1
|
Pechmann LM, Pinheiro FI, Andrade VFC, Moreira CA. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: a review. Diabetol Metab Syndr 2024; 16:175. [PMID: 39054499 PMCID: PMC11270814 DOI: 10.1186/s13098-024-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Dipeptidyl peptidase 4 (DPP-4) plays a crucial role in breaking down various substrates. It also has effects on the insulin signaling pathway, contributing to insulin resistance, and involvement in inflammatory processes like obesity and type 2 diabetes mellitus. Emerging effects of DPP-4 on bone metabolism include an inverse relationship between DPP-4 activity levels and bone mineral density, along with an increased risk of fractures. MAIN BODY The influence of DPP-4 on bone metabolism occurs through two axes. The entero-endocrine-osseous axis involves gastrointestinal substrates for DPP-4, including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptides 1 (GLP-1) and 2 (GLP-2). Studies suggest that supraphysiological doses of exogenous GLP-2 has a significant inhibitory effect on bone resorption, however the specific mechanism by which GLP-2 influences bone metabolism remains unknown. Of these, GIP stands out for its role in bone formation. Other gastrointestinal DPP-4 substrates are pancreatic peptide YY and neuropeptide Y-both bind to the same receptors and appear to increase bone resorption and decrease bone formation. Adipokines (e.g., leptin and adiponectin) are regulated by DPP-4 and may influence bone remodeling and energy metabolism in a paracrine manner. The pancreatic-endocrine-osseous axis involves a potential link between DPP-4, bone, and energy metabolism through the receptor activator of nuclear factor kappa B ligand (RANKL), which induces DPP-4 expression in osteoclasts, leading to decreased GLP-1 levels and increased blood glucose levels. Inhibitors of DPP-4 participate in the pancreatic-endocrine-osseous axis by increasing endogenous GLP-1. In addition to their glycemic effects, DPP-4 inhibitors have the potential to decrease bone resorption, increase bone formation, and reduce the incidence of osteoporosis and fractures. Still, many questions on the interactions between DPP-4 and bone remain unanswered, particularly regarding the effects of DPP-4 inhibition on the skeleton of older individuals. CONCLUSION The elucidation of the intricate interactions and impact of DPP-4 on bone is paramount for a proper understanding of the body's mechanisms in regulating bone homeostasis and responses to internal stimuli. This understanding bears significant implications in the investigation of conditions like osteoporosis, in which disruptions to these signaling pathways occur. Further research is essential to uncover the full extent of DPP-4's effects on bone metabolism and energy regulation, paving the way for novel therapeutic interventions targeting these pathways, particularly in older individuals.
Collapse
Affiliation(s)
- L M Pechmann
- Universidade Federal do Paraná, Setor de Ciências da Saúde, Endocrine Division (SEMPR), Centro de Diabetes Curitiba, Academic Research Center Pro Renal Institute, Curitiba, Brazil.
| | - F I Pinheiro
- Biotechnology at Universidade Potiguar and Discipline of Ophthalmology at the Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - V F C Andrade
- Academic Research Center Pro Renal Institute, Endocrine Division, Hospital de Cínicas da Universidade Federal do Paraná (SEMPR), Curitiba, Brazil
| | - C A Moreira
- Academic Research Center Pro Renal Institute, Endocrine Division, Hospital de Clinicas da Universidade Federal do Paraná ( SEMPR), Curitiba, Brazil
| |
Collapse
|
2
|
He J, Zhao D, Peng B, Wang X, Wang S, Zhao X, Xu P, Geng B, Xia Y. A novel mechanism of Vildagliptin in regulating bone metabolism and mitigating osteoporosis. Int Immunopharmacol 2024; 130:111671. [PMID: 38367467 DOI: 10.1016/j.intimp.2024.111671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis has become a global social problem with the tendency toward the aging population. The challenge in managing osteoporosis is to develop new anti-osteoporosis drugs that target bone anabolism. The purpose of this study was to uncover the novel mechanism of Vildagliptin on bone metabolism. We revealed that Vildagliptin significantly promoted osteogenic differentiation of precursor osteoblasts and bone marrow mesenchymal stem cells (BMSCs). At the same time, it significantly enhanced the polarization of RAW264.7 macrophages to the M2 type and the secretion of osteogenic factors BMP2 and TGF-β1. This was confirmed by the increased osteogenic differentiation observed in the osteoblast-RAW264.7 co-culture system. Moreover, Vildagliptin significantly enhanced the transformation of BMSCs into the osteogenic morphology