1
|
Bai H, Lyu J, Nie X, Kuang H, Liang L, Jia H, Zhou S, Li C, Li T. Ginsenoside Rg5 enhances the radiosensitivity of lung adenocarcinoma via reducing HSP90-CDC37 interaction and promoting client protein degradation. J Pharm Anal 2023; 13:1296-1308. [PMID: 38174116 PMCID: PMC10759260 DOI: 10.1016/j.jpha.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 01/05/2024] Open
Abstract
Ginsenoside Rg5 is a rare ginsenoside showing promising tumor-suppressive effects. This study aimed to explore its radio-sensitizing effects and the underlying mechanisms. Human lung adenocarcinoma cell lines A549 and Calu-3 were used for in vitro and in vivo analysis. Bioinformatic molecular docking prediction and following validation by surface plasmon resonance (SPR) technology, cellular thermal shift assay (CETSA), and isothermal titration calorimetry (ITC) were conducted to explore the binding between ginsenoside Rg5 and 90 kD heat shock protein alpha (HSP90α). The effects of ginsenoside Rg5 on HSP90-cell division cycle 37 (CDC37) interaction, the client protein stability, and the downstream regulations were further explored. Results showed that ginsenoside Rg5 could induce cell-cycle arrest at the G1 phase and enhance irradiation-induced cell apoptosis. It could bind to HSP90α with a high affinity, but the affinity was drastically decreased by HSP90α Y61A mutation. Co-immunoprecipitation (Co-IP) and ITC assays confirmed that ginsenoside Rg5 disrupts the HSP90-CDC37 interaction in a dose-dependent manner. It reduced irradiation-induced upregulation of the HSP90-CDC37 client proteins, including SRC, CDK4, RAF1, and ULK1 in A549 cell-derived xenograft (CDX) tumors. Ginsenoside Rg5 or MRT67307 (an IKKε/TBK1 inhibitor) pretreatment suppressed irradiation-induced elevation of the LC3-II/β ratio and restored irradiation-induced downregulation of p62 expression. In A549 CDX tumors, ginsenoside Rg5 treatment suppressed LC3 expression and enhanced irradiation-induced DNA damage. In conclusion, ginsenoside Rg5 may be a potential radiosensitizer for lung adenocarcinoma. It interacts with HSP90α and reduces the binding between HSP90 and CDC37, thereby increasing the ubiquitin-mediated proteasomal degradation of the HSP90-CDC37 client proteins.
Collapse
Affiliation(s)
- Hansong Bai
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Jiahua Lyu
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinyu Nie
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Hao Kuang
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Long Liang
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Hongyuan Jia
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Churong Li
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Tao Li
- Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
2
|
Sheng J, Liu L, Dong T, Wu X. Circ_SETD3 regulates gefitinib sensitivity and tumor progression by miR-873-5p-dependent regulation of APPBP2 in non-small cell lung cancer. J Chemother 2021; 34:401-413. [PMID: 34861803 DOI: 10.1080/1120009x.2021.2009991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Previous data have shown the prominent clinical efficacy of gefitinib in non-small cell lung cancer (NSCLC) patients. However, its therapeutic efficacy is limited because of the development of gefitinib resistance. This research is designed to investigate the role of circRNA SET domain containing 3, actin histidine (circ_SETD3) in the sensitivity of NSCLC to gefitinib. The expression of circ_SETD3, microRNA-873-5p (miR-873-5p) and amyloid protein-binding protein 2 (APPBP2) was detected by qRT-PCR. Protein expression was determined by western blot analysis or immunohistochemistry assay. The half-maximal inhibitory concentration of gefitinib was determined by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was investigated by 5-Ethynyl-29-deoxyuridine (EdU), cell colony formation and MTT assays. Cell apoptosis was analyzed by Annexin V-fluorescein isothiocyanate and propidium iodide double staining assay. Transwell assay was employed to evaluate cell migration and invasion. Additionally, the binding relationship between miR-873-5p and circ_SETD3 or APPBP2 was predicted by starbase online database, and identified by a dual-luciferase reporter assay. Further, circ_SETD3 silencing-mediated effect on tumor sensitivity to gefitinib in vivo was confirmed by xenograft mouse model experiment. Circ_SETD3 and APPBP2 expression were upregulated, while miR-873-5p was downregulated in gefitinib-resistant NSCLC tissues and cells compared with gefitinib-sensitive NSCLC tissues or cells. Reduced expression of circ_SETD3 repressed gefitinib resistance, proliferation, migration and invasion, but induced apoptosis of gefitinib-resistant NSCLC cells. Additionally, circ_SETD3 modulated gefitinib sensitivity and tumor development by binding to miR-873-5p. APPBP2 upregulation attenuated miR-873-5p-mediated gefitinib sensitivity and NSCLC progression. Furthermore, circ_SETD3 absence improved tumor sensitivity to gefitinib in vivo. Circ_SETD3 knockdown improved gefitinib sensitivity and repressed NSCLC cell malignancy via miR-873-5p/APPBP2 axis, which provides a theoretical basis for using circ_SETD3-based therapeutic strategies to improve NSCLC sensitivity to gefitinib.
