1
|
Cirves E, Vargas A, Wheeler EE, Leach JK, Simon SI, Gonzalez‐Fernandez T. Neutrophil Granulopoiesis Optimized Through Ex Vivo Expansion of Hematopoietic Progenitors in Engineered 3D Gelatin Methacrylate Hydrogels. Adv Healthc Mater 2024; 13:e2301966. [PMID: 38345178 PMCID: PMC11144100 DOI: 10.1002/adhm.202301966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Neutrophils are the first line of defense of the innate immune system. In response to methicillin-resistant Staphylococcus aureus infection in the skin, hematopoietic stem, and progenitor cells (HSPCs) traffic to wounds and undergo extramedullary granulopoiesis, producing neutrophils necessary to resolve the infection. This prompted the engineering of a gelatin methacrylate (GelMA) hydrogel that encapsulates HSPCs within a matrix amenable to subcutaneous delivery. The authors study the influence of hydrogel mechanical properties to produce an artificial niche for granulocyte-monocyte progenitors (GMPs) to efficiently expand into functional neutrophils that can populate infected tissue. Lin-cKIT+ HSPCs, harvested from fluorescent neutrophil reporter mice, are encapsulated in GelMA hydrogels of varying polymer concentration and UV-crosslinked to produce HSPC-laden gels of specific stiffness and mesh sizes. Softer 5% GelMA gels yield the most viable progenitors and effective cell-matrix interactions. Compared to suspension culture, 5% GelMA results in a twofold expansion of mature neutrophils that retain antimicrobial functions including degranulation, phagocytosis, and ROS production. When implanted dermally in C57BL/6J mice, luciferase-expressing neutrophils expanded in GelMA hydrogels are visualized at the site of implantation for over 5 days. They demonstrate the potential of GelMA hydrogels for delivering HSPCs directly to the site of skin infection to promote local granulopoiesis.
Collapse
Affiliation(s)
- Evan Cirves
- Department of Biomedical EngineeringUniversity of California at Davis451 East Health Sciences Drive, 2303 GBSFDavisCA95616USA
| | - Alex Vargas
- Department of Biomedical EngineeringUniversity of California at Davis451 East Health Sciences Drive, 2303 GBSFDavisCA95616USA
| | - Erika E. Wheeler
- Department of Biomedical EngineeringUniversity of California at Davis451 East Health Sciences Drive, 2303 GBSFDavisCA95616USA
- Department of Orthopaedic SurgeryUC Davis Health4860 Y Street, Suite 3800SacramentoCA95817USA
| | - Jonathan Kent Leach
- Department of Orthopaedic SurgeryUC Davis Health4860 Y Street, Suite 3800SacramentoCA95817USA
| | - Scott I. Simon
- Department of Biomedical Engineering and DermatologyUniversity of California at DavisDavisCA95616USA
| | - Tomas Gonzalez‐Fernandez
- Department of BioengineeringLehigh University124 E Morton Street, Health Science and Technology BuildingBethlehemPA18015USA
| |
Collapse
|
2
|
Regulation of Lysozyme Activity by Human Hormones. IRANIAN BIOMEDICAL JOURNAL 2023; 27:58-65. [PMID: 36624688 PMCID: PMC9971709 DOI: 10.52547/ibj.3614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Lysozyme is a part of human and animal noncellular immunity. The regulation of its activity by hormones is poorly studied. The aim of this study was to test the in vitro activity of lysozyme in the presence of catecholamines, natriuretic hormones, and estradiol (E2). Methods Hormones were incubated with lysozyme, and the activity of lysozome was further determined using a test culture of Micrococcus luteus in the early exponential growth stage. The activity of lysozyme was assessed based on the rate of change in the OD of the test culture. Molecular docking was performed using SwissDock server http://www.swissdock.ch/docking), and molecular structures were further analyzed and visualized in the UCSF Chimera 1.15rc software. Results According to the results, epinephrine and norepinephrine increased lysozyme activity up to 180% compared to the hormone-free enzyme. Changing the pH of the medium from 6.3 to 5.5, increased the lysozyme activity in the presence of E2 up to 150-200 %. The results also showed that exposure to hormones could modify lysozyme ctivity, and this effect depends on the temperature and pH value. The molecular docking revealed a decrease in the activation energy of the active site of enzyme during the interaction of catecholamines with the amino acid residues, asp52 and glu35 of the active site. Conclusion Our findings demonstrate an additional mechanism for the involvement of lysozyme in humoral regulation of nonspecific immunity with respect to human pathogenic microflora and bacterial skin commensals by direct modulation of its activity using human hormones.
