1
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
2
|
Liang W, Huang L, Whelchel A, Yuan T, Ma X, Cheng R, Takahashi Y, Karamichos D, Ma JX. Peroxisome proliferator-activated receptor-α (PPARα) regulates wound healing and mitochondrial metabolism in the cornea. Proc Natl Acad Sci U S A 2023; 120:e2217576120. [PMID: 36943878 PMCID: PMC10068757 DOI: 10.1073/pnas.2217576120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Diabetes can result in impaired corneal wound healing. Mitochondrial dysfunction plays an important role in diabetic complications. However, the regulation of mitochondria function in the diabetic cornea and its impacts on wound healing remain elusive. The present study aimed to explore the molecular basis for the disturbed mitochondrial metabolism and subsequent wound healing impairment in the diabetic cornea. Seahorse analysis showed that mitochondrial oxidative phosphorylation is a major source of ATP production in human corneal epithelial cells. Live corneal biopsy punches from type 1 and type 2 diabetic mouse models showed impaired mitochondrial functions, correlating with impaired corneal wound healing, compared to nondiabetic controls. To approach the molecular basis for the impaired mitochondrial function, we found that Peroxisome Proliferator-Activated Receptor-α (PPARα) expression was downregulated in diabetic human corneas. Even without diabetes, global PPARα knockout mice and corneal epithelium-specific PPARα conditional knockout mice showed disturbed mitochondrial function and delayed wound healing in the cornea, similar to that in diabetic corneas. In contrast, fenofibrate, a PPARα agonist, ameliorated mitochondrial dysfunction and enhanced wound healing in the corneas of diabetic mice. Similarly, corneal epithelium-specific PPARα transgenic overexpression improved mitochondrial function and enhanced wound healing in the cornea. Furthermore, PPARα agonist ameliorated the mitochondrial dysfunction in primary human corneal epithelial cells exposed to diabetic stressors, which was impeded by siRNA knockdown of PPARα, suggesting a PPARα-dependent mechanism. These findings suggest that downregulation of PPARα plays an important role in the impaired mitochondrial function in the corneal epithelium and delayed corneal wound healing in diabetes.
Collapse
Affiliation(s)
- Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Li Huang
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou350000, China
| | - Amy Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
| | - Tian Yuan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Xiang Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK73104
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Rui Cheng
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Yusuke Takahashi
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| | - Dimitrios Karamichos
- Division of Research and Innovation, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX76107
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX76107
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX76107
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC27157
| |
Collapse
|
3
|
Gautier B, Meneux L, Feret N, Audrain C, Hudecek L, Kuony A, Bourdon A, Le Guiner C, Blouin V, Delettre C, Michon F. AAV2/9-mediated gene transfer into murine lacrimal gland leads to a long-term targeted tear film modification. Mol Ther Methods Clin Dev 2022; 27:1-16. [PMID: 36156877 PMCID: PMC9463184 DOI: 10.1016/j.omtm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Corneal blindness is the fourth leading cause of blindness worldwide. Since corneal epithelium is constantly renewed, non-integrative gene transfer cannot be used to treat corneal diseases. In many of these diseases, the tear film is defective. Tears are a complex biological fluid secreted by the lacrimal apparatus. Their composition is modulated according to the context. After a corneal wound, the lacrimal gland secretes reflex tears, which contain growth factors supporting the wound healing process. In various pathological contexts, the tear composition can support neither corneal homeostasis nor wound healing. Here, we propose to use the lacrimal gland as bioreactor to produce and secrete specific factors supporting corneal physiology. In this study, we use an AAV2/9-mediated gene transfer to supplement the tear film. First, we demonstrate that a single injection of AAV2/9 is sufficient to transduce all epithelial cell types of the lacrimal gland efficiently and widely. Second, we detect no adverse effect after AAV2/9-mediated nerve growth factor expression in the lacrimal gland. Only a transitory increase in tear flow is measured. Remarkably, AAV2/9 induces an important and long-lasting secretion of this growth factor in the tear film. Altogether, our findings provide a new clinically applicable approach to tackle corneal blindness.