Collapse
Affiliation(s)
- Jun Sheng
- Department of Oncology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Leyi Liu
- Department of Anesthesiology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| | - Ting Dong
- Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiang Wu
- Department of Oncology, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, China
| |
Collapse
|
3
|
Antão AR, Bangay G, Domínguez-Martín EM, Díaz-Lanza AM, Ríjo P. Plectranthus ecklonii Benth: A Comprehensive Review Into its Phytochemistry and Exerted Biological Activities. Front Pharmacol 2021; 12:768268. [PMID: 34916943 PMCID: PMC8670309 DOI: 10.3389/fphar.2021.768268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Ethnopharmacological Relevance: Plectranthus genus (Lamiaceae family) contain several species with acknowledged ethnopharmacological uses, such as, for gastrointestinal and respiratory-related problems, due to their anti-inflammatory, antibacterial and antifungal properties. The bioactivity of isolated medicinal compounds from this genus justifies the increased interest in recent times for species of Plectranthus, placing them in the spotlight for natural product drug development. Aim of the study: To the best of our knowledge, this is the first review on the biological activities of Plectranthus ecklonii Benth. As such, the aim of this review was three-fold: 1) to summarize the chemical compounds isolated from P. ecklonii; 2) to collate the biological activities and mechanisms of action of these compounds from in vitro studies; and 3) to evaluate the documented uses and potential applications of this species, in order to postulate on the direction of pharmaceutical uses of this species. Materials and methods: An extensive database retrieval was performed using the electronic databases Web of Science, PubMed, Google Scholar and ScienceDirect. The search criteria consisted of the keywords "Plectranthus ecklonii", "Plectranthus ecklonii + review", "Plectranthus ecklonii + diterpenes" or "Plectranthus ecklonii + abietanes", "ecklonii + parviflorone D", searched individually and as combinations. Eligibility criteria were set out and titles in English, Portuguese and Spanish were reviewed, with all references included dating from 1970 to 2021. A total of 169 papers were selected and included. Chemical structures were drawn using ChemDraw 20.0, CID numbers were searched in PubChem and the PRISMA diagram was created using PowerPoint 2012. Results: To date, a total of 28 compounds have been isolated from P. ecklonii, including diterpenes, triterpenes, flavonoids, and hydroxycinnamic acids. Most focused on the antimicrobial action of its constituents, although compounds have demonstrated other bioactivities, namely antioxidant, anti-inflammatory and antitumor. The most recent studies emphasize the diterpenoids, particularly parviflorone D, with the help of nanotechnology. Conclusions: The widespread ethnobotanical and traditional uses of P. ecklonii can be scientifically justified by a range of biological activities, demonstrated by isolated secondary metabolites. These bioactivities showcase the potential of this species in the development of economically important active pharmaceutical ingredients, particularly in anticancer therapy.
Collapse
Affiliation(s)
- Ana Ribeirinha Antão
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Gabrielle Bangay
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Eva María Domínguez-Martín
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Ana María Díaz-Lanza
- University of Alcalá de Henares, Faculty of Pharmacy, Department of Biomedical Sciences, Pharmacology Area (Pharmacognosy Laboratory), New Antitumor Compounds: Toxic Action on Leukemia Cells Research Group, Campus University, Alcalá de Henares, Spain
| | - Patrícia Ríjo
- CBIOS -Research Center for Biosciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
4
|
Xiao L, Mao Y, Tong Z, Zhao Y, Hong H, Wang F. Radiation exposure triggers the malignancy of non‑small cell lung cancer cells through the activation of visfatin/Snail signaling. Oncol Rep 2021; 45:1153-1161. [PMID: 33432364 PMCID: PMC7859998 DOI: 10.3892/or.2021.7929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023] Open
Abstract
It is estimated that one-half of patients with non-small cell lung cancer (NSCLC) undergo radiotherapy worldwide. However, the outcome of radiotherapy alone is not always satisfactory. The aim of the present study was to evaluate the effects of radiotherapy on the malignancy of NSCLC cells. It was demonstrated that radiation therapy could increase the migration and invasion of NSCLC cells in vitro. Moreover, the upregulation of visfatin, a 52-kDa adipokine, mediated radiation-induced cell motility. A neutralizing antibody specific for visfatin blocked radiation-induced cell migration. Radiation and visfatin induced the expression of Snail, a key molecule that regulates epithelial to mesenchymal transition in NSCLC cells. Furthermore, visfatin positively regulated the mRNA stability of Snail in NSCLC cells, but had no effect on its protein degradation. This may be explained by visfatin-mediated downregulation of microRNA (miR)-34a, which was shown to bind the 3′ untranslated region of Snail mRNA to promote its decay. Collectively, these findings suggested that radiation could induce cell motility in NSCLC cells through visfatin/Snail signaling.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yiwen Mao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhuting Tong
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hao Hong
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Fan Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
5
|
