1
|
Baxter RM, Wang CS, Garcia-Perez JE, Kong DS, Coleman BM, Larchenko V, Schuyler RP, Jackson C, Ghosh T, Rudra P, Paul D, Claassen M, Rochford R, Cambier JC, Ghosh D, Cooper JC, Smith MJ, Hsieh EWY. Expansion of extrafollicular B and T cell subsets in childhood-onset systemic lupus erythematosus. Front Immunol 2023; 14:1208282. [PMID: 37965329 PMCID: PMC10641733 DOI: 10.3389/fimmu.2023.1208282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Most childhood-onset SLE patients (cSLE) develop lupus nephritis (cLN), but only a small proportion achieve complete response to current therapies. The prognosis of children with LN and end-stage renal disease is particularly dire. Mortality rates within the first five years of renal replacement therapy may reach 22%. Thus, there is urgent need to decipher and target immune mechanisms that drive cLN. Despite the clear role of autoantibody production in SLE, targeted B cell therapies such as rituximab (anti-CD20) and belimumab (anti-BAFF) have shown only modest efficacy in cLN. While many studies have linked dysregulation of germinal center formation to SLE pathogenesis, other work supports a role for extrafollicular B cell activation in generation of pathogenic antibody secreting cells. However, whether extrafollicular B cell subsets and their T cell collaborators play a role in specific organ involvement in cLN and/or track with disease activity remains unknown. Methods We analyzed high-dimensional mass cytometry and gene expression data from 24 treatment naïve cSLE patients at the time of diagnosis and longitudinally, applying novel computational tools to identify abnormalities associated with clinical manifestations (cLN) and disease activity (SLEDAI). Results cSLE patients have an extrafollicular B cell expansion signature, with increased frequency of i) DN2, ii) Bnd2, iii) plasmablasts, and iv) peripheral T helper cells. Most importantly, we discovered that this extrafollicular signature correlates with disease activity in cLN, supporting extrafollicular T/B interactions as a mechanism underlying pediatric renal pathogenesis. Discussion This study integrates established and emerging themes of extrafollicular B cell involvement in SLE by providing evidence for extrafollicular B and peripheral T helper cell expansion, along with elevated type 1 IFN activation, in a homogeneous cohort of treatment-naïve cSLE patients, a point at which they should display the most extreme state of their immune dysregulation.
Collapse
Affiliation(s)
- Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Christine S. Wang
- Department of Pediatrics, Section of Rheumatology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Daniel S. Kong
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Brianne M. Coleman
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Valentyna Larchenko
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ronald P. Schuyler
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Conner Jackson
- Center for Innovative Design and Analysis, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Tusharkanti Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, United States
| | - Debdas Paul
- Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Manfred Claassen
- Clinical Bioinformatics & Machine Learning in Translational Single-Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Rosemary Rochford
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, CO, United States
| | - Jennifer C. Cooper
- Department of Pediatrics, Section of Rheumatology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| | - Mia J. Smith
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Barbara Davis Center for Diabetes, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Elena W. Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children’s Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
2
|
Stensland ZC, Coleman BM, Rihanek M, Baxter RM, Gottlieb PA, Hsieh EW, Sarapura VD, Simmons KM, Cambier JC, Smith MJ. Peripheral immunophenotyping of AITD subjects reveals alterations in immune cells in pediatric vs adult-onset AITD. iScience 2022; 25:103626. [PMID: 35005561 PMCID: PMC8718984 DOI: 10.1016/j.isci.2021.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is caused by aberrant activation of the immune system allowing autoreactive B and T cells to target the thyroid gland leading to disease. Although AITD is more frequently diagnosed in adults, children are also affected but rarely studied. Here, we performed phenotypic and functional characterization of peripheral blood immune cells from pediatric and adult-onset AITD patients and age-matched controls using mass cytometry. Major findings indicate that unlike adult-onset AITD patients, pediatric AITD patients exhibit a decrease in anergic B cells (BND) and DN2 B cells and an increase in immature B cells compared to age-matched controls. These results indicate alterations in peripheral blood immune cells seen in pediatric-onset AITD could lead to rapid progression of disease. Hence, this study demonstrates diversity of AITD by showing differences in immune cell phenotypes and function based on age of onset, and may inform future therapies. Penetrance of high-risk HLA-DR3 haplotype is higher in pediatric AITD patients Pediatric AITD patients display altered frequency of autoreactive B cell subsets Immune cell subset frequency and function is similar in adult AITD and controls
