1
|
Attiq A, Afzal S. Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol 2023; 14:1255727. [PMID: 37680708 PMCID: PMC10482416 DOI: 10.3389/fphar.2023.1255727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Unresolved inflammation is a pathological consequence of persistent inflammatory stimulus and perturbation in regulatory mechanisms. It increases the risk of tumour development and orchestrates all stages of tumorigenesis in selected organs. In certain cancers, inflammatory processes create the appropriate conditions for neoplastic transformation. While in other types, oncogenic changes pave the way for an inflammatory microenvironment that leads to tumour development. Of interest, hallmarks of tumour-promoting and cancer-associated inflammation are striking similar, sharing a complex network of stromal (fibroblasts and vascular cells) and inflammatory immune cells that collectively form the tumour microenvironment (TME). The cross-talks of signalling pathways initially developed to support homeostasis, change their role, and promote atypical proliferation, survival, angiogenesis, and subversion of adaptive immunity in TME. These transcriptional and regulatory pathways invariably contribute to cancer-promoting inflammation in chronic inflammatory disorders and foster "smouldering" inflammation in the microenvironment of various tumour types. Besides identifying common target sites of numerous cancer types, signalling programs and their cross-talks governing immune cells' plasticity and functional diversity can be used to develop new fate-mapping and lineage-tracing mechanisms. Here, we review the vital molecular mechanisms and pathways that establish the connection between inflammation and tumour development, progression, and metastasis. We also discussed the cross-talks between signalling pathways and devised strategies focusing on these interaction mechanisms to harness synthetic lethal drug combinations for targeted cancer therapy.
Collapse
Affiliation(s)
- Ali Attiq
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Sheryar Afzal
- Department of Biomedical Sciences, Faculty of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
2
|
Faida P, Attiogbe MKI, Majeed U, Zhao J, Qu L, Fan D. Lung cancer treatment potential and limits associated with the STAT family of transcription factors. Cell Signal 2023:110797. [PMID: 37423343 DOI: 10.1016/j.cellsig.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Lung cancer is one of the mortal cancers and the leading cause of cancer-related mortality, with a cancer survival rate of fewer than 5% in developing nations. This low survival rate can be linked to things like late-stage detection, quick postoperative recurrences in patients receiving therapy, and chemoresistance developing against various lung cancer treatments. Signal transducer and activator of transcription (STAT) family of transcription factors are involved in lung cancer cell proliferation, metastasis, immunological control, and treatment resistance. By interacting with specific DNA sequences, STAT proteins trigger the production of particular genes, which in turn result in adaptive and incredibly specific biological responses. In the human genome, seven STAT proteins have been discovered (STAT1 to STAT6, including STAT5a and STAT5b). Many external signaling proteins can activate unphosphorylated STATs (uSTATs), which are found inactively in the cytoplasm. When STAT proteins are activated, they can increase the transcription of several target genes, which leads to unchecked cellular proliferation, anti-apoptotic reactions, and angiogenesis. The effects of STAT transcription factors on lung cancer are variable; some are either pro- or anti-tumorigenic, while others maintain dual, context-dependent activities. Here, we give a succinct summary of the various functions that each member of the STAT family plays in lung cancer and go into more detail about the advantages and disadvantages of pharmacologically targeting STAT proteins and their upstream activators in the context of lung cancer treatment.
Collapse
Affiliation(s)
- Paison Faida
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Mawusse K I Attiogbe
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Yoneda T, Kunimura N, Kitagawa K, Fukui Y, Saito H, Narikiyo K, Ishiko M, Otsuki N, Nibu KI, Fujisawa M, Serada S, Naka T, Shirakawa T. Overexpression of SOCS3 mediated by adenovirus vector in mouse and human castration-resistant prostate cancer cells increases the sensitivity to NK cells in vitro and in vivo. Cancer Gene Ther 2019; 26:388-399. [PMID: 30607005 DOI: 10.1038/s41417-018-0075-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023]
Abstract
Prostate cancer is one of the most common cancers in men. The overactivation of IL-6/JAK/STAT3 signaling and silencing of SOCS3 are frequently observed in prostate cancer. In the present study we undertook to develop Ad-SOCS3 gene therapy for the treatment of prostate cancer and also investigated whether Ad-SOCS3 increased sensitivity to NK cells. We demonstrated that Ad-SOCS3 could significantly inhibit growth of castration-resistant prostate cancer (CRPC) cell lines expressing pSTAT3, DU-145 (at 10, 20, and 40 MOI), and TRAMP-C2 (at 40 MOI), but not the PC-3 CRPC cell line with the STAT3 gene deleted. Ad-SOCS3 (40 MOI) could suppress IL-6 production in DU-145 cells and PD-L1 expression induced by IFN-γ in TRAMP-C2 cells, and increased the NK cell sensitivity of both TRAMP-C2 and DU-145 cells. In the DU-145 mouse xenograft tumor model, intratumoral injections (twice/week for 3 weeks) of 1 × 108 pfu of Ad-SOCS3 significantly inhibited tumor growth and combining the Ad-SOCS3 treatment with intratumoral injections (once/week for 2 weeks) of 1 × 107 human NK cells showed the highest tumor growth inhibitory effect. These results suggested that a combination of Ad-SOCS3 gene therapy and NK cell immunotherapy could be a powerful treatment option for advanced CRPC overexpressing pSTAT3.