Pre-treatment with Bifidobacterium infantis and its specific antibodies enhance targeted radiosensitization in a murine model for lung cancer. J Cancer Res Clin Oncol 2020; 147:411-422. [PMID: 33130941 DOI: 10.1007/s00432-020-03434-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The hypoxic microenvironments of solid tumours are complex and reduce the susceptibility of cancer cells to chemo- and radiotherapy. Conventional radiosensitisers have poor specificity, unsatisfactory therapeutic effects, and significant side effects. Anaerobic bacteria colonise and destroy hypoxic areas of the tumour and consequently enhance the effects of radiation. METHODS In this study, we treated a Lewis lung carcinoma transplant mouse model with Bifidobacterium infantis (Bi) combined with its specific monoclonal antibody (mAb) and radiotherapy (RT) to investigate its ability to radiosensitise the tumour. The tumour metabolism and hypoxia in the tumour tissue were monitored by micro-18F-FDG and 18F-FMISO PET/CT imaging. Immunohistochemistry was used to detect phosphorylated histone (γ-H2AX), proliferation (Ki-67), platelet endothelial cell adhesion molecules (CD31), tumour necrosis factor-α (TNF-α), hypoxia-inducible factor-1α (HIF-1α), and glucose transporter 1 (Glut-1) levels. RESULTS Tumour growth was slowed and survival time was markedly prolonged in mice subjected to the combination of B. infantis, specific antibody, and radiotherapy. Levels of HIF-1α, Glut-1, Ki-67, and CD31 expression, as well as uptake of FDG and FMISO, were the lowest in the combination-treated mice. In contrast, γ-H2AX and TNF-α expression levels were elevated and hypoxia in tumour tissue was reduced compared with controls. CONCLUSION In conclusion, our data indicated that the curative effect of radiotherapy for lung cancer was enhanced by pre-treating mice with a combination of B. infantis and its specific monoclonal antibody.
Collapse
|
6
|
Huang Y, Dai Y, Wen C, He S, Shi J, Zhao D, Wu L, Zhou H. circSETD3 Contributes to Acquired Resistance to Gefitinib in Non-Small-Cell Lung Cancer by Targeting the miR-520h/ABCG2 Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:885-899. [PMID: 32805491 PMCID: PMC7452060 DOI: 10.1016/j.omtn.2020.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Gefitinib is a first-line treatment for patients with non-small-cell lung cancer (NSCLC), but acquired resistance is a major obstacle to its therapeutic efficacy, and the underlying mechanisms are not fully elucidated. Recent studies have indicated that circular RNAs play a crucial role in chemoresistance, but their expression and function in NSCLC cells with acquired resistance to gefitinib are largely unknown. In this study, we determined that circSETD3 was significantly upregulated in gefitinib-resistant NSCLC cell lines and the plasma of gefitinib-resistant NSCLC patients. circSETD3 markedly decreased the gefitinib sensitivity of NSCLC cells both in vitro and in nude mice xenografts. It could directly bind to miR-520h and lead to the upregulation of ATP-binding cassette subfamily G member 2 (ABCG2), an efflux transporter of gefitinib, resulting in a reduced intracellular gefitinib concentration. Moreover, we reported that the downregulation of serine/arginine splicing factor 1 (SRSF1) contributed to, at least in part, the increased expression of circSETD3 in NSCLC cells with acquired resistance to gefitinib. Taken together, our findings indicated that circSETD3 may serve as a prognostic biomarker and a potential therapeutic target for acquired resistance to gefitinib in NSCLC.
Collapse
Affiliation(s)
- Yutang Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yi Dai
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China; Wangjia Community Health Service Center, Chongqing 401120, China
| | - Chunjie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shuai He
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jingjing Shi
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dezhang Zhao
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Honghao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China; Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
| |
Collapse
|
7
|
Long HP, Liu JQ, Yu YY, Qiao Q, Li G. PKMYT1 as a Potential Target to Improve the Radiosensitivity of Lung Adenocarcinoma. Front Genet 2020; 11:376. [PMID: 32411179 PMCID: PMC7201004 DOI: 10.3389/fgene.2020.00376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Objective This article is dedicated to finding important genes related to the prognosis of lung adenocarcinoma (LUAD), looking for a new gene that may affect tumor radiosensitivity, and conducting basic experiments to verify the relationship between this gene and the radiosensitivity of LUAD. Methods The gene expression profiles GSE32863, GSE33532, and GSE43458 were obtained from NCBI-GEO. GEO2R and a Venn diagram were used to identify upregulated genes. STRING and Cytoscape were applied to develop a protein-protein interaction network (PPI) and analyze the modules. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to process the GO and KEGG pathway analysis. The Kaplan Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) were applied to get the significant prognostic information and differential expression between LUAD tissues and normal lung tissues. Western blotting and Q-PCR were used to detect the expression of PKMYT1 in tissues. Small interfering RNAs (siRNAs) were used to knockdown PKMYT1. The colony survival experiment was used to assess the effect of PMYT1 on the radiosensitivity of tumor cells. Cell cycle analysis was used to assess cell cycle distribution. Results We identified 14 genes (PKMYT1, TTK, CHEK1, CDC20, PTTG1, MCM2, CDC25C, MCM4, CCNB1, CDC45, MAD2L1, CCNB2, BUB1, and CCNA2) that are important for LUAD and may be potential therapeutic targets. We confirmed that PKMYT1 is highly expressed in LUAD and firstly demonstrated that artificially silencing the expression of PKMYT1 can abrogate IR-induced G2/M phase arrest and increase the sensitivity of cancer cells to radiation. Conclusion In summary, we obtained 14 core genes related to the poor prognosis of LUAD via bioinformatical analysis. We identified that PKMYT1 was significantly upregulated in LUAD tissues and firstly demonstrated that knockdown of PKMYT1 can eliminate the radiation-induced G2/M arrest, resulting in a lower survival rate for cells receiving radiation therapy. Our findings suggested that PKMYT1 is a promising target to improve the radiosensitivity of LUAD.
