1
|
Rahman SM, Buchholz DW, Imbiakha B, Jager MC, Leach J, Osborn RM, Birmingham AO, Dewhurst S, Aguilar HC, Luebke AE. Migraine inhibitor olcegepant reduces weight loss and IL-6 release in SARS-CoV-2-infected older mice with neurological signs. J Virol 2024; 98:e0006624. [PMID: 38814068 PMCID: PMC11265435 DOI: 10.1128/jvi.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
COVID-19 can cause neurological symptoms such as fever, dizziness, and nausea. However, such neurological symptoms of SARS-CoV-2 infection have been hardly assessed in mouse models. In this study, we infected two commonly used wild-type mouse lines (C57BL/6J and 129/SvEv) and a 129S calcitonin gene-related peptide (αCGRP) null-line with mouse-adapted SARS-CoV-2 and demonstrated neurological signs including fever, dizziness, and nausea. We then evaluated whether a CGRP receptor antagonist, olcegepant, a "gepant" antagonist used in migraine treatment, could mitigate acute neuroinflammatory and neurological signs of SARS-COV-2 infection. First, we determined whether CGRP receptor antagonism provided protection from permanent weight loss in older (>18 m) C57BL/6J and 129/SvEv mice. We also observed acute fever, dizziness, and nausea in all older mice, regardless of treatment. In both wild-type mouse lines, CGRP antagonism reduced acute interleukin 6 (IL-6) levels with virtually no IL-6 release in mice lacking αCGRP. These findings suggest that migraine inhibitors such as those blocking CGRP receptor signaling protect against acute IL-6 release and subsequent inflammatory events after SARS-CoV-2 infection, which may have repercussions for related pandemic or endemic coronavirus outbreaks.IMPORTANCECoronavirus disease (COVID-19) can cause neurological symptoms such as fever, headache, dizziness, and nausea. However, such neurological symptoms of severe acute respiratory syndrome CoV-2 (SARS-CoV-2) infection have been hardly assessed in mouse models. In this study, we first infected two commonly used wild-type mouse lines (C57BL/6J and 129S) with mouse-adapted SARS-CoV-2 and demonstrated neurological symptoms including fever and nausea. Furthermore, we showed that the migraine treatment drug olcegepant could reduce long-term weight loss and IL-6 release associated with SARS-CoV-2 infection. These findings suggest that a migraine blocker can be protective for at least some acute SARS-CoV-2 infection signs and raise the possibility that it may also impact long-term outcomes.
Collapse
Affiliation(s)
- Shafaqat M. Rahman
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian Imbiakha
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Mason C. Jager
- Department of Population Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin Leach
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Raven M. Osborn
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ann O. Birmingham
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephen Dewhurst
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Anne E. Luebke
- Departments of Biomedical Engineering, Neuroscience, Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Nelson-Maney NP, Bálint L, Beeson AL, Serafin DS, Kistner BM, Douglas ES, Siddiqui AH, Tauro AM, Caron KM. Meningeal lymphatic CGRP signaling governs pain via cerebrospinal fluid efflux and neuroinflammation in migraine models. J Clin Invest 2024; 134:e175616. [PMID: 38743922 PMCID: PMC11290972 DOI: 10.1172/jci175616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Recently developed antimigraine therapeutics targeting calcitonin gene-related peptide (CGRP) signaling are effective, though their sites of activity remain elusive. Notably, the lymphatic vasculature is responsive to CGRP signaling, but whether meningeal lymphatic vessels (MLVs) contribute to migraine pathophysiology is unknown. Mice with lymphatic vasculature deficient in the CGRP receptor (CalcrliLEC mice) treated with nitroglycerin-mediated (NTG-mediated) chronic migraine exhibit reduced pain and light avoidance compared with NTG-treated littermate controls. Gene expression profiles of lymphatic endothelial cells (LECs) isolated from the meninges of Rpl22HA/+;Lyve1Cre RiboTag mice treated with NTG revealed increased MLV-immune interactions compared with cells from untreated mice. Interestingly, the relative abundance of mucosal vascular addressin cell adhesion molecule 1-interacting (MAdCAM1-interacting) CD4+ T cells was increased in the deep cervical lymph nodes of NTG-treated control mice but not in NTG-treated CalcrliLEC mice. Treatment of cultured hLECs with CGRP peptide in vitro induced vascular endothelial-cadherin (VE-cadherin) rearrangement and reduced functional permeability. Likewise, intra cisterna magna injection of CGRP caused rearrangement of VE-cadherin, decreased MLV uptake of cerebrospinal fluid (CSF), and impaired CSF drainage in control mice but not in CalcrliLEC mice. Collectively, these findings reveal a previously unrecognized role for lymphatics in chronic migraine, whereby CGRP signaling primes MLV-immune interactions and reduces CSF efflux.