Collapse
|
3
|
Talaei K, Garan SA, Quintela BDM, Olufsen MS, Cho J, Jahansooz JR, Bhullar PK, Suen EK, Piszker WJ, Martins NRB, Moreira de Paula MA, Dos Santos RW, Lobosco M. A Mathematical Model of the Dynamics of Cytokine Expression and Human Immune Cell Activation in Response to the Pathogen Staphylococcus aureus. Front Cell Infect Microbiol 2021; 11:711153. [PMID: 34869049 PMCID: PMC8633844 DOI: 10.3389/fcimb.2021.711153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-based mathematical models have previously been developed to simulate the immune system in response to pathogens. Mathematical modeling papers which study the human immune response to pathogens have predicted concentrations of a variety of cells, including activated and resting macrophages, plasma cells, and antibodies. This study aims to create a comprehensive mathematical model that can predict cytokine levels in response to a gram-positive bacterium, S. aureus by coupling previous models. To accomplish this, the cytokines Tumor Necrosis Factor Alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 8 (IL-8), and Interleukin 10 (IL-10) are included to quantify the relationship between cytokine release from macrophages and the concentration of the pathogen, S. aureus, ex vivo. Partial differential equations (PDEs) are used to model cellular response and ordinary differential equations (ODEs) are used to model cytokine response, and interactions between both components produce a more robust and more complete systems-level understanding of immune activation. In the coupled cellular and cytokine model outlined in this paper, a low concentration of S. aureus is used to stimulate the measured cellular response and cytokine expression. Results show that our cellular activation and cytokine expression model characterizing septic conditions can predict ex vivo mechanisms in response to gram-negative and gram-positive bacteria. Our simulations provide new insights into how the human immune system responds to infections from different pathogens. Novel applications of these insights help in the development of more powerful tools and protocols in infection biology.
Collapse
Affiliation(s)
- Kian Talaei
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Steven A Garan
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | | | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, NC, United States
| | - Joshua Cho
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,College of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Julia R Jahansooz
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Puneet K Bhullar
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Mayo Clinic Alix School of Medicine, Scottsdale, AZ, United States
| | - Elliott K Suen
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Walter J Piszker
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States.,College of Chemistry, University of California, Berkeley, Berkeley, CA, United States
| | - Nuno R B Martins
- Center for Research and Education in Aging, University of California, Berkeley, Berkeley, CA, United States
| | | | | | - Marcelo Lobosco
- Department of Computer Science, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
4
|
Klopfenstein N, Cassat JE, Monteith A, Miller A, Drury S, Skaar E, Serezani CH. Murine Models for Staphylococcal Infection. Curr Protoc 2021; 1:e52. [PMID: 33656290 PMCID: PMC7935403 DOI: 10.1002/cpz1.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterium that colonizes almost every organ in humans and mice and is a leading cause of diseases worldwide. S. aureus infections can be challenging to treat due to widespread antibiotic resistance and their ability to cause tissue damage. The primary modes of transmission of S. aureus are via direct contact with a colonized or infected individual or invasive spread from a colonization niche in the same individual. S. aureus can cause a myriad of diseases, including skin and soft tissue infections (SSTIs), osteomyelitis, pneumonia, endocarditis, and sepsis. S. aureus infection is characterized by the formation of purulent lesions known as abscesses, which are rich in live and dead neutrophils, macrophages, and surrounded by a capsule containing fibrin and collagen. Different strains of S. aureus produce varying amounts of toxins that evade and/or elicit immune responses. Therefore, animal models of S. aureus infection provide a unique opportunity to understand the dynamics of organ-specific immune responses and modifications in the pathogen that could favor the establishment of the pathogen. With advances in in vivo imaging of fluorescent transgenic mice, combined with fluorescent/bioluminescent bacteria, we can use mouse models to better understand the immune response to these types of infections. By understanding the host and bacterial dynamics within various organ systems, we can develop therapeutics to eliminate these pathogens. This module describes in vivo mouse models of both local and systemic S. aureus infection. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Murine model of Staphylococcus aureus subcutaneous infection Alternate Protocol: Murine tape stripping skin infection model Basic Protocol 2: Sample collection to determine skin structure, production of inflammatory mediators, and bacterial load Basic Protocol 3: Murine model of post-traumatic Staphylococcus aureus osteomyelitis Basic Protocol 4: Intravenous infection of the retro-orbital sinus Support Protocol: Preparation of the bacterial inoculum.