Collapse
Affiliation(s)
- Huan-Ping Long
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia-Qing Liu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang-Yang Yu
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Jiang W, Wu Y, He T, Zhu H, Ke G, Xiang L, Yang H. Targeting of β-Catenin Reverses Radioresistance of Cervical Cancer with the PIK3CA-E545K Mutation. Mol Cancer Ther 2019; 19:337-347. [PMID: 31666350 DOI: 10.1158/1535-7163.mct-19-0309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
This study aims to explore whether E545K, the most common hotspot mutation of PIK3CA in cervical cancer, confers radioresistance to cervical cancer cells, to demonstrate the underling mechanism, and to develop the effective targets. SiHa and MS751 cells with PIK3CA-WT and PIK3CA-E545K were established by lentiviral transfection. The radiosensitivity was assessed by colony formation, cell cycle, cell apoptosis, DNA damage, and repair assay. The growth and immunohistochemical assay of xenograft tumor-related toxicity were evaluated in vivo It was indicated that more cells with PIK3CA-E545K arrested in S phase. Irradiation (IR) led to more survival percentage, less apoptosis, fewer pH2A.X foci, and higher expression of Chk1/2 in SiHa and MS751 cells bearing PIK3CA-E545K. Mechanically, AKT/GSK3β/β-catenin pathway was highly activated, and more β-catenin was found accumulated in nucleus in cells with PIK3CA-E545K after IR. Furthermore, targeting β-catenin by shRNA or XAV939 enhanced IR sensitivity in cells with PIK3CA-WT and PIK3CA-E545K, whereas it was more notably in the latter. β-Catenin shRNA and XAV939 increased IR-mediated inhibition of colony formation with highly activated p53/bcl2/bax pathway. XAV939 enhanced IR-caused apoptosis, DNA damage, overcame S-phase arrest, DNA repair and reversed β-catenin nuclear accumulation in MS751 cells with PIK3CA-E545K. In vivo, XAV939 enhanced the radiosensitivity of cervical cancer xenografts with PIK3CA-E545K with invisible viscera toxicity. The findings demonstrate that cervical cancer cells with PIK3CA-E545K are resistant to IR by enhancing the expression and nuclear accumulation of β-catenin. Targeting β-catenin reverses the radioresistance, which suggests possible areas for preclinical research on β-catenin inhibition for strengthening the radiosensitivity of cervical cancer.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutuan Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiancong He
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanting Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guihao Ke
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Libing Xiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Liu N, Wang YA, Sun Y, Ecsedy J, Sun J, Li X, Wang P. Inhibition of Aurora A enhances radiosensitivity in selected lung cancer cell lines. Respir Res 2019; 20:230. [PMID: 31647033 PMCID: PMC6813099 DOI: 10.1186/s12931-019-1194-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Background In mammalian cells, Aurora serine/threonine kinases (Aurora A, B, and C) are expressed in a cell cycle-dependent fashion as key mitotic regulators required for the maintenance of chromosomal stability. Aurora-A (AURKA) has been proven to be an oncogene in a variety of cancers; however, whether its expression relates to patient survival and the association with radiotherapy remains unclear in non-small cell lung cancer (NSCLC). Methods Here, we first analyzed AURKA expression in 63 NSCLC tumor samples by immunohistochemistry (IHC) and used an MTS assay to compare cell survival by targeting AURKA with MLN8237 (Alisertib) in H460 and HCC2429 (P53-competent), and H1299 (P53-deficient) cell lines. The radiosensitivity of MLN8237 was further evaluated by clonogenic assay. Finally, we examined the effect of combining radiation and AURKA inhibition in vivo with a xenograft model and explored the potential mechanism. Results We found that increased AURKA expression correlated with decreased time to progression and overall survival (p = 0.0447 and 0.0096, respectively). AURKA inhibition using 100 nM MLN8237 for 48 h decreases cell growth in a partially P53-dependent manner, and the survival rates of H460, HCC2429, and H1299 cells were 56, 50, and 77%, respectively. In addition, the survival of H1299 cells decreased 27% after ectopic restoration of P53 expression, and the radiotherapy enhancement was also influenced by P53 expression (DER H460 = 1.33; HCC2429 = 1.35; H1299 = 1.02). Furthermore, tumor growth of H460 was delayed significantly in a subcutaneous mouse model exposed to both MLN8237 and radiation. Conclusions Taken together, our results confirmed that the expression of AURKA correlated with decreased NSCLC patient survival, and it might be a promising inhibition target when combined with radiotherapy, especially for P53-competent lung cancer cells. Modulation of P53 function could provide a new option for reversing cell resistance to the AURKA inhibitor MLN8237, which deserves further investigation.