in the osteoblast-BMSC co-culture system. Finally, Vildagliptin also inhibited osteoclastic differentiation of RAW 264.7 cells. The potential mechanism underlying these effects involved targeting the GAS6/AXL/ERK5 pathway. In the in vivo study, Vildagliptin significantly alleviated postmenopausal osteoporosis in ovariectomized mice. These findings represent the first comprehensive revelation of the regulatory effect of Vildagliptin on bone metabolism. Specifically, Vildagliptin demonstrates the ability to promote bone anabolism and inhibit bone resorption by simultaneously targeting osteoblasts, BMSCs, and osteoclasts. The bone-protective effects of Vildagliptin were further confirmed in a postmenopausal osteoporosis model. The clinical significance of this study lies in laying a theoretical foundation for bone protection therapy in type-2 diabetes patients with compromised bone conditions or postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jinwen He
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 715004, China
| | - Dacheng Zhao
- Department of Painology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Bo Peng
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xingwen Wang
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Shenghong Wang
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaobing Zhao
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 715004, China.
| | - Bin Geng
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China.
| | - Yayi Xia
- Department of Orthopaedics, Orthopaedics Clinical Medicine Research Center of Gansu Province, Intelligent Orthopedics Industry Technology Center of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China.
| |
Collapse
|
3
|
Abstract
INTRODUCTION Preclinical, clinical, and population-based studies have provided evidence that anti-diabetic drugs affect bone metabolism and may affect the risk of fracture in diabetic patients. AREAS COVERED An overview of the skeletal effects of anti-diabetic drugs used in type 2 diabetes is provided. Searches on AdisInsight, PubMed, and Medline databases were conducted up to 1st July 2020. The latest evidence from randomized clinical trials and population-based studies on the skeletal safety of the most recent drugs (DPP-4i, GLP-1RA, and SGLT-2i) is provided. EXPERT OPINION Diabetic patients present with a higher risk of fracture for a given bone mineral density suggesting a role of bone quality in the etiology of diabetic fracture. Bone quality is difficult to assess in human clinical practice and the use of preclinical models provides valuable information on diabetic bone alterations. As several links have been established between bone and energy homeostasis, it is interesting to study the safety of anti-diabetic drugs on the skeleton. So far, evidence for the newest molecules suggests a neutral fracture risk, but further studies, especially in different types of patient populations (patients at risk or with history of cardiovascular disease, renal impairment, neuropathy) are required to fully appreciate this matter.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Bone pathology unit, Angers University hospital , Angers Cedex, France
| | - Béatrice Bouvard
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Rheumatology department, Angers University Hospital , Angers Cedex, France
| |
Collapse
|
4
|
Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev 2020; 52:88-98. [PMID: 32081538 DOI: 10.1016/j.cytogfr.2020.02.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Cho EH, Kim SW. Soluble Dipeptidyl Peptidase-4 Levels Are Associated with Decreased Renal Function in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2019; 43:97-104. [PMID: 30302966 PMCID: PMC6387880 DOI: 10.4093/dmj.2018.0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/16/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase-4 (DPP-4) is strongly expressed in the kidney, and soluble levels of this protein are used as a marker in various chronic inflammatory diseases, including diabetes, coronary artery disease, and cancer. This study examined the association between the serum soluble DPP-4 levels and renal function or cardiovascular risk in patients with type 2 diabetes mellitus. METHODS In this retrospective analysis, soluble DPP-4 levels were measured in preserved sera from 140 patients with type 2 diabetes mellitus who had participated in our previous coronary artery calcium (CAC) score study. RESULTS The mean±standard deviation soluble DPP-4 levels in our study sample were 645±152 ng/mL. Univariate analyses revealed significant correlations of soluble DPP-4 levels with the total cholesterol (r=0.214, P=0.019) and serum creatinine levels (r=-0.315, P<0.001) and the estimated glomerular filtration rate (eGFR; estimated using the modification of diet in renal disease equation) (r=0.303, P=0.001). The associations of soluble DPP-4 levels with serum creatinine and GFR remained significant after adjusting for age, body mass index, and duration of diabetes. However, no associations were observed between soluble DPP-4 levels and the body mass index, waist circumference, or CAC score. CONCLUSION These data suggest the potential use of serum soluble DPP-4 levels as a future biomarker of deteriorated renal function in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Eun Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
