1
|
Lan X, Feng M, Chen L, Zhang L, Han C, Wang Y, Zheng J, Wang X, Liu C, Liu R. Trends in research on nanomedicine in urologic cancer: a bibliometric and visualized analysis. Discov Oncol 2024; 15:366. [PMID: 39179938 PMCID: PMC11343939 DOI: 10.1007/s12672-024-01249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Increasing research efforts are focused on studying the synthesis and mechanisms of nanomedicine in urologic cancer. We performed a bibliometric study of the literature on nanomedicine in urologic cancer over the last 23 years, focusing on aspects such as researchers, institutions, nations, and keywords. We searched for papers in the Web of Science Core Collection from January 1, 2001, to December 29, 2023. Only reviews and original articles written in English were considered. A total of 2386 papers satisfied the given criteria for inclusion. The publications included in the study originated from 90 nations. The United States had the largest number of published papers, accounting for more than 31.01% of the total. The leading institution in this field is the Chinese Academy of Sciences, with a publishing output of 2.35%. Farokhzad, Omid C., is the most prolific author, with 21 articles, and has garnered the most citations, totaling 6271. The latest phrase to enter the top ten most common lists was "gold nanoparticles." We searched for papers in the Web of Science Core Collection from January 1, 2000, to November 28, 2023. Only reviews and original articles written in English were considered. This is the first bibliometric study of nanomedicine in urologic cancer. This article provides a comprehensive analysis of the current state of research on nanomedicine in urologic cancer over the last 23 years. On the basis of this study, future researchers can identify noteworthy publications, journals, and potential collaborators and explore cutting-edge research directions.
Collapse
Affiliation(s)
- Xiaopeng Lan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Feng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Lili Chen
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Luchen Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Chao Han
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Yizhen Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Jilu Zheng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Xiaoyan Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Chunlei Liu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Ranlu Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Wang AJY, Yan C, Reike MJ, Black PC, Contreras-Sanz A. A systematic review of nanocarriers for treatment of urologic cancers. Urol Oncol 2024; 42:75-101. [PMID: 38161104 DOI: 10.1016/j.urolonc.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Nanocarriers (NCs) are a form of nanotechnology widely investigated in cancer treatment to improve the safety and efficacy of systemic therapies by increasing tumor specificity. Numerous clinical trials have explored the use of NCs in urologic cancers since the approval of the first NCs for cancer treatment over 20 years ago. The objective of this systematic review is to examine the effectiveness and safety of NCs in treating urological cancers. This paper summarizes the state of the field by investigating peer-reviewed, published results from 43 clinical trials involving the use of NCs in bladder, prostate, and kidney cancer patients with a focus on safety and efficacy data. Among the 43 trials, 16 were phase I, 20 phase II, and 4 phase I/II. No phase III trials have been reported. While both novel and classic NCs have been explored in urologic cancers, NCs already approved for the treatment of other cancers were more widely represented. Trials in prostate cancer and mixed trials involving both urologic and non-urologic cancer patients were the most commonly reported trials. Although NCs have demonstrable efficacy with adequate safety in non-urologic cancer patient populations, current clinical stage NC options appear to be less beneficial in the urologic cancer setting. For example, nab-paclitaxel and liposomal doxorubicin have proven ineffective in the treatment of urologic cancers despite successes in other cancers. However, several ongoing pre-clinical studies using targeted and locally applied improved NCs may eventually improve their utility.
Collapse
Affiliation(s)
- Amy J Y Wang
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cathy Yan
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Moritz J Reike
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C Black
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada..
| | - Alberto Contreras-Sanz
- The Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada..