Collapse
Affiliation(s)
- Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| | - Yong Antican Wang
- Biomed Innovation Center of Yehoo Group Co. Ltd., Shenzhen, 518000, China.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yunguang Sun
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeffrey Ecsedy
- Takeda Pharmaceuticals International Co, Cambridge, MA, UK
| | - Jifeng Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xue Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
10
|
MicroRNA-9 enhanced radiosensitivity and its mechanism of DNA methylation in non-small cell lung cancer. Gene 2019; 710:178-185. [PMID: 31158449 DOI: 10.1016/j.gene.2019.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 12/30/2022]
Abstract
In order to improve the therapeutic effect of non-small cell lung cancer (NSCLC), it is critical to combine radiation and gene therapy. Our study found that the activation of microRNA-9 (miR-9) conferred ionizing radiation (IR) sensitivity in cancer cells. Furthermore, increased microRNA-9 promoter methylation level was observed after IR. Our study combined the IR and microRNA-9 overexpression treatment which leads to a significant enhancement in the therapeutic efficiency in lung cancer both in vitro and in vivo. Therefore, it is plausible that microRNA-9 can be used as a novel therapeutic strategy of NSCLC. MTT assay was performed to detect the effect of microRNA-9 on the survival and growth of NSCLC cells. Flow cytometry results showed that microRNA-9 enhanced the apoptosis of NSCLC cells. Wound healing assay found that microRNA-9 can inhibit the migration of NSCLC cells and enhance the effect of radiation on the migration of NSCLC cells. In addition, bisulfate sequencing PCR was performed to analyze the methylation status of the microRNA-9 promoter. In order to determine the effect of microRNA-9 and its promoter methylation status on proliferation and radio-sensitivity in vivo, a subcutaneous tumor formation assay in nude mice was performed. Results have shown that microRNA-9 overexpression increased the radiosensitivity of A549 cells by inhibiting cell activity and migration, and by increasing apoptosis. In addition, the promoter methylation status of the microRNA-9 gene increased in response to ionizing radiation. Our study demonstrated that microRNA-9 enhanced radiosensitivity in NSCLC and this effect is highly regulated by its promoter methylation status. These results will help to clarify regulatory mechanisms of radiation resistance thus stimulate new methods for improving radiotherapy for NSCLC.
Collapse
|
11
|
Sun L, Yuan H, Burnett J, Gasparyan M, Zhang Y, Zhang F, Yang Z, Ran Y, Sun D. MEOX1 Promotes Tumor Progression and Predicts Poor Prognosis in Human Non-Small-Cell Lung Cancer. Int J Med Sci 2019; 16:68-74. [PMID: 30662330 PMCID: PMC6332485 DOI: 10.7150/ijms.27595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022] Open
Abstract
Background: MEOX1 is a homeobox transcriptional factor, and plays essential roles in regulating somite development. Our previous study indicated that MEOX1 is a critical molecular target in mesenchymal-like cancer cells in PTEN-deficient Trastuzumab resistant breast cancer. Despite the potential implication of MEOX1 for the cancer progression, no previous studies examined its level and clinical significance in lung cancer tissues. In this study, we aimed to detect the MEOX1 expression and correlate its level with clinical outcome in non-small-cell lung cancer patients (NSCLC). Methods: MEOX1 gene expression in lung cancer was examined by using the Oncomine database. MEOX1 protein levels were evaluated by IHC using the corresponding primary antibody on two different commercial lung cancer tissue arrays. siRNA knockdown was used to elucidate the function of MEOX1. Results: Analysis of the Oncomine datasets identified that an elevation of MEOX1 in gene amplification in lung cancer tissues in comparison to normal lung tissues. Immunohistochemistical analysis demonstrated that MEOX1 was localized predominantly in the nucleus, and positive rate was 67.3% (111/165) in NSCLC samples. Statistical analysis revealed high levels of MEOX1 significantly correlated with Lymph Node Metastasis and Stage. Kaplan-Meier survival analysis showed that high levels of MEOX1 were significantly associated with unfavorable survival in NSCLC patients, and MEOX1 nucleus staining had worse survival, than did patients with overall expression in lung squamous cell carcinoma patients. Multivariate Cox's regression analysis found that MEOX1 was an independent poor prognostic predictor for patients with NSCLC. Silencing of MEOX1 by specific SiRNA significantly inhibited H460 and H1299 cell proliferation and sphere formation in serum-free medium. Conclusions: Our results firstly indentified that high levels of MEOX1 especially nuclear staining was an independent prognostic factor for NSCLC, and it served a essential roles in the regulation of cell proliferation and colony formation in vitro. It may represent a potential target for the NSCLC treatment.