Collapse
|
3
|
Alpay B, Cimen B, Akaydin E, Bolay H, Sara Y. Levcromakalim provokes an acute rapid-onset migraine-like phenotype without inducing cortical spreading depolarization. J Headache Pain 2023; 24:93. [PMID: 37488480 PMCID: PMC10367339 DOI: 10.1186/s10194-023-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Migraine headache attacks and accompanying sensory augmentation can be induced by several agents including levcromakalim (LVC), that is also capable of provoking aura-like symptoms in migraineurs. We investigated whether single LVC injection causes acute migraine-like phenotype in rats and induces/modulates cortical spreading depolarization (CSD), a rodent model of migraine aura. METHODS Wistar rats were administered LVC (1 mg/kg, i.p.) and compared to control (CTRL, vehicle, i.p.) and nitroglycerin (NTG, 10 mg/kg, i.p.) groups. Von Frey filaments were used to examine the periorbital and hind paw mechanical allodynia. Dark-light box (DLB), elevated plus maze (EPM), and open field arena (OFA) were used to evaluate light sensitivity and anxiety-related behaviors. The effects of LVC on CSD parameters, somatosensory evoked potentials, and baseline dural EEG (electroencephalography) were investigated. Possible CSD-induced c-fos expression was studied with Western Blot. Blood-brain barrier integrity in cortex was examined with Evans blue assay. RESULTS LVC and NTG administration robustly reduced periorbital mechanical thresholds in rats and induced anxiety-like behaviors and photophobia within 30 and 120 min, respectively. LVC induced migraine-like phenotype recovered in 2 h while NTG group did not fully recover before 4 h. Both LVC and NTG did not provoke DC (direct current) shift, EEG alterations or cortical c-fos expression characteristic to CSD. LVC did not induce de novo CSD and affect KCl (potassium chloride)-induced CSD parameters except for an increase in propagation failure. However, NTG significantly increased both CSD susceptibility and propagation failure. Somatosensory evoked potential (SSEP) configurations were not altered in both LVC and NTG groups, but SSEP latencies were prolonged after CSD. Acute LVC or NTG injection did not increase cortical BBB permeability. CONCLUSIONS Single LVC administration induced the fastest manifestation and recovery of acute migraine-like phenotype which was not mediated by CSD waves in the cerebral cortex. We suppose LVC triggered rapid-onset migraine-like symptoms are probably related to functional alterations in the trigeminal nociceptive system and K+ channel opening properties of LVC. Understanding the neurobiological mechanisms of this nociceptive window, may provide a novel target in migraine treatment.
Collapse
Affiliation(s)
- Berkay Alpay
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Bariscan Cimen
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Elif Akaydin
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| | - Hayrunnisa Bolay
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye.
- Department of Neurology and Algology, Faculty of Medicine, Gazi University, Besevler, Ankara, Türkiye.
| | - Yildirim Sara
- Department of Medical Pharmacology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, Türkiye
- Neuroscience and Neurotechnology Excellence Joint Application and Research Center (NÖROM), Ankara, Türkiye
| |
Collapse
|
4
|
Harriott AM, Waruinge A, Appiah-Danquah V, Berhanu L, Morais A, Ayata C. The effect of sex and estrus cycle stage on optogenetic spreading depression induced migraine-like pain phenotypes. J Headache Pain 2023; 24:85. [PMID: 37464297 PMCID: PMC10355061 DOI: 10.1186/s10194-023-01621-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Migraine is more prevalent in females, raising the possibility that sex and gonadal hormones modulate migraine. We recently demonstrated that minimally invasive optogenetic spreading depolarization (opto-SD) elicits robust periorbital allodynia. The objective of this study was to test the hypothesis that opto-SD induced migraine-like pain behavior is worse in females and varies during the estrus cycle. METHODS Single or repeated opto-SDs were induced in male and female adult Thy1-ChR2-YFP transgenic mice. Von Frey monofilaments were used to test periorbital mechanical allodynia. Mouse grimace was also examined under increasing light intensity to quantify spontaneous discomfort and light-aversive behavior. Vaginal smears were obtained for estrus cycle staging at the end of behavioral testing. RESULTS A multi-variable regression analysis was performed using a male and female cohort to test the effect of independent variables on periorbital allodynia. Opto-SD predicted lower periorbital thresholds as compared with sham stimulation (p < 0.0001). Additionally, female sex predicted lower periorbital thresholds compared with males (p = 0.011). There were significant interactions between opto-SD and time (interaction p = 0.030) as animals tended to recover from opto-SD allodynia over time, and between sex and time (p = 0.020) as females tended to take longer to recover. Proestrus, estrus (PE) and metestrus, diestrus (MD) stages were combined to represent high versus low circulating estradiol relative to progesterone, respectively. Multi-variable regression revealed an effect of estrus cycle (p = 0.015) on periorbital thresholds. In the sham group, PE had lower thresholds than MD. However, there was no interaction between opto-SD and the estrus cycle (p = 0.364). Grimace scores were also examined at incremental light intensities. There was an effect of opto-SD (p < 0.0001), light intensity (p = 0.001) and estrus cycle (p = 0.024) on grimace without interaction among them (three-way ANOVA). CONCLUSIONS Female sex and estrus stages with high circulating estradiol relative to progesterone lower trigeminal pain thresholds and augment photosensitivity. In females, opto-SD increased pain behavior and photosensitivity irrespective of the estrus stage.