Collapse
Affiliation(s)
- Tomomi Yoneda
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Naoto Kunimura
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Yuka Fukui
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Hiroki Saito
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Keita Narikiyo
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Motoki Ishiko
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Naoki Otsuki
- Division of Otolaryngology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Nibu
- Division of Otolaryngology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan. .,Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
4
|
Florea ID, Karaoulani C. Epigenetic Changes of the Immune System with Role in Tumor Development. Methods Mol Biol 2018; 1856:203-218. [PMID: 30178253 DOI: 10.1007/978-1-4939-8751-1_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor development is closely related to chronic inflammation and to evasion of immune defense mechanisms by neoplastic cells. The mediators of the inflammatory process as well as proteins involved in immune response or immune response evasion can be subject to various epigenetic changes such as methylation, acetylation, or phosphorylation. Some of these, such as cytokine suppressors, are undergoing repression through epigenetic changes, and others such as cytokines or chemokines are undergoing activation through epigenetic changes, both modifications having as a result tumor progression. The activating changes can affect the receptor molecules involved in immune response and these promote inflammation and subsequently tumor development while the inactivating changes seem to be related to the tumor regression process. The proteins involved in antigen presentation, and, therefore in immune response escape, such as classical HLA proteins and related APM (antigen presentation machinery) with their epigenetic changes contribute to the tumor development process, either to tumor progression or regression, depending on the immune effector cells that are in play.
Collapse
|
5
|
Detection of promoter methylation status of suppressor of cytokine signaling 3 (SOCS3) in tissue and plasma from Chinese patients with different hepatic diseases. Clin Exp Med 2017; 18:79-87. [DOI: 10.1007/s10238-017-0473-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
|
6
|
Cacalano NA. Regulation of Natural Killer Cell Function by STAT3. Front Immunol 2016; 7:128. [PMID: 27148255 PMCID: PMC4827001 DOI: 10.3389/fimmu.2016.00128] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/21/2016] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells, key members of a distinct hematopoietic lineage, innate lymphoid cells, are not only critical effectors that mediate cytotoxicity toward tumor and virally infected cells but also regulate inflammation, antigen presentation, and the adaptive immune response. It has been shown that NK cells can regulate the development and activation of many other components of the immune response, such as dendritic cells, which in turn, modulate the function of NK cells in multiple synergistic feed back loops driven by cell–cell contact, and the secretion of cytokines and chemokines that control effector function and migration of cells to sites of immune activation. The signal transducer and activator of transcription (STAT)-3 is involved in driving almost all of the pathways that control NK cytolytic activity as well as the reciprocal regulatory interactions between NK cells and other components of the immune system. In the context of tumor immunology, NK cells are a first line of defense that eliminates pre-cancerous and transformed cells early in the process of carcinogenesis, through a mechanism of “immune surveillance.” Even after tumors become established, NK cells are critical components of anticancer immunity: dysfunctional NK cells are often found in the peripheral blood of cancer patients, and the lack of NK cells in the tumor microenvironment often correlates to poor prognosis. The pathways and soluble factors activated in tumor-associated NK cells, cancer cells, and regulatory myeloid cells, which determine the outcome of cancer immunity, are all critically regulated by STAT3. Using the tumor microenvironment as a paradigm, we present here an overview of the research that has revealed fundamental mechanisms through which STAT3 regulates all aspects of NK cell biology, including NK development, activation, target cell killing, and fine tuning of the innate and adaptive immune responses.