Collapse
Affiliation(s)
- Lichao Sun
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, P. R. China
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Joseph Burnett
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Mari Gasparyan
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Yuan Zhang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, P. R. China
| | - Feng Zhang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zhihua Yang
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yuliang Ran
- State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, P. R. China
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Wang J, Jiang M, Xia S. miR-339-5p Increases Radiosensitivity of Lung Cancer Cells by Targeting Phosphatases of Regenerating Liver-1 (PRL-1). Med Sci Monit 2018; 24:8408-8416. [PMID: 30462625 PMCID: PMC6259607 DOI: 10.12659/msm.910808] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Radiotherapy is the most effective non-surgical modality in lung cancer treatment, and microRNAs (miRNAs) have been suggested as key regulators in radiosensitization. Herein, we explored the specific function of miR-339-5p in the radiosensitivity of lung cancer cells. MATERIAL AND METHODS Radiosensitivity was assessed by cell viability (CCK-8 assay), cell apoptosis, and cell cycle changes (flow cytometry). qRT-PCR and subsequent Western blot assays were used to determine the expression of miR-339-5p and other related proteins. RESULTS We demonstrated that ionizing radiation (IR) exposure impaired lung cancer cell viability, and found that miR-339-5p is a novel IR-inducible miRNA. Overexpression of miR-339-5p enhanced radiosensitivity of A549 and H460 cells by inhibiting cell viability, increasing apoptosis, inducing cell cycle arrest, and suppressing cell proliferation. Further exploration validated that miR-339-5p can target phosphatases of regenerating liver-1 (PRL-1) in lung cancer cells. Restoration of PRL-1 partially reverses the enhanced radiosensitivity of lung cancer cells induced by miR-339-5p. CONCLUSIONS Our data support that miR-339-5p has potential therapeutic value by sensitizing lung cancer cells to radiation via targeting of PRL-1.
Collapse
|
13
|
Chen Y, Wang Y, Zhao L, Wang P, Sun J, Bao R, Li C, Liu N. EGFR tyrosine kinase inhibitor HS-10182 increases radiation sensitivity in non-small cell lung cancers with EGFR T790M mutation. Cancer Biol Med 2018; 15:39-51. [PMID: 29545967 PMCID: PMC5842333 DOI: 10.20892/j.issn.2095-3941.2017.0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: To investigate the potential of HS-10182, a second-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), as a radiosensitizer in non-small cell lung cancer (NSCLC). Methods: Two cell lines of NSCLCs, A549 that possesses wild-type (WT) EGFRs and H1975 that possesses EGFR L858R/T790M double mutations, were treated with HS-10182 at various concentrations, and cell viabilities were determined using the MTS assay. The cells were tested by clonogenic survival assays to identify the radiosensitivity of both groups. Western blot was performed to analyze the expression of phosphorylated EGFR, AKT, DNA-dependent protein kinase, and catalytic subunit (DNA-PKcs) proteins. Immunofluorescence analyses were performed to examine the formation and changes in nuclear γ-H2AX foci. Cell apoptosis was examined by flow cytometry and Western blots for cleaved caspase-3, -8, -9, and cleaved poly ADP-ribose polymerase (PARP). Furthermore, we established xenograft models in mice and the effects of different treatments on tumor growth were then assessed. Results: Clonogenic survival assays revealed that HS-10182 significantly enhanced the radiosensitivity of H1975 cells but not A549 cells [dose enhancement ratios (DERs)=2.36 (P < 0.05) vs. 1.43 (P > 0.05)]. Western blot results showed that HS-10182 increased the levels of cleaved caspase-3, -8, -9, and cleaved PARP in H1975 cells but not in A549 cells. In addition, flow cytometry analysis showed that HS-10182 enhanced irradiation-induced apoptosis in H1975. Immunofluorescence results found that HS-10182 increased the average number of γ-H2AX foci after irradiation in H1975 cells, but not in A549 cells. Combined radiation and HS-10182 treatment increased the expression of DNA-PKcs but this increase was more significant in H1975 cells than in A549 cells. Moreover, HS-10182 suppressed the increased expression of Rad50 in H1975 cells in response to irradiation. In vivo experiments found that the combined therapy significantly inhibited tumor growth.
Conclusions: HS-10182 enhances the radiosensitivity of H1975 cells which is possibly because that HS-10182 could enhance irradiation-induced apoptosis, increase irradiation-induced DNA damage, and cause a delay in DNA damage repair. Our findings suggest that radiotherapy combined HS-10182 is a novel treatment for lung cancer cells which have acquired the T790M mutation. HS-10182 could be brought to the clinic as a radiosensitizer in NSCLCs with the EGFR T790M mutation.