6
|
Marrow Adipose Tissue: Its Origin, Function, and Regulation in Bone Remodeling and Regeneration. Stem Cells Int 2018; 2018:7098456. [PMID: 29955232 PMCID: PMC6000863 DOI: 10.1155/2018/7098456] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/13/2018] [Indexed: 02/05/2023] Open
Abstract
Marrow adipose tissue (MAT) is a unique fat depot in the bone marrow and exhibits close relationship with hematopoiesis and bone homeostasis. MAT is distinct from peripheral adipose tissue in respect of its heterogeneous origin, site-specific distribution, and complex and perplexing function. Though MAT is indicated to function in hematopoiesis, skeletal remodeling, and energy metabolism, its explicit characterization still requires further research. In this review, we highlight recent advancement made in MAT regarding the origin and distribution of MAT, the local interaction with bone homeostasis and hematopoietic niche, the systemic endocrine regulation of metabolism, and MAT-based strategies to enhance bone formation.
Collapse
|
7
|
The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl) 2017; 95:1291-1301. [PMID: 29101431 DOI: 10.1007/s00109-017-1604-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/27/2023]
Abstract
Replacement of red hematopoietic bone marrow with yellow adipocyte-rich marrow is a conserved physiological process among mammals. The extent of this conversion is influenced by a wide array of pathological and non-pathological conditions. Of particular interest is the observation that some marrow adipocyte-inducing factors seem to oppose each other, for instance obesity and caloric restriction. Intriguingly, several important molecular characteristics of bone marrow adipose tissue (BMAT) are distinct from the classical depots of white and brown fat tissue. This depot of fat has recently emerged as an active part of the bone marrow niche that exerts paracrine and endocrine functions thereby controlling osteogenesis and hematopoiesis. While some functions of BMAT may be beneficial for metabolic adaptation and bone homeostasis, respectively, most findings assign bone fat a detrimental role during regenerative processes, such as hematopoiesis and osteogenesis. Thus, an improved understanding of the biological mechanisms leading to formation of BMAT, its molecular characteristics, and its physiological role in the bone marrow niche is warranted. Here we review the current understanding of BMAT biology and its potential implications for health and the development of pathological conditions.
Collapse
|
8
|
Lee JY, Jang BK, Song MK, Kim HS, Kim MK. Association between Serum Dipeptidyl Peptidase-4 Concentration and Obesity-related Factors in Health Screen Examinees. J Obes Metab Syndr 2017; 26:188-196. [PMID: 31089516 PMCID: PMC6484912 DOI: 10.7570/jomes.2017.26.3.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Background Dipeptidyl peptidase-4 (DPP-4) is an aminopeptidase that inhibits the enzymatic degradation of glucagon-like peptide-1, glucose-dependent insulinotropic polypeptides, neuropeptides, and various chemokines. Recent studies reported that serum DPP-4 concentration is correlated with clinical parameters of obesity. However, research on these correlations has never been conducted in Korea. Therefore, we investigated the relationship between serum DPP-4 concentration and various clinical parameters of obesity in the Korean population. Methods Patients who visited the Health Promotion Center at Keimyung University Dongsan Medical Center for a regular medical examination between January 2013 and March 2013 and consented to participate in this study were included. We measured and analyzed parameters of obesity. In addition, serum DPP-4 concentration was determined using an enzyme-linked immunosorbent assay kit. Results Serum DPP-4 concentration was positively correlated with lean body mass, total cholesterol level, and creatinine level. Serum DPP-4 concentration was higher in the obese group than in the normal body mass index (BMI) group. No significant difference in serum DPP-4 concentration was found between the metabolically healthy group and metabolically unhealthy group. Conclusion Serum DPP-4 concentration was higher in the obesity group than in the normal BMI group, which was associated with obesity-related factors.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea.,Institute for Cancer Research, Keimyung University, Daegu, Korea
