1
|
Sun L, Pan X, Li H, Zhang X, Zhao X, Zhang L, Zhang L. Odor-Induced Vomiting Is Combinatorially Triggered by Palp Olfactory Receptor Neurons That Project to the Lobus Glomerulatus in Locust Brain. Front Physiol 2022; 13:855522. [PMID: 35514359 PMCID: PMC9065551 DOI: 10.3389/fphys.2022.855522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 01/26/2023] Open
Abstract
Although vomiting is commonly recognized as a protective reaction in response to toxic stimuli, the elaborate sensory processes and necessary molecular components are not fully clear, which is due to a lack of appropriate experimental animal models. Vomiting reflex to volatile chemicals renders locust one candidate for vomiting model. Here, we identified a panel of chemical cues that evoked evident vomiting in locust nymphs and demonstrated the selected combinatorial coding strategy that palps but not antennae olfactory receptor neurons (ORNs) employed. Specifically, knocking down individual palp odorant receptors (ORs) such as OR17, OR21, and OR22 attenuated the vomiting intensity evoked by E-2-hexenal and hexanal, while suppression of OR12 and OR22 augmented vomiting to E-2-hexenal and 2-hexanone, respectively. Furthermore, dual-RNAi treatment against OR17 or OR21 together with OR22 resulted in a much lower response intensity than that of individual OR suppression. Furthermore, OR12 was revealed in palp sensilla basiconica (pb) subtype 3 to tune the neuronal decaying activity to E-2-hexenal. Finally, anterograde labeling indicated that palp ORNs primarily projected into the lobus glomerulatus (LG), and the projection neurons (PNs) in the LG further projected into the accessary calyx (ACA). Together, the establishment of an olfaction-inducible vomiting model in locusts deepens the understanding of olfactory coding logics and provides an opportunity to clarify the neural basis underlying animal vomiting.
Collapse
Affiliation(s)
- Liyuan Sun
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xueqin Pan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Hongwei Li
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Xinyang Zhang
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Xincheng Zhao
- Department of Entomology, Henan Agricultural University, Zhengzhou, China
| | - Liwei Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing, China
- Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Fernandes FDF, Barletta ABF, Orfanó AS, Pinto LC, Nacif-Pimenta R, Miranda JC, Secundino NFC, Bahia AC, Pimenta PFP. Ultrastructure of the Antennae and Sensilla of Nyssomyia intermedia (Diptera: Psychodidae), Vector of American Cutaneous Leishmaniasis. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1722-1734. [PMID: 32761144 PMCID: PMC7899269 DOI: 10.1093/jme/tjaa124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Indexed: 06/11/2023]
Abstract
The antennal sensilla and the antenna of females Nyssomyia intermedia, one of the main vectors of American cutaneous leishmaniasis, were studied by scanning electron microscopy. The main goal was to characterize the quantity, typology, and topography of the sensilla with particular attention to the olfactory types. The insects were captured in the city of Corte de Pedra, State of Bahia, Brazil, by CDC-type light traps and raised in a laboratory as a new colony. Fourteen well-differentiated sensilla were identified, among six cuticular types: trichoidea, campaniformia, squamiformia, basiconica, chaetica, and coeloconica. Of these, six sensilla were classified as olfactory sensilla due to their specific morphological features. Smaller noninnervated pilosities of microtrichiae type were also evidenced by covering all antennal segments. The antennal segments differ in shapes and sizes, and the amount and distribution of types and subtypes of sensilla. This study may foment future taxonomic and phylogenetic analysis for a better evolutionary understanding of the sand flies. Besides, it may assist the targeting of future electrophysiological studies by Single Sensillum Recording, and aim to develop alternative measures of monitoring and control of this vector.
Collapse
Affiliation(s)
- Fernando de Freitas Fernandes
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), FIOCRUZ, Belo Horizonte, MG, Brazil
- Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Ana Beatriz F Barletta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alessandra S Orfanó
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Luciana C Pinto
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Rafael Nacif-Pimenta
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Jose Carlos Miranda
- Laboratory of Infectious Diseases Transmitted by Vectors, Instituto Gonçalo Moniz, Fiocruz, Salvador, BA, Brazil
| | - Nágila F C Secundino
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), FIOCRUZ, Belo Horizonte, MG, Brazil
| | - Ana Cristina Bahia
- Laboratory of Insects and Parasites Biochemistry, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Paulo F P Pimenta
- Laboratory of Medical Entomology (LEM), René Rachou Institute (IRR), FIOCRUZ, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Chepurwar S, Gupta A, Haddad R, Gupta N. Sequence-Based Prediction of Olfactory Receptor Responses. Chem Senses 2019; 44:693-703. [PMID: 31665762 DOI: 10.1093/chemse/bjz059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computational prediction of how strongly an olfactory receptor (OR) responds to various odors can help in bridging the widening gap between the large number of receptors that have been sequenced and the small number of experiments measuring their responses. Previous efforts in this area have predicted the responses of a receptor to some odors, using the known responses of the same receptor to other odors. Here, we present a method to predict the responses of a receptor without any known responses by using available data about the responses of other conspecific receptors and their sequences. We applied this method to ORs in insects Drosophila melanogaster (both adult and larva) and Anopheles gambiae and to mouse and human ORs. We found the predictions to be in significant agreement with the experimental measurements. The method also provides clues about the response-determining positions within the receptor sequences.
Collapse
Affiliation(s)
- Shashank Chepurwar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Abhishek Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rafi Haddad
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
4
|
Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the Investigation of Volatile Semiochemicals on Insects: From Sampling to Statistical Analysis. INSECTS 2019; 10:insects10080241. [PMID: 31390759 PMCID: PMC6723273 DOI: 10.3390/insects10080241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022]
Abstract
The recognition of volatile organic compounds (VOCs) involved in insect interactions with plants or other organisms is essential for constructing a holistic comprehension of their role in ecology, from which the implementation of new strategies for pest and disease vector control as well as the systematic exploitation of pollinators and natural enemies can be developed. In the present paper, some of the general methods employed in this field are examined, focusing on their available technologies. An important part of the investigations conducted in this context begin with VOC collection directly from host organisms, using classical extraction methods, by the employment of adsorption materials used in solid-phase micro extraction (SPME) and direct-contact sorptive extraction (DCSE) and, subsequently, analysis through instrumental analysis techniques such as gas chromatography (GC), nuclear magnetic resonance (NMR) and mass spectrometry (MS), which provide crucial information for determining the chemical identity of volatile metabolites. Behavioral experiments, electroantennography (EAG), and biosensors are then carried out to define the semiochemicals with the best potential for performing relevant functions in ecological relationships. Chemical synthesis of biologically-active VOCs is alternatively performed to scale up the amount to be used in different purposes such as laboratory or field evaluations. Finally, the application of statistical analysis provides tools for drawing conclusions about the type of correlations existing between the diverse experimental variables and data matrices, thus generating models that simplify the interpretation of the biological roles of VOCs.
Collapse
Affiliation(s)
- Ricardo Barbosa-Cornelio
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Fernando Cantor
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| | - Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia.
| |
Collapse
|