Collapse
Affiliation(s)
- Nicholas A Cacalano
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| |
Collapse
|
7
|
Huang L, Hu B, Ni J, Wu J, Jiang W, Chen C, Yang L, Zeng Y, Wan R, Hu G, Wang X. Transcriptional repression of SOCS3 mediated by IL-6/STAT3 signaling via DNMT1 promotes pancreatic cancer growth and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:27. [PMID: 26847351 PMCID: PMC4743194 DOI: 10.1186/s13046-016-0301-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies have investigated the sustained aberrantly activated Interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway is crucial for pancreatic cancer growth and metastasis. Suppressor of cytokine signaling 3 (SOCS3), as a key negative feedback regulator of this signaling pathway, is usually down-regulated in various cancers. In the present study, we aim at exploring the biological function and the underlying molecular regulation mechanisms of SOCS3 in pancreatic cancer. METHODS The expression of SOCS3 and other genes in pancreatic cancer was examined by Quantitative real-time PCR, western blotting and immunohistochemical staining. The interaction between pSTAT3 and DNA Methyltransferase 1 (DNMT1) was investigated by co-immunoprecipitation assay. Luciferase reporter assay was used to investigate the transcriptional regulation of pSTAT3 and DNMT1 on the SOCS3 gene. The effects of SOCS3 on the biological behavior of pancreatic cancer cells were assessed both in vitro and vivo. Furthermore, we performed a comprehensive analysis of the expression of SOCS3 in a pancreatic cancer tissue microarray (TMA) and correlated our findings with pathological parameters and outcomes of the patients. RESULTS We showed that SOCS3 expression was decreased in phosphorylated STAT3 (pSTAT3)-positive tumors and was negatively correlated with pSTAT3 in pancreatic cancer cells. We also found that IL-6/STAT3 promoted SOCS3 promoter hypermethylation by increasing DNMT1 activity; silencing DNMT1 or 5-aza-2-deoxycytidine (5-AZA) treatment could reverse the down-regulation of SOCS3 mediated by IL-6. Using co-immunoprecipitation and luciferase reporter assays, we found that STAT3 recruited DNMT1 to the promoter region of SOCS3 and inhibited its transcriptional activity. Overexpression of SOCS3 significantly inhibited cell proliferation, which may be due to the increase in G1-S phase arrest; overexpression of SOCS3 also inhibited cell migration and invasion as well as tumorigenicity in nude mice. Pancreatic cancer tissue microarray analysis showed that high SOCS3 expression was a good prognostic factor and negatively correlated with tumor volume and metastasis. CONCLUSION We demonstrated that activated IL-6/STAT3 signaling could induce SOCS3 methylation via DNMT1, which led to pancreatic cancer growth and metastasis. These data also provided a mechanistic link between sustained aberrantly activated IL-6/STAT3 signaling and SOCS3 down-regulation in pancreatic cancer. Thus, inhibitors of STAT3 or DNMT1 may become novel strategies for treating pancreatic cancer.
Collapse
Affiliation(s)
- Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Bin Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Jianghong Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Yue Zeng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai, Hongkou District 200080 China
| |
Collapse
|
8
|
Boosani CS, Agrawal DK. Methylation and microRNA-mediated epigenetic regulation of SOCS3. Mol Biol Rep 2015; 42:853-72. [PMID: 25682267 DOI: 10.1007/s11033-015-3860-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigenetic gene silencing of several genes causes different pathological conditions in humans, and DNA methylation has been identified as one of the key mechanisms that underlie this evolutionarily conserved phenomenon associated with developmental and pathological gene regulation. Recent advances in the miRNA technology with high throughput analysis of gene regulation further increased our understanding on the role of miRNAs regulating multiple gene expression. There is increasing evidence supporting that the miRNAs not only regulate gene expression but they also are involved in the hypermethylation of promoter sequences, which cumulatively contributes to the epigenetic gene silencing. Here, we critically evaluated the recent progress on the transcriptional regulation of an important suppressor protein that inhibits cytokine-mediated signaling, SOCS3, whose expression is directly regulated both by promoter methylation and also by microRNAs, affecting its vital cell regulating functions. SOCS3 was identified as a potent inhibitor of Jak/Stat signaling pathway which is frequently upregulated in several pathologies, including cardiovascular disease, cancer, diabetes, viral infections, and the expression of SOCS3 was inhibited or greatly reduced due to hypermethylation of the CpG islands in its promoter region or suppression of its expression by different microRNAs. Additionally, we discuss key intracellular signaling pathways regulated by SOCS3 involving cellular events, including cell proliferation, cell growth, cell migration and apoptosis. Identification of the pathway intermediates as specific targets would not only aid in the development of novel therapeutic drugs, but, would also assist in developing new treatment strategies that could successfully be employed in combination therapy to target multiple signaling pathways.
Collapse
Affiliation(s)
- Chandra S Boosani
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | |
Collapse
|
9
|
Schütz A, Röser K, Klitzsch J, Lieder F, Aberger F, Gruber W, Mueller KM, Pupyshev A, Moriggl R, Friedrich K. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation. Transl Oncol 2015; 8:97-105. [PMID: 25926075 PMCID: PMC4415137 DOI: 10.1016/j.tranon.2015.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/21/2015] [Accepted: 02/04/2015] [Indexed: 01/10/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC) cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1) was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549) were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6). In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.