| | - Min Kyung Song
- Department of Food Science and Nutrition, Graduate School, Keimyung University, Daegu, Korea
| | - Hye Soon Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Mi-Kyung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
9
|
Yang Y, Zhao C, Liang J, Yu M, Qu X. Effect of Dipeptidyl Peptidase-4 Inhibitors on Bone Metabolism and the Possible Underlying Mechanisms. Front Pharmacol 2017; 8:487. [PMID: 28790917 PMCID: PMC5524773 DOI: 10.3389/fphar.2017.00487] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus has been demonstrated to be closely associated with osteoporosis. Accordingly, hypoglycemic therapy is considered effective in treating metabolic bone disease. Recently, the effects of dipeptidyl peptidase-4 (DPP-4) inhibitors, a new type of antidiabetic drug, on bone metabolism have been widely studied. This review mainly describes the effects of DPP-4 inhibitors on bone metabolism, including their effects on bone mineral density, bone quality, and fracture risk. In addition, the potential underlying mechanisms are discussed. Based on the current progress in this research field, DPP-4 inhibitors have been proved to reduce fracture risk. In addition, sitagliptin, a strong and highly selective DPP-4 inhibitor, showed its beneficial effects on bone metabolism by improving bone mineral density, bone quality, and bone markers. With regard to the potential underlying mechanisms, DPP-4 inhibitors may promote bone formation and reduce bone resorption through DPP-4 substrates and DPP-4-related energy metabolism. Vitamin D and other related signaling pathways also play a role in affecting bone metabolism. Although these assumptions are controversial, they provide a translational pharmacology approach for the clinical use of DPP-4 inhibitors in the treatment of metabolic diseases. Prior to the use of these drugs in clinic, further studies should be conducted to determine the appropriate type of DPP-4 inhibitor, the people who would benefit the most from this therapy, appropriate dose and duration, and the effects of the treatment.
Collapse
Affiliation(s)
- Yinqiu Yang
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Chenhe Zhao
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Jing Liang
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Mingxiang Yu
- Department of Endocrinology, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xinhua Qu
- Department of Orthopedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of MedicineShanghai, China
| |
Collapse
|
10
|
Normand E, Franco A, Moreau A, Marcil V. Dipeptidyl Peptidase-4 and Adolescent Idiopathic Scoliosis: Expression in Osteoblasts. Sci Rep 2017; 7:3173. [PMID: 28600546 PMCID: PMC5466660 DOI: 10.1038/s41598-017-03310-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
It has been proposed that girls with adolescent idiopathic scoliosis (AIS) tend to have a taller stature and a lower body mass index. Energy homeostasis, that is known to affect bone growth, could contribute to these characteristics. In circulation, dipeptidyl peptidase-4 (DPP-4) inactivates glucagon-like peptide-1 (GLP-1), an incretin that promotes insulin secretion and sensitivity. Our objectives were to investigate DPP-4 status in plasma and in osteoblasts of AIS subjects and controls and to evaluate the regulatory role of metabolic effectors on DPP-4 expression. DPP-4 activity was assessed in plasma of 113 girls and 62 age-matched controls. Osteoblasts were isolated from bone specimens of AIS patients and controls. Human cells were incubated with glucose, insulin, GLP-1 and butyrate. Gene and protein expressions were evaluated by RT-qPCR and Western blot. Our results showed 14% inferior plasma DPP-4 activity in AIS patients when compared to healthy controls (P = 0.0357). Similarly, osteoblasts derived from AIS subjects had lower DPP-4 gene and protein expression than controls by 90.5% and 57.1% respectively (P < 0.009). DPP-4 expression was regulated in a different manner in osteoblasts isolated from AIS participants compared to controls. Our results suggest a role for incretins in AIS development and severity.
Collapse
Affiliation(s)
- Emilie Normand
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Anita Franco
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montreal, Quebec, H3A 1J4, Canada
| | - Valérie Marcil
- Research Center of the Sainte-Justine University Hospital, Montreal, Quebec, H3T 1C5, Canada.
- Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada.
| |
Collapse
|
11
|
Carbone LD, Bůžková P, Fink HA, Robbins JA, Bethel M, Isales CM, Hill WD. Association of DPP-4 activity with BMD, body composition, and incident hip fracture: the Cardiovascular Health Study. Osteoporos Int 2017; 28:1631-1640. [PMID: 28150034 PMCID: PMC5653373 DOI: 10.1007/s00198-017-3916-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
There was no association of plasma DPP-4 activity levels with bone mineral density (BMD), body composition, or incident hip fractures in a cohort of elderly community-dwelling adults. INTRODUCTION Dipeptidyl peptidase IV (DPP-4) inactivates several key hormones including those that stimulate postprandial insulin secretion, and DPP-4 inhibitors (gliptins) are approved to treat diabetes. While DPP-4 is known to modulate osteogenesis, the relationship between DPP-4 activity and skeletal health is uncertain. The purpose of the present study was to examine possible associations between DPP-4 activity in elderly subjects enrolled in the Cardiovascular Health Study (CHS) and BMD, body composition measurements, and incident hip fractures. METHODS All 1536 male and female CHS participants who had evaluable DXA scans and plasma for DPP-4 activity were included in the analyses. The association between (1) BMD of the total hip, femoral neck, lumbar spine, and total body; (2) body composition measurements (% lean, % fat, and total body mass); and (3) incident hip fractures and plasma levels of DPP-4 activity were determined. RESULTS Mean plasma levels of DPP-4 activity were significantly higher in blacks (227 ± 78) compared with whites (216 ± 89) (p = 0.04). However, there was no significant association of DPP-4 activity with age or gender (p ≥ 0.14 for both). In multivariable adjusted models, there was no association of plasma DPP-4 activity with BMD overall (p ≥ 0.55 for all) or in gender stratified analyses (p ≥ 0.23). There was also no association of DPP-4 levels and incident hip fractures overall (p ≥ 0.24) or in gender stratified analyses (p ≥ 0.39). CONCLUSION Plasma DPP-4 activity, within the endogenous physiological range, was significantly associated with race, but not with BMD, body composition, or incident hip fractures in elderly community-dwelling subjects.
Collapse
Affiliation(s)
- L D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - P Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - H A Fink
- Geriatric Research Education & Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Center for Chronic Disease Outcomes Research, Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - J A Robbins
- Department of Medicine, University of California-Davis, Sacramento, CA, USA
| | - M Bethel
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
- Department of Medicine, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - C M Isales
- Department of Medicine, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA
| | - W D Hill
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA.
- Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Augusta, GA, USA.
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University (Formerly Georgia Regents University and Georgia Health Sciences University), Sanders Research Building, CB1119, b1459 Laney-Walker Blvd., Augusta, GA, 30912-2000, USA.
| |
Collapse
|
12
|
Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, Woelk L, Fan H, Logan DW, Schürmann A, Saraiva LR, Schulz TJ. Adipocyte Accumulation in the Bone Marrow during Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. Cell Stem Cell 2017; 20:771-784.e6. [PMID: 28330582 PMCID: PMC5459794 DOI: 10.1016/j.stem.2017.02.009] [Citation(s) in RCA: 540] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/12/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Aging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly enhanced in aged animals. We further describe a mesenchymal sub-population with stem cell-like characteristics that gives rise to both lineages and, at the same time, acts as a principal component of the hematopoietic niche by promoting competitive repopulation following lethal irradiation. Conversely, bone-resident cells committed to the adipocytic lineage inhibit hematopoiesis and bone healing, potentially by producing excessive amounts of Dipeptidyl peptidase-4, a protease that is a target of diabetes therapies. These studies delineate the molecular identity of the bone-resident adipocytic lineage, and they establish its involvement in age-dependent dysfunction of bone and hematopoietic regeneration.
Collapse
Affiliation(s)
- Thomas H Ambrosi
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Antonio Scialdone
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge CB10 1SA, UK; European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton-Cambridge CB10 1SD, UK
| | - Antonia Graja
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Sabrina Gohlke
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Anne-Marie Jank
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Carla Bocian
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Lena Woelk
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Hua Fan
- Charité Universitätsmedizin, Berlin 10117, Germany
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton-Cambridge CB10 1SA, UK; Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Luis R Saraiva
- Sidra Medical and Research Center, Qatar Foundation, P.O. Box 26999, Doha, Qatar
| | - Tim J Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| |
Collapse
|
13
|
Affiliation(s)
- Won Young Lee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|