| |
Collapse
|
3
|
Sharma S, Mahajan SD, Chevli K, Schwartz SA, Aalinkeel R. Nanotherapeutic Approach to Delivery of Chemo- and Gene Therapy for Organ-Confined and Advanced Castration-Resistant Prostate Cancer. Crit Rev Ther Drug Carrier Syst 2023; 40:69-100. [PMID: 37075068 PMCID: PMC11007628 DOI: 10.1615/critrevtherdrugcarriersyst.2022043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatments for late-stage prostate cancer (CaP) have not been very successful. Frequently, advanced CaP progresses to castration-resistant prostate cancer (CRPC), with 50#37;-70% of patients developing bone metastases. CaP with bone metastasis-associated clinical complications and treatment resistance presents major clinical challenges. Recent advances in the formulation of clinically applicable nanoparticles (NPs) have attracted attention in the fields of medicine and pharmacology with applications to cancer and infectious and neurological diseases. NPs have been rendered biocompatible, pose little to no toxicity to healthy cells and tissues, and are engineered to carry large therapeutic payloads, including chemo- and genetic therapies. Additionally, if required, targeting specificity can be achieved by chemically coupling aptamers, unique peptide ligands, or monoclonal antibodies to the surface of NPs. Encapsulating toxic drugs within NPs and delivering them specifically to their cellular targets overcomes the problem of systemic toxicity. Encapsulating highly labile genetic therapeutics such as RNA within NPs provides a protective environment for the payload during parenteral administration. The loading efficiencies of NPs have been maximized while the controlled their therapeutic cargos has been released. Theranostic ("treat and see") NPs have developed combining therapy with imaging capabilities to provide real-time, image-guided monitoring of the delivery of their therapeutic payloads. All of these NP accomplishments have been applied to the nanotherapy of late-stage CaP, offering a new opportunity for a previously dismal prognosis. This article gives an update on current developments in the use of nanotechnology for treating late-stage, castration-resistant CaP.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Kent Chevli
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
4
|
Omabe K, Paris C, Lannes F, Taïeb D, Rocchi P. Nanovectorization of Prostate Cancer Treatment Strategies: A New Approach to Improved Outcomes. Pharmaceutics 2021; 13:591. [PMID: 33919150 PMCID: PMC8143094 DOI: 10.3390/pharmaceutics13050591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PC) is the most frequent male cancer in the Western world. Progression to Castration Resistant Prostate Cancer (CRPC) is a known consequence of androgen withdrawal therapy, making CRPC an end-stage disease. Combination of cytotoxic drugs and hormonal therapy/or genotherapy is a recognized modality for the treatment of advanced PC. However, this strategy is limited by poor bio-accessibility of the chemotherapy to tumor sites, resulting in an increased rate of collateral toxicity and incidence of multidrug resistance (MDR). Nanovectorization of these strategies has evolved to an effective approach to efficacious therapeutic outcomes. It offers the possibility to consolidate their antitumor activity through enhanced specific and less toxic active or passive targeting mechanisms, as well as enabling diagnostic imaging through theranostics. While studies on nanomedicine are common in other cancer types, only a few have focused on prostate cancer. This review provides an in-depth knowledge of the principles of nanotherapeutics and nanotheranostics, and how the application of this rapidly evolving technology can clinically impact CRPC treatment. With particular reference to respective nanovectors, we draw clinical and preclinical evidence, demonstrating the potentials and prospects of homing nanovectorization into CRPC treatment strategies.
Collapse
Affiliation(s)
- Kenneth Omabe
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Department of Biochemistry & Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki 84001, Nigeria
| | - Clément Paris
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - François Lannes
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
- Biophysics and Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, Institut Paoli-Calmettes, 13273 Marseille, France; (K.O.); (C.P.); (F.L.); (D.T.)
| |
Collapse
|
5
|
A phase I/II study of docetaxel in combination with pegylated liposomal doxorubicin in metastatic castration-resistant prostate cancer. Med Oncol 2020; 37:95. [PMID: 32979106 DOI: 10.1007/s12032-020-01420-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Taxanes and anthracyclines have been among the best-studied chemotherapy classes in castration-resistant prostate cancer (CRPC). Docetaxel (D) 75 mg/m2 every 3 weeks has been the standard first line chemotherapy for CRPC. Encapsulation of doxorubicin in polyethylene glycol-coated liposomes (PLD) was developed to enhance the safety and efficacy of conventional doxorubicin. We hypothesize that the combination of weekly low dose-D and PLD would result in a high response rate and low toxicity. Eligibility criteria included metastatic progressive CRPC, no prior D or PLD and good organ function. After a short phase I with no dose-limiting toxicity, D 30 mg/m2 was administered on days 1, 8 and 15; and PLD 30 mg/m2 on day 1 only, every 28 days. Thirty-seven patients were enrolled. The PSA response rate was 53%. Twenty-two subjects had measurable disease; one (5%) achieved complete response, five (23%) partial response, and twelve (54%) stable disease. Twenty-seven patients (73%) manifested pain relief. The median time to progression was 3.7 months for all patients and 7.9 months for responders. Median overall survival was 16.3 months. Grade 4 neutropenia without infection and anemia occurred in 1 patient each. Grade 3 treatment-related toxicities included: 15% fatigue; 9% neutropenia, anemia and nausea; 6% dehydration and hand-foot syndrome; and 3% infection, febrile neutropenia, thrombosis, stomatitis, headache, vomiting, weight loss and weakness. In this non-comparative study D-PLD demonstrated a higher activity than previously reported with single agent D with favorable side effect profile. A phase 3 study would be needed to evaluate the true benefit of this combination.ClinicalTrials.gov Identifier: NCT00456989.