Collapse
Affiliation(s)
- Yang Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Youyou Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jifeng Sun
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Rudi Bao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chenghai Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ningbo Liu
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
14
|
Yuan DY, Meng Z, Xu K, Li QF, Chen C, Li KY, Zhang B. Betulinic acid increases radiosensitization of oral squamous cell carcinoma through inducing Sp1 sumoylation and PTEN expression. Oncol Rep 2017; 38:2360-2368. [DOI: 10.3892/or.2017.5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/02/2017] [Indexed: 11/05/2022] Open
|
15
|
An individualized radiation dose escalation trial in non-small cell lung cancer based on FDG-PET imaging. Strahlenther Onkol 2017; 193:812-822. [PMID: 28733723 DOI: 10.1007/s00066-017-1168-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/01/2017] [Indexed: 12/25/2022]
Abstract
AIM The aim of the study was to assess the feasibility of an individualized 18F fluorodeoxyglucose positron emission tomography (FDG-PET)-guided dose escalation boost in non-small cell lung cancer (NSCLC) patients and to assess its impact on local tumor control and toxicity. PATIENTS AND METHODS A total of 13 patients with stage II-III NSCLC were enrolled to receive a dose of 62.5 Gy in 25 fractions to the CT-based planning target volume (PTV; primary turmor and affected lymph nodes). The fraction dose was increased within the individual PET-based PTV (PTVPET) using intensity modulated radiotherapy (IMRT) with a simultaneous integrated boost (SIB) until the predefined organ-at-risk (OAR) threshold was reached. Tumor response was assessed during follow-up by means of repeat FDG-PET/computed tomography. Acute and late toxicity were recorded and classified according to the CTCAE criteria (Version 4.0). Local progression-free survival was determined using the Kaplan-Meier method. RESULTS The average dose to PTVPET reached 89.17 Gy for peripheral and 75 Gy for central tumors. After a median follow-up period of 29 months, seven patients were still alive, while six had died (four due to distant progression, two due to grade 5 toxicity). Local progression was seen in two patients in association with further recurrences. One and 2-year local progression free survival rates were 76.9% and 52.8%, respectively. Three cases of acute grade 3 esophagitis were seen. Two patients with central tumors developed late toxicity and died due to severe hemoptysis. CONCLUSION These results suggest that a non-uniform and individualized dose escalation based on FDG-PET in IMRT delivery is feasible. The doses reached were higher in patients with peripheral compared to central tumors. This strategy enables good local control to be achieved at acceptable toxicity rates. However, dose escalation in centrally located tumors with direct invasion of mediastinal organs must be performed with great caution in order to avoid severe late toxicity.
Collapse
|
16
|
Demonstration of Tightly Radiation-Controlled Molecular Switch Based on CArG Repeats by In Vivo Molecular Imaging. Mol Imaging Biol 2016; 17:802-10. [PMID: 25962973 DOI: 10.1007/s11307-015-0843-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Promoters developed for radiogene therapy always show non-negligible transcriptional activities, even when cells are not irradiated. This study developed a tightly radiation-controlled molecular switch based on radiation responsive element (CArG) repeats for in vivo molecular imaging using the Cre/loxP system. PROCEDURES Different numbers of CArG repeats were cloned as a basal promoter directly, and its pre- and postirradiation transcriptional activities were analyzed by luciferase assay. Nine CArG repeats (E9) were chosen for use as a radiation-controlled molecular switch for the Cre/loxP system, and the feasibility of the switch in vitro and in vivo was demonstrated by luciferase assay and bioluminescence imaging, respectively. RESULTS The E9 promoter, which exhibits extremely low transcriptional activity, showed a 1.8-fold enhancement after irradiation with a clinical dose of 2 Gy. Both in vitro and in vivo results indicated that E9 is relatively inert but sufficient to trigger the Cre/loxP system. The luciferase activity of stable H1299/pSTOP-FLuc cells transfected with pE9-NLSCre and exposed to 2-Gy radiation can reach 44 % of that of the same cells transfected with pCMV-NLSCre and not subjected to irradiation. By contrast, no appreciable difference was observed in reporter gene expression in both H1299/pSTOPFluc cells and tumors transfected with pE4Pcmv-NLSCre before and after irradiation, because the strong basal transcriptional activity of the CMV promoter, which acts as a copartner of E4, masked the response of E4 to radiation. CONCLUSIONS Our results provide detailed insight into CArG elements as a radiation-controlled molecular switch that can facilitate the development of radiogene therapy.
Collapse
|
17
|
Zhu RX, Song CH, Yang JS, Yi QT, Li BJ, Liu SH. Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy. Mol Med Rep 2016; 14:2846-52. [PMID: 27485693 DOI: 10.3892/mmr.2016.5579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/04/2016] [Indexed: 11/06/2022] Open
Abstract
The deregulation of microRNAs (miRNAs) is often implicated in the control of sensitivity to radiotherapy. The objective of the present study was to identify the association between miR‑558 and apoptosis‑associated tyrosine kinase (AATK), and their importance in regulating the development of resistance to radiotherapy. The current study demonstrated that AATK, a radiosensitization-associated gene, is a target of miR‑558 in lung cancer cells, using in silico analysis and a luciferase reporter system. Furthermore, it was determined that transfection of 30 or 50 nM miR‑558 mimics and AATK specific siRNA markedly suppressed the mRNA and protein expression of AATK. To determine whether miR‑558 was required for lung cancer cell radioresistance, A549 cells were treated with different doses of ionizing radiation, from 0 to 10 Gy, following transfection with miR‑558 mimics or AATK specific siRNA. It was determined that the administration of miR‑558 mimics or AATK specific siRNA alone did not significantly alter the survival rate of the cells. By contrast, in the cells exposed to 4, 6 or 8 Gy, the administration of miR‑558 mimics or AATK specific siRNA significantly promoted cell survival rate and overexpression of AATK reversed this effect. In conclusion, these data demonstrate that the miR‑558/AATK cascade is important for the radiosensitization of lung cancer cells and may be a potential radiotherapy target.