Collapse
Affiliation(s)
- Benoit Gautier
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Benoit Gautier, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| | - Léna Meneux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Nadège Feret
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Christine Audrain
- TarGeT, Nantes University, INSERM UMR 1089, CHU Nantes, Nantes, France
| | - Laetitia Hudecek
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- MRI, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Alison Kuony
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Cell Adhesion and Mechanics Lab, Université de Paris, CNRS, Institut Jacques Monod, Paris, France
| | - Audrey Bourdon
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | | | - Véronique Blouin
- INSERM UMR 1089, Université de Nantes, CHU de Nantes, Nantes, France
| | - Cécile Delettre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Frédéric Michon
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
- Corresponding author Frédéric Michon, Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
4
|
Ikkala K, Stratoulias V, Michon F. Unilateral zebrafish corneal injury induces bilateral cell plasticity supporting wound closure. Sci Rep 2022; 12:161. [PMID: 34997071 PMCID: PMC8741998 DOI: 10.1038/s41598-021-04086-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
The cornea, transparent and outermost structure of camera-type eyes, is prone to environmental challenges, but has remarkable wound healing capabilities which enables to preserve vision. The manner in which cell plasticity impacts wound healing remains to be determined. In this study, we report rapid wound closure after zebrafish corneal epithelium abrasion. Furthermore, by investigating the cellular and molecular events taking place during corneal epithelial closure, we show the induction of a bilateral response to a unilateral wound. Our transcriptomic results, together with our TGF-beta receptor inhibition experiments, demonstrate conclusively the crucial role of TGF-beta signaling in corneal wound healing. Finally, our results on Pax6 expression and bilateral wound healing, demonstrate the decisive impact of epithelial cell plasticity on the pace of healing. Altogether, our study describes terminally differentiated cell competencies in the healing of an injured cornea. These findings will enhance the translation of research on cell plasticity to organ regeneration.
Collapse
Affiliation(s)
- Kaisa Ikkala
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Vassilis Stratoulias
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Frederic Michon
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland. .,Institute for Neurosciences of Montpellier, Univ Montpellier, INSERM, Montpellier, France.
| |
Collapse
|
5
|
Xu W, Kong B, Xie H, Zhang J, Liu W, Liu S, Zhang Y, Yang F, Xiao J, Mi S, Xiong L, Zhang M, Jiang F. PCL scaffold combined with rat tail collagen type I to reduce keratocyte differentiation and prevent corneal stroma fibrosis after injury. Exp Eye Res 2022; 217:108936. [DOI: 10.1016/j.exer.2022.108936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
|
6
|
Loureiro RR, Cristovam PC, da Rosa LR, Nova L, Gasparetto G, Gil CD, Gomes JÁP. Analysis of different conditioned media secreted by limbal progenitor cells in the modulation of corneal healing. Exp Eye Res 2021; 215:108907. [PMID: 34954203 DOI: 10.1016/j.exer.2021.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
Abstract
Ex vivo cultivation and transplantation of limbal epithelial cells has been reported as an alternative source for ocular surface reconstruction. However, until now, the functional improvement of these patients is limited due to the low survival rate of the transplanted cells. Consequently, the clinical benefits of this therapeutic strategy are only temporary and can assign them to paracrine effects associated with the transplanted cells. With this background in mind, we aimed to analyze the effect of different conditioned media containing growth factors secreted by limbal progenitor cells on corneal epithelial healing, both in vitro and in vivo. Limbal tissue was used to obtain different conditioned media (CM). For the in vitro assay, corneal epithelial cells were treated with CM and the epithelial migration was analyzed. Growth factors in the CM were identified with ELISA and multiplex. For the in vivo assay in rats, total limbal stem cell deficiency (LSCD) was induced with an abrasive injury to the ocular surface, and the animals were treated with different CM. Clinical and histological analyses were performed. In the in vitro assay, treatment with limbal fibroblast (LF CM) was more effective compared to the other CM, and analysis revealed high concentrations of keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF). In the in vivo assay, animals treated with LF CM showed epithelial defect improvement, maintenance of thickness, and decreased opacity and neovascularization. This treatment also allowed better ocular surface tissue organization when compared to the other treatments. The in vitro and in vivo experiments showed better outcomes in the corneal wound healing for the LF CM treatment. The high concentrations of KGF and HGF, linked to epithelial cell migration and proliferation, may correlate to the best results found in this treatment.