Collapse
|
6
|
Vicente‐Ruiz S, Serrano‐Martí A, Armiñán A, Vicent MJ. Nanomedicine for the Treatment of Advanced Prostate Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sonia Vicente‐Ruiz
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Antoni Serrano‐Martí
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
7
|
Rosenfeld L, Sananes A, Zur Y, Cohen S, Dhara K, Gelkop S, Ben Zeev E, Shahar A, Lobel L, Akabayov B, Arbely E, Papo N. Nanobodies Targeting Prostate-Specific Membrane Antigen for the Imaging and Therapy of Prostate Cancer. J Med Chem 2020; 63:7601-7615. [PMID: 32442375 PMCID: PMC7383930 DOI: 10.1021/acs.jmedchem.0c00418] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The repertoire of
methods for the detection and chemotherapeutic
treatment of prostate cancer (PCa) is currently limited. Prostate-specific
membrane antigen (PSMA) is overexpressed in PCa tumors and can be
exploited for both imaging and drug delivery. We developed and characterized
four nanobodies that present tight and specific binding and internalization
into PSMA+ cells and that accumulate specifically in PSMA+ tumors. We then conjugated one of these nanobodies to the
cytotoxic drug doxorubicin, and we show that the conjugate internalizes
specifically into PSMA+ cells, where the drug is released
and induces cytotoxic activity. In vivo studies show
that the extent of tumor growth inhibition is similar when mice are
treated with commercial doxorubicin and with a 42-fold lower amount
of the nanobody-conjugated doxorubicin, attesting to the efficacy
of the conjugated drug. These data highlight nanobodies as promising
agents for the imaging of PCa tumors and for the targeted delivery
of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Lior Rosenfeld
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amiram Sananes
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yuval Zur
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shira Cohen
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Kalyan Dhara
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sigal Gelkop
- Department of Virology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Efrat Ben Zeev
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anat Shahar
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Leslie Lobel
- Department of Virology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Barak Akabayov
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
8
|
Gavilá J, Oliveira M, Pascual T, Perez-Garcia J, Gonzàlez X, Canes J, Paré L, Calvo I, Ciruelos E, Muñoz M, Virizuela JA, Ruiz I, Andrés R, Perelló A, Martínez J, Morales S, Marín-Aguilera M, Martínez D, Quero JC, Llombart-Cussac A, Prat A. Safety, activity, and molecular heterogeneity following neoadjuvant non-pegylated liposomal doxorubicin, paclitaxel, trastuzumab, and pertuzumab in HER2-positive breast cancer (Opti-HER HEART): an open-label, single-group, multicenter, phase 2 trial. BMC Med 2019; 17:8. [PMID: 30621698 PMCID: PMC6325829 DOI: 10.1186/s12916-018-1233-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/10/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Joaquín Gavilá
- Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Mafalda Oliveira
- Vall d' Hebron University Hospital/Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Tomás Pascual
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Hospital Clínic, Barcelona, Spain.,SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Jose Perez-Garcia
- Vall d' Hebron University Hospital/Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Instituto Oncológico Baselga, Hospital Quirón, Barcelona, Spain
| | - Xavier Gonzàlez
- SOLTI Breast Cancer Research Group, Barcelona, Spain.,Institut Oncològic Rosell, Hospital General Catalunya, Barcelona, Spain
| | - Jordi Canes
- SOLTI Breast Cancer Research Group, Barcelona, Spain
| | - Laia Paré
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Isabel Calvo
- Centro Integral Oncológico Clara Campal, Madrid, Spain
| | | | - Montserrat Muñoz
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Hospital Clínic, Barcelona, Spain
| | | | - Isabel Ruiz
- Hospital Universitario Sant Joan De Reus, Reus, Spain
| | - Raquel Andrés
- Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | | | | | | | | - Débora Martínez
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | | | | | - Aleix Prat
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain. .,Hospital Clínic, Barcelona, Spain. .,SOLTI Breast Cancer Research Group, Barcelona, Spain.