Collapse
Affiliation(s)
| | - Katrin Röser
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Jana Klitzsch
- Institute of Pathology, University of Leipzig, Leipzig, Germany
| | - Franziska Lieder
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Wolfgang Gruber
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | | |
Collapse
|
10
|
Song X, Wang M, Zhang L, Zhang J, Wang X, Liu W, Gu X, Lv C. Changes in cell ultrastructure and inhibition of JAK1/STAT3 signaling pathway in CBRH-7919 cells with astaxanthin. Toxicol Mech Methods 2013; 22:679-86. [PMID: 22889354 DOI: 10.3109/15376516.2012.717119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astaxanthin (AST), a xanthophylls carotenoid, possesses significant anticancer effects. However, to date, the molecular mechanism of anticancer remains unclear. In the present research, we studied the anticancer mechanism of AST, including the changes in cell ultrastructure, such as the mitochondrion, rough endoplasmic reticulum (RER), Golgi complex, and cytoskeleton, the inhibition of Janus kinase 1(JAK1)/transduction and the activators of the transcription-3 (STAT3) signaling pathway using rat hepatocellular carcinoma CBRH-7919 cells. Cell apoptosis was evaluated and the expressions of JAK1, STAT3, non-metastasis23-1 (nm23-1), and apoptotic gene like B-cell lymphoma/leukemia-2 (bcl-2), B-cell lymphoma-extra large (bcl-xl), proto-oncogene proteins c myc (c-myc) and bcl-2- associated X (bax) were also examined. The results showed that AST could induce cancer cell apoptosis. Under transmission electron microscope, the ultrastructure of treated cells were not clearly distinguishable, the membranes of the mitochondrion, RER, Golgi complex were broken or loosened, and the endoplasmic reticulum (ER) was degranulated. Cytoskeleton depolymerization of the microtubule system led to the collapse of extended vimentin intermediate filament bundles into short agglomerations with disordered distributions. AST inhibited the expression of STAT3, its upstream activator JAK1, and the STAT3 target antiapoptotic genes bcl-2, bcl-xl, and c-myc. Conversely, AST enhanced the expressions of nm23-1 and bax. Overall, our findings demonstrate that AST could induce the apoptosis of CBRH-7919 cells, which are involved in cell ultrastructure and the JAK1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xiaodong Song
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Jang JY, Jeon YK, Lee CE, Kim CW. ANT2 suppression by shRNA may be able to exert anticancer effects in HCC further by restoring SOCS1 expression. Int J Oncol 2012; 42:574-82. [PMID: 23242177 DOI: 10.3892/ijo.2012.1736] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/26/2012] [Indexed: 11/06/2022] Open
Abstract
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of Janus kinase and the signal transducer and activation of transcription (Jak-STAT) pathway. SOCS-1 is known to be silenced by aberrant promoter methylation in human hepatocellular carcinoma (HCC) during early tumorigenesis, therefore, a strategy to restore SOCS1 expression can be utilized for cancer therapy. Here, we examined the influence of adenine nucleotide translocase 2 (ANT2) suppression by short-hairpin RNA (shRNA) on SOCS1 expression and its downstream effect in HCC. ANT2 shRNA treatment led to restoration of SOCS1 expression along with its promoter demethylation in Hep3B cells, which was accompanied by decreased DNA methyltransferase 1 (DNMT1) activity through the suppression of Ras/PI3K/Akt signaling. Restoration of SOCS1 by ANT2 knockdown, subsequently, inhibited STAT3 activity and downregulated the expression of miR-21, which has been reported to be an important onco-miR in HCC. Downregulation of miR-21 efficiently suppressed Hep3B cell proliferation in vitro with a comparable level to ANT2 shRNA treatment. ANT2 suppression by shRNA may be able to exert anticancer effects in HCC further by restoring SOCS1 expression.