Collapse
Affiliation(s)
- Zachary C. Stensland
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brianne M. Coleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Marynette Rihanek
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Virginia D. Sarapura
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | - Kimber M. Simmons
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John C. Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Corresponding author
| |
Collapse
|
3
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
4
|
Okamato Y, Ghosh T, Okamoto T, Schuyler RP, Seifert J, Charry LL, Visser A, Feser M, Fleischer C, Pedrick C, August J, Moss L, Bemis EA, Norris JM, Kuhn KA, Demoruelle MK, Deane KD, Ghosh D, Holers VM, Hsieh EWY. Subjects at-risk for future development of rheumatoid arthritis demonstrate a PAD4-and TLR-dependent enhanced histone H3 citrullination and proinflammatory cytokine production in CD14 hi monocytes. J Autoimmun 2021; 117:102581. [PMID: 33310262 PMCID: PMC7855988 DOI: 10.1016/j.jaut.2020.102581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The presence of anti-citrullinated protein/peptide antibodies (ACPA) and epitope spreading across the target autoantigens is a unique feature of rheumatoid arthritis (RA). ACPA are present in the peripheral blood for several years prior to the onset of arthritis and clinical classification of RA. ACPA recognize multiple citrullinated proteins, including histone H3 (H3). Intracellular citrullination of H3 in neutrophils and T cells is known to regulate immune cell function by promoting neutrophil extracellular trap formation and citrullinated autoantigen release as well as regulating the Th2/Th17 T cell phenotypic balance. However, the roles of H3 citrullination in other immune cells are not fully elucidated. We aimed to explore H3 citrullination and cytokine/metabolomic signatures in peripheral blood immune cells from subjects prior to and after the onset of RA, at baseline and in response to ex vivo toll-like receptor (TLR) stimulation. Here, we analyzed 13 ACPA (+) subjects without arthritis but at-risk for future development of RA, 14 early RA patients, and 13 healthy controls. We found significantly elevated H3 citrullination in CD14hi monocytes, as well as CD1c+ dendritic cells and CD66+ granulocytes. Unsupervised analysis identified two distinct subsets in CD14hi monocytes characterized by H3 modification and unique cytokine/metabolomic signatures. CD14hi monocytes with elevated TLR-stimulated H3 citrullination were significantly increased in ACPA (+) at-risk subjects. These cells were skewed to produce TNFα, MIP1β, IFNα, and partially IL-12. Additionally, they demonstrate peptidyl arginine deiminase 4 (PAD4) mediated upregulation of the glycolytic enzyme PFKFB3. These CD14hi monocytes with elevated H3 citrullination morphologically formed monocyte extracellular traps (METs). Taken together, dysregulated PAD4-driven cytokine production as well as MET formation in CD14hi monocytes in ACPA (+) at-risk subjects likely plays an important role in the development of RA via promoting and perpetuating inflammation and generation of citrullinated autoantigens.
Collapse
Affiliation(s)
- Yuko Okamato
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA; Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan.
| | - Tusharkanti Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Tsukasa Okamoto
- University of Colorado Denver, Department of Medicine, Aurora, CO, USA
| | - Ronald P Schuyler
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Jennifer Seifert
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chong Pedrick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laurakay Moss
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elizabeth A Bemis
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Kristine A Kuhn
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Debashis Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elena W Y Hsieh
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA; University of Colorado School of Medicine, Children's Hospital Colorado, Department of Pediatrics, Section of Allergy & Immunology, Aurora, CO, USA
| |
Collapse
|