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurology, Neurovascular Research Laboratory, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | - Leah Berhanu
- Cambridge Rindge and Latin School, Boston, MA, USA
| | - Andreia Morais
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Wang M, Castonguay WC, Duong TL, Huebner MW, Flinn HC, Greenway AM, Russo AF, Sowers LP. Stimulation of CGRP-expressing neurons in the medial cerebellar nucleus induces light and touch sensitivity in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100098. [PMID: 35782531 PMCID: PMC9240374 DOI: 10.1016/j.ynpai.2022.100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 04/30/2023]
Abstract
Calcitonin gene-related peptide (CGRP) is considered a major player in migraine pathophysiology. However, the location and mechanisms of CGRP actions in migraine are not clearly elucidated. One important question yet to be answered is: Does central CGRP signaling play a role in migraine? One candidate site is the cerebellum, which serves as a sensory and motor integration center and is activated in migraine patients. The cerebellum has the most CGRP binding sites in the central nervous system and a deep cerebellar nucleus, the medial nucleus (MN), expresses CGRP (MNCGRP). A previous study demonstrated that CGRP delivery into the cerebellum induced migraine-like behaviors. We hypothesized that stimulation of MNCGRP neurons might induce migraine-like behaviors. To test the hypothesis, we used an optogenetic strategy using CalcaCre/+ mice to drive Cre-dependent expression of channelrhodopsin-2 selectively in CGRP neurons in the cerebellar MN. A battery of behavioral tests was done to assess preclinical behaviors that are surrogates of migraine symptoms, including light aversion, cutaneous allodynia, and spontaneous pain when MNCGRP neurons were optically stimulated. Motor functions were also assessed. Optical stimulation of MNCGRP neurons decreased the time spent in the light, which was coupled to increased time spent resting in the dark, but not the light. These changes were only significant in female mice. Plantar tactile sensitivity was increased in the ipsilateral paws of both sexes, but contralateral paw data were less clear. There was no significant increase in anxiety-like behavior, spontaneous pain (squint), or changes in gait. These discoveries reveal that MNCGRP neurons may contribute to migraine-like sensory hypersensitivity to light and touch.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - William C. Castonguay
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Thomas L. Duong
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Michael W. Huebner
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Harold C. Flinn
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Agatha M. Greenway
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA 52246, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA 52246, USA
- Corresponding author at: Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Wang M, Duong TL, Rea BJ, Waite JS, Huebner MW, Flinn HC, Russo AF, Sowers LP. CGRP Administration Into the Cerebellum Evokes Light Aversion, Tactile Hypersensitivity, and Nociceptive Squint in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:861598. [PMID: 35547239 PMCID: PMC9082264 DOI: 10.3389/fpain.2022.861598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is a major player in migraine pathophysiology. Previous preclinical studies demonstrated that intracerebroventricular administration of CGRP caused migraine-like behaviors in mice, but the sites of action in the brain remain unidentified. The cerebellum has the most CGRP binding sites in the central nervous system and is increasingly recognized as both a sensory and motor integration center. The objective of this study was to test whether the cerebellum, particularly the medial cerebellar nuclei (MN), might be a site of CGRP action. In this study, CGRP was directly injected into the right MN of C57BL/6J mice via a cannula. A battery of tests was done to assess preclinical behaviors that are surrogates of migraine-like symptoms. CGRP caused light aversion measured as decreased time in the light zone even with dim light. The mice also spent more time resting in the dark zone, but not the light, along with decreased rearing and transitions between zones. These behaviors were similar for both sexes. Moreover, significant responses to CGRP were seen