Collapse
Affiliation(s)
- Ji-Young Jang
- Tumor Immunity Medical Research Center, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Igci M, Cakmak EA, Oztuzcu S, Bayram A, Arslan A, Gogebakan B, Igci YZ, Cengiz B, Ozkara E, Camci C, Demiryurek AT. Mutational screening of the SOCS3 gene promoter in metastatic colorectal cancer patients. Genet Test Mol Biomarkers 2012; 16:1395-400. [PMID: 23046072 DOI: 10.1089/gtmb.2012.0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytokine-induced expression of suppressors of cytokine signalling (SOCS) molecules is important for the negative feedback control of STAT-dependent cytokine signalling. The aim of this study was to investigate possible association between the promoter region polymorphisms of the SOCS3 gene and metastatic colorectal carcinoma in a Turkish population. The DNA samples obtained from 103 patients and 109 healthy individuals were analyzed by polymerase chain reaction/single-strand conformation polymorphism (SSCP), and nucleotide sequence analysis. Five sets of primers designed for the SOCS3 gene were used, and we did not detect significant differences in genotype frequencies for any of these polymorphisms between the study groups. Only the S3P1 region showed polymorphism and displayed three (1,2,4, 2,3,4 and 2,4) genotypes. Interestingly, 2,3,4 genotype was observed in 3 patients, but not in controls. Moreover, the sequence analysis revealed that the nucleotides positioned at -914 and -1031 nt had the polymorphisms. Nucleotide sequence analysis of SSCP band 1 and band 3 revealed C-914A (rs12953258) and T-1031C (rs111033850) polymorphisms, respectively. The T-1031C polymorphism lies in the border of the STAT-binding site. The T-1031C polymorphism (rs111033850) is a newly identified single nucleotide polymorphism with this study, and we submitted this to the NCBI database. However, these results suggested that there is no marked association between SOCS3 gene promoter region polymorphisms and the risk of developing metastatic colorectal cancer.
Collapse
Affiliation(s)
- Mehri Igci
- Department of Medical Biology, Gaziantep University, Gaziantep, Turkey.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhu Z, Kremer P, Tadmori I, Ren Y, Sun D, He X, Young W. Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting STAT3 pathway independently of glycogen synthase kinase 3 beta. PLoS One 2011; 6:e23341. [PMID: 21931595 PMCID: PMC3170293 DOI: 10.1371/journal.pone.0023341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/14/2011] [Indexed: 11/19/2022] Open
Abstract
Transplanted neural stem and progenitor cells (NSCs) produce mostly astrocytes in injured spinal cords. Lithium stimulates neurogenesis by inhibiting GSK3b (glycogen synthetase kinase 3-beta) and increasing WNT/beta catenin. Lithium suppresses astrogliogenesis but the mechanisms were unclear. We cultured NSCs from subventricular zone of neonatal rats and showed that lithium reduced NSC production of astrocytes as well as proliferation of glia restricted progenitor (GRP) cells. Lithium strongly inhibited STAT3 (signal transducer and activator of transcription 3) activation, a messenger system known to promote astrogliogenesis and cancer. Lithium abolished STAT3 activation and astrogliogenesis induced by a STAT3 agonist AICAR (5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside), suggesting that lithium suppresses astrogliogenesis by inhibiting STAT3. GSK3β inhibition either by a specific GSK3β inhibitor SB216763 or overexpression of GID5-6 (GSK3β Interaction Domain aa380 to 404) did not suppress astrogliogenesis and GRP proliferation. GSK3β inhibition also did not suppress STAT3 activation. Together, these results indicate that lithium inhibits astrogliogenesis through non-GSK3β-mediated inhibition of STAT. Lithium may increase efficacy of NSC transplants by increasing neurogenesis and reducing astrogliogenesis. Our results also may explain the strong safety record of lithium treatment of manic depression. Millions of people take high-dose (>1 gram/day) lithium carbonate for a lifetime. GSK3b inhibition increases WNT/beta catenin, associated with colon and other cancers. STAT3 inhibition may reduce risk for cancer.
