZ, erroneously demonstrated significantly increased OXTR expression in myometrium in singleton pregnancies compared to twins. This study demonstrates the importance of appropriate RG selection for accurate quantification of relative expression in pregnant human myometrium qPCR studies. For normalisation, the geometric mean of CYC1 and YWHAZ or ATP5B is suggested. The use of ACTB, 18s and B2M, is not recommended.
Collapse
|
16
|
Gnecco JS, Brown AT, Kan EL, Baugh L, Ives C, Loring M, Griffith LG. Physiomimetic Models of Adenomyosis. Semin Reprod Med 2020; 38:179-196. [PMID: 33176387 PMCID: PMC7803459 DOI: 10.1055/s-0040-1719084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenomyosis remains an enigmatic disease in the clinical and research communities. The high prevalence, diversity of morphological and symptomatic presentations, array of potential etiological explanations, and variable response to existing interventions suggest that different subgroups of patients with distinguishable mechanistic drivers of disease may exist. These factors, combined with the weak links to genetic predisposition, make the entire spectrum of the human condition challenging to model in animals. Here, after an overview of current approaches, a vision for applying physiomimetic modeling to adenomyosis is presented. Physiomimetics combines a system's biology analysis of patient populations to generate hypotheses about mechanistic bases for stratification with in vitro patient avatars to test these hypotheses. A substantial foundation for three-dimensional (3D) tissue engineering of adenomyosis lesions exists in several disparate areas: epithelial organoid technology; synthetic biomaterials matrices for epithelial–stromal coculture; smooth muscle 3D tissue engineering; and microvascular tissue engineering. These approaches can potentially be combined with microfluidic platform technologies to model the lesion microenvironment and can potentially be coupled to other microorgan systems to examine systemic effects. In vitro patient-derived models are constructed to answer specific questions leading to target identification and validation in a manner that informs preclinical research and ultimately clinical trial design.
Collapse
Affiliation(s)
- Juan S Gnecco
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Alex T Brown
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ellen L Kan
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lauren Baugh
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Clara Ives
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Megan Loring
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Endometriosis and Adenomyosis Care Collaborative, Center for Minimally Invasive Gynecologic Surgery, Newton Wellesley Hospital, Newton, Massachusetts
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
17
|
Human Uterine Biopsy: Research Value and Common Pitfalls. Int J Reprod Med 2020; 2020:9275360. [PMID: 32411783 PMCID: PMC7206876 DOI: 10.1155/2020/9275360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/26/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
The human uterus consists of the inner endometrium, the myometrium, and the outer serosa. Knowledge of the function of the uterus in health and disease is relevant to reproduction, fertility, embryology, gynaecology, endocrinology, and oncology. Research performed on uterine biopsies is essential to further the current understanding of human uterine biology. This brief review explores the value of the uterine biopsy in gynaecological and human fertility research and explores the common problems encountered when analysing data generated from different types of uterine biopsies, with the aim of improving the quality, reproducibility, and clinical translatability of future research.
Collapse
|
18
|
Effect of the double bond conjugation on the vascular physiology and nitric oxide production of isomers of eicosapentaenoic and docosahexaenoic acids prepared from shark oil. PLoS One 2020; 15:e0229435. [PMID: 32107491 PMCID: PMC7046235 DOI: 10.1371/journal.pone.0229435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
A collection of evidence suggests that conjugation of double bonds of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, omega-3 polyunsaturated fatty acids (n-3 PUFAs), increases their anticarcinogenic activity; however, the effect of such conjugation on vascular tone activity remains unknown. We propose that the mixture of conjugated PUFAs exerts higher vasorelaxation activity than the corresponding mixture of nonconjugated PUFAs. The vascular response to different concentrations of conjugated and nonconjugated isomers of EPA and DHA, among other fatty acids (FAs) naturally present in shark oil, and the role of nitric oxide (NO) as a vasorelaxant agent were investigated. Both conjugated EPA (CEPA) and conjugated DHA (CDHA) were prepared by alkaline isomerization of all PUFAs contained in shark oil. Different concentrations of conjugated and nonconjugated PUFAs were placed in contact with precontracted aortic rings of Wistar rats to assess their effect on vascular tone. All tested samples exerted a vasorelaxant effect. Compared to nonconjugated PUFAs, conjugated isomers exhibited an increase in the dilatation of the aortic rings (P<0.001) in a dose-dependent manner (P<0.001). In addition, nonconjugated PUFAs produced nitric oxide (NO) in a dose-dependent manner, while conjugated PUFAs did not, suggesting that their dilatation mechanism is not totally dependent on NO.
Collapse
|