in the open field assay, von Frey test, and automated squint assay, indicating anxiety, tactile hypersensitivity, and spontaneous pain, respectively. Interestingly, CGRP injection caused significant anxiety and spontaneous pain responses only in female mice, and a more robust tactile hypersensitivity in female mice. No detectable effect of CGRP on gait was observed in either sex. These results suggest that CGRP injection in the MN causes light aversion accompanied by increased anxiety, tactile hypersensitivity, and spontaneous pain. A caveat is that we cannot exclude contributions from other cerebellar regions in addition to the MN due to diffusion of the injected peptide. These results reveal the cerebellum as a new site of CGRP actions that may contribute to migraine-like hypersensitivity.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Thomas L. Duong
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Brandon J. Rea
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
| | - Jayme S. Waite
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Michael W. Huebner
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Harold C. Flinn
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
- *Correspondence: Levi P. Sowers
| |
Collapse
|
7
|
Mallampalli MP, Rizk HG, Kheradmand A, Beh SC, Abouzari M, Bassett AM, Buskirk J, Ceriani CEJ, Crowson MG, Djalilian H, Goebel JA, Kuhn JJ, Luebke AE, Mandalà M, Nowaczewska M, Spare N, Teggi R, Versino M, Yuan H, Zaleski-King A, Teixido M, Godley F. Care Gaps and Recommendations in Vestibular Migraine: An Expert Panel Summit. Front Neurol 2022; 12:812678. [PMID: 35046886 PMCID: PMC8762211 DOI: 10.3389/fneur.2021.812678] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Vestibular migraine (VM) is an increasingly recognized pathology yet remains as an underdiagnosed cause of vestibular disorders. While current diagnostic criteria are codified in the 2012 Barany Society document and included in the third edition of the international classification of headache disorders, the pathophysiology of this disorder is still elusive. The Association for Migraine Disorders hosted a multidisciplinary, international expert workshop in October 2020 and identified seven current care gaps that the scientific community needs to resolve, including a better understanding of the range of symptoms and phenotypes of VM, the lack of a diagnostic marker, a better understanding of pathophysiologic mechanisms, as well as the lack of clear recommendations for interventions (nonpharmacologic and pharmacologic) and finally, the need for specific outcome measures that will guide clinicians as well as research into the efficacy of interventions. The expert group issued several recommendations to address those areas including establishing a global VM registry, creating an improved diagnostic algorithm using available vestibular tests as well as others that are in development, conducting appropriate trials of high quality to validate current clinically available treatment and fostering collaborative efforts to elucidate the pathophysiologic mechanisms underlying VM, specifically the role of the trigemino-vascular pathways.
Collapse
Affiliation(s)
- Monica P Mallampalli
- Department of Research, Association of Migraine Disorders, North Kingstown, RI, United States
| | - Habib G Rizk
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Kheradmand
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shin C Beh
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, CA, United States
| | - Alaina M Bassett
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - James Buskirk
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Claire E J Ceriani
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthew G Crowson
- Department of Otolaryngology-Head and Neck Surgery, Mass Eye & Ear and Harvard Medical School, Boston, MA, United States
| | - Hamid Djalilian
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, Irvine, CA, United States
| | - Joel A Goebel
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jeffery J Kuhn
- Department of Research, Bayview Physicians Group, Chesapeake, VA, United States
| | - Anne E Luebke
- Biomedical Engineering and Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
| | - Marco Mandalà
- Otolaryngology Unit, University of Siena, Siena, Italy
| | - Magdalena Nowaczewska
- Department of Otolaryngology, Head and Neck Surgery, Laryngological Oncology, Nicolaus Copernicus University, Torun, Poland
| | - Nicole Spare
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Roberto Teggi
- Department of Otolaryngology, San Raffaele Scientific Hospital, Milan, Italy
| | - Maurizio Versino
- Neurology and Stroke Unit, ASST Sette Laghi, Circolo Hospital, Varese, Italy
| | - Hsiangkuo Yuan
- Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ashley Zaleski-King
- Department of Speech-Language Pathology & Audiology, Towson University, Towson, MD, United States
| | - Michael Teixido
- Department of Research, Association of Migraine Disorders, North Kingstown, RI, United States
| | - Frederick Godley
- Department of Research, Association of Migraine Disorders, North Kingstown, RI, United States
| |
Collapse
|