Collapse
Affiliation(s)
- Zhenzhong Zhu
- The 2nd Department of Orthopedics Surgery, The 2nd Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, People's Republic of China
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Penny Kremer
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Iman Tadmori
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Yi Ren
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Xijing He
- The 2nd Department of Orthopedics Surgery, The 2nd Hospital of Xi'an Jiaotong University, Xi'an City, Shaanxi Province, People's Republic of China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
14
|
Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3K/mTOR pathway. J Cancer Res Clin Oncol 2011; 137:1629-40. [PMID: 21861134 DOI: 10.1007/s00432-011-1037-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/04/2011] [Indexed: 02/05/2023]
Abstract
PURPOSE The mammalian Janus kinase (JAK) family plays a critical role in cytokine/growth factor signalling pathways and is associated with human cancers. In this study, we explored the role of JAK1 in the non-small cell lung cancer (NSCLC) cell line A549 and its molecular crosstalk with the phosphatidyl inositol-3-kinase (PI3K)/mammalian target of the rapamycin (mTOR) pathway. METHODS One hundred and two NSCLC and 50 normal lung specimens were collected after surgical resection. JAK1 expression and phosphorylation were determined via immunohistochemical staining (IHC) assay. A stable knockdown of JAK1 was performed in A549 cells by RNA interference. Stable cell proliferation, cell cycle, apoptosis, and invasion were characterised in vitro. Tumourigenicity was analysed in vivo. The NSCLC xenograft protein expression of PI3K/mTOR pathway molecules was determined by Western blot assay. RESULTS JAK1 expression was higher in NSCLC tissues than in normal lung tissues (P < 0.01). JAK1 knockdown in A549 cells significantly inhibited cell proliferation and invasion while promoting cell arrest at G0/G1 phase (all P < 0.05). The xenograft model showed that JAK1 suppression inhibited tumour growth compared with normal control (P < 0.05). Moreover, JAK1 knockdown inhibited mTOR or P70 ribosomal protein S6 kinase (P70S6K) phosphorylation, but increased glycogen synthase kinase-3α (GSK-3α) and B-cell lymphoma-extra large (Bcl-xl) phosphorylation. Total protein expression and Akt1/2 phosphorylated status remained unchanged. CONCLUSION Our study suggests that JAK1 expression and phosphorylation is abnormal in NSCLC tissues. The knockdown of JAK1 significantly inhibits tumourigenicity of the A549 cell line and demonstrates that crosstalk between the JAK1 and PI3K/mTOR pathways is involved.
Collapse
|
15
|
Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. ACTA ACUST UNITED AC 2011; 81:265-84. [PMID: 21430413 DOI: 10.1159/000324601] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both chronic obstructive pulmonary disease (COPD) and lung cancer are major causes of death worldwide. In most cases this reflects cigarette smoke exposure which is able to induce an inflammatory response in the airways of smokers. Indeed, COPD is characterized by lower airway inflammation, and importantly, the presence of COPD is by far the greatest risk factor for lung cancer amongst smokers. Cigarette smoke induces the release of many inflammatory mediators and growth factors including TGF-β, EGFR, IL-1, IL-8 and G-CSF through oxidative stress pathways and this inflammation may persist for decades after smoking cessation. Mucus production is also increased by these inflammatory mediators, further linking airway inflammation to an important mechanism of lung cancer. A greater understanding of the molecular and cellular pathobiology that distinguishes smokers with lung cancer from smokers with and without COPD is needed to unravel the complex molecular interactions between COPD and lung cancer. By understanding the common signalling pathways involved in COPD and lung cancer the hope is that treatments will be developed that not only treat the underlying disease process in COPD, but also reduce the currently high risk of developing lung cancer in these patients.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | |
Collapse
|
16
|
Prolonged tyrosine kinase activation of insulin receptor by pY27-caveolin-2. Biochem Biophys Res Commun 2010; 391:49-55. [DOI: 10.1016/j.bbrc.2009.10.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 10/29/2009] [Indexed: 11/18/2022]
|
17
|
The suppressors of cytokine signalling E3 ligases behave as tumour suppressors. Biochem Soc Trans 2008; 36:464-8. [PMID: 18481982 DOI: 10.1042/bst0360464] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many studies have suggested that E3 ubiquitin ligases can behave as either oncogenes or tumour suppressor genes and, recently, it has become clear that the SOCS (suppressor of cytokine signalling) E3 ligases fit this mould. While most cancer-associated E3s regulate the cell cycle or DNA repair, the SOCS proteins inhibit growth factor responses by degrading signalling intermediates such as JAKs (Janus kinases) via the SOCS-box-associated ECS (Elongin-Cullin-SOCS) E3 ligase. Clinical studies have found that (epi)genetic (mutation or methylation) phenomena can occur in many solid tumours and a growing number of clinical findings reveal post-translational modifications that disrupt SOCS function in haematological malignancy. In the present review, we provide a summary of the functions of the SOCS E3s and propose the potential use of members of this family as diagnostic markers and therapeutic targets in cancer.