Collapse
Affiliation(s)
- Renata Ruoco Loureiro
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Priscila Cardoso Cristovam
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Larissa Rigobeli da Rosa
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucimeire Nova
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Gasparetto
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - José Álvaro Pereira Gomes
- Advanced Center of Ocular Surface (CASO), Department of Ophthalmology and Visual Science, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
7
|
Ammassam Veettil R, Marcano DC, Yuan X, Zaheer M, Adumbumkulath A, Lee R, Isenhart LC, Soriano N, Mhatre K, Joseph R, Mani SA, Shin CS, Acharya G. Dextran Sulfate Polymer Wafer Promotes Corneal Wound Healing. Pharmaceutics 2021; 13:pharmaceutics13101628. [PMID: 34683921 PMCID: PMC8539456 DOI: 10.3390/pharmaceutics13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/11/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Eye injuries due to corneal abrasions, chemical spills, penetrating wounds, and microbial infections cause corneal scarring and opacification that result in impaired vision or blindness. However, presently available eye drop formulations of anti-inflammatory and antibiotic drugs are not effective due to their rapid clearance from the ocular surface or due to drug-related side effects such as cataract formation or increased intraocular pressure. In this article, we presented the development of a dextran sulfate-based polymer wafer (DS-wafer) for the effective modulation of inflammation and fibrosis and demonstrated its efficacy in two corneal injury models: corneal abrasion mouse model and alkali induced ocular burn mouse model. The DS-wafers were fabricated by the electrospinning method. We assessed the efficacy of the DS-wafer by light microscopy, qPCR, confocal fluorescence imaging, and histopathological analysis. These studies demonstrated that the DS-wafer treatment is significantly effective in modulating corneal inflammation and fibrosis and inhibited corneal scarring and opacification compared to the unsulfated dextran-wafer treated and untreated corneas. Furthermore, these studies have demonstrated the efficacy of dextran sulfate as an anti-inflammatory and antifibrotic polymer therapeutic.
Collapse
Affiliation(s)
- Remya Ammassam Veettil
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Daniela C. Marcano
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Xiaoyong Yuan
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Mahira Zaheer
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Aparna Adumbumkulath
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Richard Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Lucas C. Isenhart
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
| | - Nicole Soriano
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Kirti Mhatre
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
| | - Robiya Joseph
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (R.J.); (S.A.M.)
| | - Crystal S. Shin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Correspondence: (C.S.S.); (G.A.)
| | - Ghanashyam Acharya
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; (R.A.V.); (M.Z.); (A.A.); (R.L.); (N.S.); (K.M.)
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; (D.C.M.); (X.Y.); (L.C.I.)
- Correspondence: (C.S.S.); (G.A.)
| |
Collapse
|
8
|
Kuony A, Ikkala K, Kalha S, Magalhães AC, Pirttiniemi A, Michon F. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development 2019; 146:dev.176693. [PMID: 31221639 DOI: 10.1242/dev.176693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
A lack of ectodysplasin-A (Eda) signaling leads to dry eye symptoms, which have so far only been associated with altered Meibomian glands. Here, we used loss-of-function (Eda -/-) mutant mice to unravel the impact of Eda signaling on lacrimal gland formation, maturation and subsequent physiological function. Our study demonstrates that Eda activity is dispensable during lacrimal gland embryonic development. However, using a transcriptomic approach, we show that the Eda pathway is necessary for proper cell terminal differentiation in lacrimal gland epithelium and correlated with modified expression of secreted factors commonly found in the tear film. Finally, we discovered that lacrimal glands present a bilateral reduction of Eda signaling activity in response to unilateral corneal injury. This observation hints towards a role for the Eda pathway in controlling the switch from basal to reflex tears, to support corneal wound healing. Collectively, our data suggest a crucial implication of Eda signaling in the cornea-lacrimal gland feedback loop, both in physiological and pathophysiological conditions. Our findings demonstrate that Eda downstream targets could help alleviate dry eye symptoms.
Collapse
Affiliation(s)
- Alison Kuony
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institut Jacques Monod, Université Denis Diderot - Paris 7, CNRS UMR 7592, Buffon building, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Kaisa Ikkala
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Solja Kalha
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Ana Cathia Magalhães
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| | - Anniina Pirttiniemi
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Frederic Michon
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland .,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|