Collapse
Affiliation(s)
- Nathan Klopfenstein
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Andrew Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anderson Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney Drury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Henrique Serezani
- Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
5
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
6
|
Research Techniques Made Simple: Mouse Bacterial Skin Infection Models for Immunity Research. J Invest Dermatol 2020; 140:1488-1497.e1. [PMID: 32407714 DOI: 10.1016/j.jid.2020.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
Abstract
Bacterial skin infections are a major societal health burden and are increasingly difficult to treat owing to the emergence of antibiotic-resistant strains such as community-acquired methicillin-resistant Staphylococcus aureus. Understanding the immunologic mechanisms that provide durable protection against skin infections has the potential to guide the development of immunotherapies and vaccines to engage the host immune response to combat these antibiotic-resistant strains. To this end, mouse skin infection models allow researchers to examine host immunity by investigating the timing, inoculum, route of infection and the causative bacterial species in different wild-type mouse backgrounds as well as in knockout, transgenic, and other types of genetically engineered mouse strains. To recapitulate the various types of human skin infections, many different mouse models have been developed. For example, four models frequently used in dermatological research are based on the route of infection, including (i) subcutaneous infection models, (ii) intradermal infection models, (iii) wound infection models, and (iv) epicutaneous infection models. In this article, we will describe these skin infection models in detail along with their advantages and limitations. In addition, we will discuss how humanized mouse models such as the human skin xenograft on immunocompromised mice might be used in bacterial skin infection research.
Collapse
|
7
|
Abstract
Staphylococcus aureus is an important pathogen responsible for nosocomial and community-acquired infections in humans, and methicillin-resistant S. aureus (MRSA) infections have continued to increase despite widespread preventative measures. S. aureus can colonize the female vaginal tract, and reports have suggested an increase in MRSA infections in pregnant and postpartum women as well as outbreaks in newborn nurseries. Currently, little is known about specific factors that promote MRSA vaginal colonization and subsequent infection. To study S. aureus colonization of the female reproductive tract in a mammalian system, we developed a mouse model of S. aureus vaginal carriage and demonstrated that both hospital-associated and community-associated MRSA isolates can colonize the murine vaginal tract. Immunohistochemical analysis revealed an increase in neutrophils in the vaginal lumen during MRSA colonization. Additionally, we observed that a mutant lacking fibrinogen binding adhesins exhibited decreased persistence within the mouse vagina. To further identify novel factors that promote vaginal colonization, we performed RNA sequencing to determine the transcriptome of MRSA growing in vivo during vaginal carriage at 5 h, 1 day, and 3 days postinoculation. Over 25% of the bacterial genes were differentially regulated at all time points during colonization compared to laboratory cultures. The most highly induced genes were those involved in iron acquisition, including the Isd system and siderophore transport systems. Mutants deficient in these pathways did not persist as well during in vivo colonization. These results reveal that fibrinogen binding and the capacity to overcome host nutritional limitation are important determinants of MRSA vaginal colonization.IMPORTANCE Staphylococcus aureus is an opportunistic pathogen able to cause a wide variety of infections in humans. Recent reports have suggested an increasing prevalence of MRSA in pregnant and postpartum women, coinciding with the increased incidence of MRSA infections in neonatal intensive care units (NICUs) and newborn nurseries. Vertical transmission from mothers to infants at delivery is a likely route of MRSA acquisition by the newborn; however, essentially nothing is known about host and bacterial factors that influence MRSA carriage in the vagina. Here, we established a mouse model of vaginal colonization and observed that multiple MRSA strains can persist in the vaginal tract. Additionally, we determined that MRSA interactions with fibrinogen and iron uptake can promote vaginal persistence. This study is the first to identify molecular mechanisms which govern vaginal colonization by MRSA, the critical initial step preceding infection and neonatal transmission.
Collapse
|