| |
Collapse
|
9
|
Cattrini C, Zanardi E, Vallome G, Cavo A, Cerbone L, Di Meglio A, Fabbroni C, Latocca MM, Rizzo F, Messina C, Rubagotti A, Barboro P, Boccardo F. Targeting androgen-independent pathways: new chances for patients with prostate cancer? Crit Rev Oncol Hematol 2017; 118:42-53. [PMID: 28917268 DOI: 10.1016/j.critrevonc.2017.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer (PC). Most patients eventually progress to a condition known as castration-resistant prostate cancer (CRPC), characterized by lack of response to ADT. Although new androgen receptor signaling (ARS) inhibitors and chemotherapeutic agents have been introduced to overcome resistance to ADT, many patients progress because of primary or acquired resistance to these agents. This comprehensive review aims at exploring the mechanisms of resistance and progression of PC, with specific focus on alterations which lead to the activation of androgen receptor (AR)-independent pathways of survival. Our work integrates available clinical and preclinical data on agents which target these pathways, assessing their potential clinical implication in specific settings of patients. Given the rising interest of the scientific community in cancer immunotherapy strategies, further attention is dedicated to the role of immune evasion in PC.
Collapse
Affiliation(s)
- C Cattrini
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.
| | - E Zanardi
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - G Vallome
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Cavo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - L Cerbone
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Di Meglio
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - C Fabbroni
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - M M Latocca
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - F Rizzo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - C Messina
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - A Rubagotti
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy
| | - P Barboro
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy
| | - F Boccardo
- Academic Unit of Medical Oncology, San Martino University Hospital - IST National Cancer Research Institute, L.go R. Benzi 10, 16132, Genoa, Italy; Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| |
Collapse
|
10
|
Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection. J Pharm Sci 2017; 106:3179-3187. [PMID: 28669714 DOI: 10.1016/j.xphs.2017.06.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/03/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
The enhanced permeability and retention (EPR) effect constitutes the rationale by which nanotechnologies selectively target drugs to tumors. Despite promising preclinical and clinical results, these technologies have, in our view, underachieved compared to their potential, possibly due to a suboptimal exploitation of the EPR effect. Here, we have systematically analyzed clinical data to identify key parameters affecting the extent of the EPR effect. An analysis of 17 clinical studies showed that the magnitude of the EPR effect was varied and was influenced by tumor type and size. Pancreatic, colon, breast, and stomach cancers showed the highest levels of accumulation of nanomedicines. Tumor size also had an effect on the accumulation of nanomedicines, with large-size tumors having higher accumulation than both medium- and very large-sized tumors. However, medium tumors had the highest percentage of cases (100% of patients) with evidence of the EPR effect. Moreover, tumor perfusion, angiogenesis, inflammation in tumor tissues, and other factors also emerged as additional parameters that might affect the accumulation of nanomedicines into tumors. At the end of the commentary, we propose 2 strategies for identification of suitable patient subpopulations, with respect to the EPR effect, in order to maximize therapeutic outcome.