Collapse
|
18
|
Borgés S, Moudilou E, Vouyovitch C, Chiesa J, Lobie P, Mertani H, Raccurt M. Involvement of a JAK/STAT pathway inhibitor: cytokine inducible SH2 containing protein in breast cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:321-9. [PMID: 18497055 DOI: 10.1007/978-0-387-69080-3_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines and growth factors are responsible for inducing the expression of suppressor of cytokine signaling (SOCS) and cytokine-inducible SH2 containing (CIS) proteins. SOCS and CIS proteins are negative regulators of the JAK/STAT pathway, and exert their physiological effects by suppressing the tyrosine kinase activity of cytokine receptors and inhibiting STAT activation. Growth hormone (GH) is considered as a true cytokine and its local production directly contributes to tumor progression. In an initial study, we have found that CIS expression is increased in human breast cancer in proliferative areas corresponding to high level of GH synthesis. The results of the study presented here confirm the presence of a negative feed back loop in MCF7 cells stably transfected with the hGH gene (MCF-hGH). Real-time PCR analysis showed that gene expression levels of CIS were increased by 80% in MCF-hGH cells as compared to control cell line. Similarly, we have found that the level of CIS gene expression is increased by 50% in primary cultures of human breast cancer, reinforcing the pathophysiological impact of CIS. We previously demonstrated that increasing levels of transfected CIS resulted in strong activation of the mitogen-activated protein (MAP) kinase pathway. Thus, CIS protein has been hypothesized as acting like an activator of the MAPK pathway and an inhibitor of the differentiated cells functions mediated through the JAK/STAT pathway. In the present study, we demonstrate the role of CIS protein in tumor progression in particular its positive effects on cell proliferation and colony formation.
Collapse
Affiliation(s)
- Sahra Borgés
- Physiologie Integrative Cell. Et Mol. Universite Claude Bernard, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. The role of STATs in lung carcinogenesis: an emerging target for novel therapeutics. J Mol Med (Berl) 2007; 85:427-36. [PMID: 17216202 DOI: 10.1007/s00109-006-0152-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription (STAT) proteins are a family of latent cytoplasmic transcription factors, which form dimers when activated by cytokine receptors, tyrosine kinase growth factor receptors as well as non-receptor tyrosine kinases. Dimeric STATs translocate to the nucleus, where they bind to specific DNA-response elements in the promoters of target genes, thereby inducing unique gene expression programs often in association with other transcription regulatory proteins. The functional consequence of different STAT proteins activation varies, as their target genes play diverse roles in normal cellular/tissue functions, including growth, apoptosis, differentiation and angiogenesis. Certain activated STATs have been implicated in human carcinogenesis, albeit only few studies have focused into their role in lung tumours. Converging evidence unravels their molecular interplays and complex multipartite regulation, rendering some of them appealing targets for lung cancer treatment with new developing strategies.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | | |
Collapse
|
20
|
Singh A, Jayaraman A, Hahn J. Modeling regulatory mechanisms in IL-6 signal transduction in hepatocytes. Biotechnol Bioeng 2006; 95:850-62. [PMID: 16752369 DOI: 10.1002/bit.21026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cytokines like interleukin-6 (IL-6) play an important role in triggering the acute phase response of the body to injury or inflammation. Signaling by IL-6 involves two pathways: Janus-associated kinases (JAK) and signal transducers and activators of transcription (STAT 3) are activated in the first pathway while the second pathway involves the activation of mitogen-activated protein kinases (MAPK). While it is recognized that both pathways play a major role in IL-6 signal transduction, a majority of studies have focused on signaling through either one of the pathways. However, simultaneous signaling through both JAK/STAT and MAPK pathways is still poorly understood. In this work, a mathematical model has been developed that integrates signaling through both the JAK/STAT and the MAPK pathway. The presented model is used to analyze the effect of three molecules that are involved in the regulation of IL-6 signaling-SHP-2 (domain containing tyrosine phosphatase 2), SOCS3 (suppressor of cytokine signaling 3), and a STAT3 nuclear phosphatase (PP2)-on the dynamics of IL-6 signal transduction in hepatocytes. The obtained results suggest that interactions between SHP-2 and SOCS3 influence signaling through the JAK/STAT and the MAPK pathways. It is shown that SHP-2 and SOCS3 do not just regulate the pathway that they are known to be associated with, (SHP-2 with MAPK and SOCS3 with JAK/STAT), but also have a strong effect on the other pathway. Several simulations with SOCS3, SHP-2, and PP2 knockout cells, that is, where the signaling pathway is unable to produce these proteins, have been performed to characterize the effect of these regulatory proteins on IL-6 signal transduction in hepatocytes.
Collapse
Affiliation(s)
- Abhay Singh
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA
| | | | | |
Collapse
|
21
|
|
22
|
Jasmin JF, Mercier I, Sotgia F, Lisanti MP. SOCS proteins and caveolin-1 as negative regulators of endocrine signaling. Trends Endocrinol Metab 2006; 17:150-8. [PMID: 16616514 DOI: 10.1016/j.tem.2006.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/03/2006] [Accepted: 03/21/2006] [Indexed: 01/01/2023]
Abstract
Recently, a new class of regulatory molecules has emerged; these molecules, termed SOCS proteins, function as suppressors of cytokine signaling. SOCS proteins negatively regulate the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling cascade. Interestingly, it appears that other proteins, such as caveolin-1, can also function as suppressors of cytokine signaling by inhibiting the kinase activity of JAK family members. This might result from the ability of caveolin-1 to function as a broad-spectrum kinase inhibitor through the caveolin-scaffolding domain.