Collapse
|
11
|
Klippstein R, Bansal SS, Al-Jamal KT. Doxorubicin enhances curcumin’s cytotoxicity in human prostate cancer cells in vitro by enhancing its cellular uptake. Int J Pharm 2016; 514:169-175. [DOI: 10.1016/j.ijpharm.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/27/2022]
|
12
|
Zhang N, Li S, Hua H, Liu D, Song L, Sun P, Huang W, Tang Y, Zhao Y. Low density lipoprotein receptor targeted doxorubicin/DNA-Gold Nanorods as a chemo- and thermo-dual therapy for prostate cancer. Int J Pharm 2016; 513:376-386. [DOI: 10.1016/j.ijpharm.2016.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/08/2016] [Accepted: 09/02/2016] [Indexed: 01/29/2023]
|
13
|
Olson JA, Schwartz JA, Hahka D, Nguyen N, Bunch T, Jensen GM, Adler-Moore JP. Toxicity and efficacy differences between liposomal amphotericin B formulations in uninfected and Aspergillus fumigatus infected mice. Med Mycol 2014; 53:107-18. [DOI: 10.1093/mmy/myu070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
14
|
Yu AF, Steingart RM, Fuster V. Cardiomyopathy associated with cancer therapy. J Card Fail 2014; 20:841-52. [PMID: 25151211 PMCID: PMC5972392 DOI: 10.1016/j.cardfail.2014.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/03/2023]
Abstract
Chemotherapy-associated cardiomyopathy is a well known cardiotoxicity of contemporary cancer treatment and a cause of increasing concern for both cardiologists and oncologists. As cancer outcomes improve, cardiovascular disease has become a leading cause of morbidity and mortality among cancer survivors. Asymptomatic or symptomatic left ventricular systolic dysfunction in the setting of cardiotoxic chemotherapy is an important entity to recognize. Early diagnosis of cardiac injury through the use of novel blood-based biomarkers or noninvasive imaging modalities may allow for the initiation of cardioprotective medications or modification of chemotherapy regimen to minimize or prevent further damage. Several clinical trials are currently underway to determine the efficacy of cardioprotective medications for the prevention of chemotherapy-associated cardiomyopathy. Implementing a strategy that includes both early detection and prevention of cardiotoxicity will likely have a significant impact on the overall prognosis of cancer survivors. Continued coordination of care between cardiologists and oncologists remains critical to maximizing the oncologic benefit of cancer therapy while minimizing any early or late cardiovascular effects.
Collapse
Affiliation(s)
- Anthony F Yu
- Cardiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Richard M Steingart
- Cardiology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Kroon J, Metselaar JM, Storm G, van der Pluijm G. Liposomal nanomedicines in the treatment of prostate cancer. Cancer Treat Rev 2014; 40:578-84. [DOI: 10.1016/j.ctrv.2013.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/10/2013] [Accepted: 10/16/2013] [Indexed: 12/20/2022]
|
16
|
Chen X, Cvetkovic D, Ma CM, Chen L. Quantitative study of focused ultrasound enhanced doxorubicin delivery to prostate tumor in vivo with MRI guidance. Med Phys 2012; 39:2780-6. [PMID: 22559650 DOI: 10.1118/1.4705346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of this study was to investigate the potential of MR-guided pulsed focused ultrasound (pFUS) for the enhancement of drug uptake in prostate tumors in vivo using doxorubicin (Dox). METHODS An antitumor drug Dox, an orthotopic animal prostate tumor model using human prostate cancer, LNCaP cell line, and a clinical FUS treatment system (InSightec ExAblate 2000) with a 1.5T GE MR scanner were used in this study. First, experiments on a tissue mimic phantom to determine the optimal acoustic power and exposure durations with a 10% duty cycle and a 1 Hz pulse rate were performed. The temperature variation was monitored using real-time MR thermometry. Second, tumor-bearing animals were treated with pFUS. There were three groups (n = 8/group): group 1 received pFUS + Dox (10 mg/kg i.v. injection immediately after pFUS exposure), group 2 received Dox only (10 mg/kg i.v. injection), and group 3 was a control. Animals were euthanized 2 h after the pFUS treatment. The Dox concentration in the treated tumors was measured by quantifying fluorescent tracers using a fluorometer. Third, the histological changes of tumors with and without pFUS treatments were evaluated. Finally, experiments were performed to study the spatial drug distribution in tumors after the pFUS treatment, in which two animals received pFUS + Dox, two animals received Dox only, and one animal was used as control. Two hours following the treatment, animals were euthanized and processed. The Dox distribution was determined using a fluorescence microscope. RESULTS Parametric measurements using a tissue phantom showed that the temperature increased with an increasing acoustic power (from 10 to 50 W) or sonication duration (from 10 to 60 s) with a given acoustic frequency of 1 MHz, duty cycle 10%, and pulse rate 1 Hz. A set of ultrasound parameters was identified with which the temperature elevation was less than 5 °C, which was used for nonthermal pFUS sonication. Increased Dox concentration (14.9 ± 2.5 μg/g) was measured in the pFUS-treated group compared to the Dox-only group (9.5 ± 1.6 μg/g), indicating an approximate 60% increase with p = 0.05. The results were consistent with the increased spatial drug distributions by fluorescence imaging. Histological analysis showed increased extravasation in pFUS-treated prostate tumors suggesting increased drug delivery with pFUS. CONCLUSIONS The results showed that pFUS-enhanced drug uptake in prostate tumors was significant. This increased uptake may be due to increased extravasation by pFUS. Optimal pFUS parameters may exist to maximize the drug uptake, and this study using Dox demonstrated a quantitative method for such systematic parametric studies. In addition, this study may provide useful data for the potential application of pFUS-mediated Dox delivery for prostate tumor therapy.
Collapse
Affiliation(s)
- Xiaoming Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
17
|
Nagesha DK, Tada DB, Stambaugh CKK, Gultepe E, Jost E, Levy CO, Cormack R, Makrigiorgos GM, Sridhar S. Radiosensitizer-eluting nanocoatings on gold fiducials for biologicalin-situimage-guided radio therapy (BIS-IGRT). Phys Med Biol 2010; 55:6039-52. [DOI: 10.1088/0031-9155/55/20/001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Phase I study of pemetrexed and pegylated liposomal doxorubicin in patients with refractory breast, ovarian, primary peritoneal, or fallopian tube cancer. Invest New Drugs 2010; 29:963-70. [DOI: 10.1007/s10637-010-9414-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 03/01/2010] [Indexed: 12/01/2022]
|
19
|
Rosenthal AS, Chen X, Liu JO, West DC, Hergenrother PJ, Shapiro TA, Posner GH. Malaria-infected mice are cured by a single oral dose of new dimeric trioxane sulfones which are also selectively and powerfully cytotoxic to cancer cells. J Med Chem 2009; 52:1198-203. [PMID: 19186946 PMCID: PMC2698029 DOI: 10.1021/jm801484v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new series of 6 dimeric trioxane sulfones has been prepared from the natural trioxane artemisinin in five or six chemical steps. One of these thermally and hydrolytically stable new chemical entities (4c) completely cured malaria-infected mice via a single oral dose of 144 mg/kg. At a much lower single oral dose of only 54 mg/kg combined with 13 mg/kg of mefloquine hydrochloride, this trioxane dimer 4c as well as its parent trioxane dimer 4b also completely cured malaria-infected mice. Both dimers 4c and 4b were potently and selectively cytotoxic toward five cancer cell lines.
Collapse
Affiliation(s)
- Andrew S. Rosenthal
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2685
| | - Xiaochun Chen
- Division of Pharmacology, Department of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jun O. Liu
- Division of Pharmacology, Department of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Diana C. West
- Department of Chemistry, University of Illinois, Urbana, IL 61801
| | | | - Theresa A. Shapiro
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205
- The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Gary H. Posner
- Department of Chemistry, School of Arts and Sciences, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218-2685
- The Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
20
|
Ciprofloxacin sensitizes hormone-refractory prostate cancer cell lines to doxorubicin and docetaxel treatment on a schedule-dependent manner. Cancer Chemother Pharmacol 2008; 64:445-54. [DOI: 10.1007/s00280-008-0892-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
|
21
|
Solomon R, Gabizon AA. Clinical Pharmacology of Liposomal Anthracyclines: Focus on Pegylated Liposomal Doxorubicin. ACTA ACUST UNITED AC 2008; 8:21-32. [DOI: 10.3816/clm.2008.n.001] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Alagbala AA, McRiner AJ, Borstnik K, Labonte T, Chang W, D’Angelo JG, Posner GH, Foster BA. Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J Med Chem 2007; 49:7836-42. [PMID: 17181166 PMCID: PMC5545891 DOI: 10.1021/jm060803i] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms of action of three C-10 non-acetal trioxane dimers (TDs) were examined in human (LNCaP) and mouse (TRAMP-C1A and -C2H) prostate cancer cell lines. 1 (AJM3/23), 2 (GHP-TM-III-07w), and 3 (GHP-KB-06) inhibited cell growth with 3 being the most potent in C1A (GI50 = 18.0 nM), C2H (GI50 = 17.0 nM), and LNCaP (GI50 = 17.9 nM) cells. In comparison to a standard cytotoxic agent such as doxorubicin (GI50 = 45.3 nM), 3 (GI50 = 17.9 nM) inhibited LNCaP cell growth more potently. TDs induced G0/G1 cell cycle arrest in LNCaP cells and decreased cells in the S phase. These changes correlated with modulation of G1 phase cell cycle proteins including decreased cyclin D1, cyclin E, and cdk2 and increased p21waf1 and p27Kip1. TDs also promoted apoptosis in LNCaP cells with increased expression of proapoptotic bax. These results demonstrate that TDs are potentially useful agents that warrant further preclinical development for treatment of prostate cancer.