Collapse
Affiliation(s)
- Jean-François Jasmin
- Departments of Molecular Pharmacology and Medicine, The Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
23
|
Shivapurkar N, Stastny V, Suzuki M, Wistuba II, Li L, Zheng Y, Feng Z, Hol B, Prinsen C, Thunnissen FB, Gazdar AF. Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Lett 2006; 247:56-71. [PMID: 16644104 PMCID: PMC3379713 DOI: 10.1016/j.canlet.2006.03.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/19/2006] [Accepted: 03/24/2006] [Indexed: 01/29/2023]
Abstract
Detection of lung cancer at early stages could potentially increase survival rates. One promising approach is the application of suitable lung cancer-specific biomarkers to specimens obtained by non-invasive methods. Thus far, clinically useful biomarkers that have high sensitivity have proven elusive. Certain genes, which are involved in cellular pathways such as signal transduction, apoptosis, cell to cell communication, cell cycles and cytokine signaling are down-regulated in cancers and may be considered as potential tumor suppressor genes. Aberrant promoter hypermethylation is a major mechanism for silencing tumor suppressor genes in many kinds of human cancers. Using quantitative real time PCR, we tested 11 genes (3-OST-2, RASSF1A, DcR1, DcR2, P16, DAPK, APC, ECAD, HCAD, SOCS1, SOCS3) for levels of methylation within their promoter sequences in non-small cell lung cancers (NSCLC), adjacent non-malignant lung tissues, in peripheral blood mononuclear cells (PBMC) from cancer free patients, in sputum of cancer patients and controls. Of all the 11 genes tested 3-OST-2 showed the highest levels of promoter methylation in tumors combined with lowest levels of promoter methylation in control tissues. 3-OST-2 followed by, RASSF1A showed increased levels of methylation with advanced tumor stage (P<0.05). Thus, quantitative analysis of 3-OST-2 and RASSF1A methylation appears to be a promising biomarker assay for NSCLC and should be further explored in a clinical study. Our preliminary data on the analysis of sputum DNA specimens from cancer patients further support these observations.
Collapse
Affiliation(s)
- Narayan Shivapurkar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Stastny
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ignacio I. Wistuba
- Department of Pathology, MD Anderson Cancer Center Houston, Houston, TX 77030, USA
| | - Lin Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yingye Zheng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ziding Feng
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Bernard Hol
- Department of Pulmonology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Clemens Prinsen
- Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Corresponding author. Address: Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard Dallas, Texas 75390, USA. Tel.: +1 214 648 4921; fax: +1 214 648 4940. (A.F. Gazdar)
| |
Collapse
|
24
|
Farabegoli F, Ceccarelli C, Santini D, Taffurelli M. Suppressor of cytokine signalling 2 (SOCS-2) expression in breast carcinoma. J Clin Pathol 2005; 58:1046-50. [PMID: 16189149 PMCID: PMC1770736 DOI: 10.1136/jcp.2004.024919] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS To investigate SOCS-2 (suppressor of cytokine signalling 2) protein expression in breast carcinoma samples in relation to biopathological parameters and survival. METHODS A polyclonal antibody against SOCS-2 was used to study 50 archival breast carcinoma samples, collected from 1993 to 1995. The presence of SOCS-2 protein was investigated in relation to clinical and biological parameters used in breast cancer pathology. Fluorescence in situ hybridisation (FISH) was used to study whether SOCS-2 expression was related to SOCS-2 gene copy number. RESULTS SOCS-2 protein was expressed in 34 of 50 breast carcinoma samples and was positively associated with low grade, low nuclear grade, and p27 protein. SOCS-2 expression was inversely related to Ki-67, cyclin A, retinoblastoma protein (pRb), and the epidermal growth factor receptor (EGFR). No relation with overall survival was demonstrated. SOCS-2 amplification was found in three samples. No relation between the number of FISH signals and SOCS-2 expression was found. CONCLUSIONS The significant correlation seen between SOCS-2 expression, grade, nuclear grade, p27, Ki-67, cyclin A, pRb, and EGFR labelling strongly supports the hypothesis that SOCS-2 loss might be related to cell proliferation and tumour growth in breast carcinoma. Gene copy number changes did not seem to play a role in SOCS-2 regulation and expression; other mechanisms might be involved and deserve further study.
Collapse
Affiliation(s)
- F Farabegoli
- Department of Experimental Pathology, University of Bologna, Via San Giacomo, 14, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|