Collapse
Affiliation(s)
- Adebusola A. Alagbala
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
| | - Andrew J. McRiner
- Johns Hopkins University, Department of Chemistry and Malaria Research Institute, Baltimore, MD, USA
| | - Kristina Borstnik
- Johns Hopkins University, Department of Chemistry and Malaria Research Institute, Baltimore, MD, USA
| | - Tanzina Labonte
- Johns Hopkins University, Department of Chemistry and Malaria Research Institute, Baltimore, MD, USA
| | - Wonsuk Chang
- Johns Hopkins University, Department of Chemistry and Malaria Research Institute, Baltimore, MD, USA
| | - John G. D’Angelo
- Johns Hopkins University, Department of Chemistry and Malaria Research Institute, Baltimore, MD, USA
| | - Gary H. Posner
- Johns Hopkins University, Department of Chemistry and Malaria Research Institute, Baltimore, MD, USA
| | - Barbara A. Foster
- Roswell Park Cancer Institute, Department of Pharmacology and Therapeutics, Buffalo, NY, USA
- Corresponding Author Footnote: To whom correspondence should be addressed. Address: Roswell Park Cancer Institute, Elm and Carlton Streets, GCDC 303, Buffalo, NY 14263. Phone: (716) 845 1260. Fax: (716) 845 1258. Barbara.
| |
Collapse
|
23
|
Sonpavde G, Hutson TE, Berry WR. Hormone refractory prostate cancer: Management and advances. Cancer Treat Rev 2006; 32:90-100. [PMID: 16458434 DOI: 10.1016/j.ctrv.2005.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 11/25/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Effective therapeutic options have not existed for prostate cancer progressing after androgen deprivation therapy until very recently. Secondary hormonal manipulations offer marginal benefits. Docetaxel based chemotherapy has been demonstrated to extend survival and change the natural history of the disease in two large randomized trials. These studies have provided the impetus to combine docetaxel with novel biologic agents to further consolidate the gains in long-term outcome. With the arrival of exciting agents including vaccines, monoclonal antibodies, bone-targeted drugs, antisense oligonucleotides, anti-angiogenic drugs and small molecule receptor tyrosine kinase inhibitors, the future treatment of prostate cancer appears promising.
Collapse
|
24
|
Alberts DS, Muggia FM, Carmichael J, Winer EP, Jahanzeb M, Venook AP, Skubitz KM, Rivera E, Sparano JA, DiBella NJ, Stewart SJ, Kavanagh JJ, Gabizon AA. Efficacy and safety of liposomal anthracyclines in Phase I/II clinical trials. Semin Oncol 2004; 31:53-90. [PMID: 15717738 DOI: 10.1053/j.seminoncol.2004.08.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Preclinical studies have established the pharmacologic advantages of liposomal anthracyclines, including pharmacokinetic profiles after bolus dosing that resemble continuous infusion of conventional anthracyclines, increased drug concentrations in tumor cells compared with the surrounding tissues, and reduced toxicity relative to conventional anthracycline treatment. Based on these studies, many phase I and phase II clinical trials were conducted to assess the safety and potential activity of liposomal anthracyclines in the management of both solid and hematologic tumors. These studies provided valuable insight into the safety of pegylated liposomal doxorubicin (Doxil/Caelyx [PLD]), nonpegylated liposomal doxorubicin (Myocet [NPLD]), and liposomal daunorubicin (DaunoXome [DNX]) over a range of doses, either as single-agent therapy or in combination with other cytotoxic agents. Other liposomal anthracyclines in development may be well tolerated but their activity remains to be elucidated by clinical trials. The available data also suggest that liposomal anthracyclines have activity not only against tumor types with known sensitivity to conventional anthracyclines, but also potentially for tumors that are typically anthracycline-resistant. Despite the availability of clinical data from a wide variety of tumor types and patient populations, further studies of liposomal anthracycline therapy are needed to fully establish their safety, efficacy, and dosing in the treatment of these patients.
Collapse
|