Collapse
Affiliation(s)
- Rui-Xia Zhu
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Chun-Hui Song
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Jin-Shan Yang
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Qing-Ting Yi
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Bao-Jian Li
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| | - Si-Hai Liu
- Department of Oncology, Central Hospital of Zaozhuang Mineral Group, Zaozhuang, Shandong 277800, P.R. China
| |
Collapse
|
18
|
Jiang Y, Verbiest T, Devery AM, Bokobza SM, Weber AM, Leszczynska KB, Hammond EM, Ryan AJ. Hypoxia Potentiates the Radiation-Sensitizing Effect of Olaparib in Human Non-Small Cell Lung Cancer Xenografts by Contextual Synthetic Lethality. Int J Radiat Oncol Biol Phys 2016; 95:772-81. [PMID: 27020103 PMCID: PMC4856738 DOI: 10.1016/j.ijrobp.2016.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/22/2015] [Accepted: 01/18/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE Poly(ADP-ribose) polymerase (PARP) inhibitors potentiate radiation therapy in preclinical models of human non-small cell lung cancer (NSCLC) and other types of cancer. However, the mechanisms underlying radiosensitization in vivo are incompletely understood. Herein, we investigated the impact of hypoxia on radiosensitization by the PARP inhibitor olaparib in human NSCLC xenograft models. METHODS AND MATERIALS NSCLC Calu-6 and Calu-3 cells were irradiated in the presence of olaparib or vehicle under normoxic (21% O2) or hypoxic (1% O2) conditions. In vitro radiosensitivity was assessed by clonogenic survival assay and γH2AX foci assay. Established Calu-6 and Calu-3 subcutaneous xenografts were treated with olaparib (50 mg/kg, daily for 3 days), radiation (10 Gy), or both. Tumors (n=3/group) were collected 24 or 72 hours after the first treatment. Immunohistochemistry was performed to assess hypoxia (carbonic anhydrase IX [CA9]), vessels (CD31), DNA double strand breaks (DSB) (γH2AX), and apoptosis (cleaved caspase 3 [CC3]). The remaining xenografts (n=6/group) were monitored for tumor growth. RESULTS In vitro, olaparib showed a greater radiation-sensitizing effect in Calu-3 and Calu-6 cells in hypoxic conditions (1% O2). In vivo, Calu-3 tumors were well-oxygenated, whereas Calu-6 tumors had extensive regions of hypoxia associated with down-regulation of the homologous recombination protein RAD51. Olaparib treatment increased unrepaired DNA DSB (P<.001) and apoptosis (P<.001) in hypoxic cells of Calu-6 tumors following radiation, whereas it had no significant effect on radiation-induced DNA damage response in nonhypoxic cells of Calu-6 tumors or in the tumor cells of well-oxygenated Calu-3 tumors. Consequently, olaparib significantly increased radiation-induced growth inhibition in Calu-6 tumors (P<.001) but not in Calu-3 tumors. CONCLUSIONS Our data suggest that hypoxia potentiates the radiation-sensitizing effects of olaparib by contextual synthetic killing, and that tumor hypoxia may be a potential biomarker for selecting patients who may get the greatest benefit from the addition of olaparib to radiation therapy.
Collapse
Affiliation(s)
- Yanyan Jiang
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Tom Verbiest
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Aoife M Devery
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sivan M Bokobza
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anika M Weber
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Katarzyna B Leszczynska
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ester M Hammond
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Anderson J Ryan
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Aggarwal A, Lewison G, Idir S, Peters M, Aldige C, Boerckel W, Boyle P, Trimble EL, Roe P, Sethi T, Fox J, Sullivan R. The State of Lung Cancer Research: A Global Analysis. J Thorac Oncol 2016; 11:1040-50. [PMID: 27013405 DOI: 10.1016/j.jtho.2016.03.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Lung cancer is the leading cause of years of life lost because of cancer and is associated with the highest economic burden relative to other tumor types. Research remains at the cornerstone of achieving improved outcomes of lung cancer. We present the results of a comprehensive analysis of global lung cancer research between 2004 and 2013 (10 years). METHODS The study used bibliometrics to undertake a quantitative analysis of research output in the 24 leading countries in cancer research internationally on the basis of articles and reviews in the Web of Science (WoS) database. RESULTS A total of 32,161 lung cancer research articles from 2085 different journals were analyzed. Lung cancer research represented only 5.6% of overall cancer research in 2013, a 1.2% increase since 2004. The commitment to lung cancer research has fallen in most countries apart from China and shows no correlation with lung cancer burden. A review of key research types demonstrated that diagnostics, screening, and quality of life research represent 4.3%, 1.8%, and 0.3% of total lung cancer research, respectively. The leading research types were genetics (20%), systemic therapies (17%), and prognostic biomarkers (16%). Research output is increasingly basic science, with a decrease in clinical translational research output during this period. CONCLUSIONS Our findings have established that relative to the huge health, social, and economic burden associated with lung cancer, the level of world research output lags significantly behind that of research on other malignancies. Commitment to diagnostics, screening, and quality of life research is much lower than to basic science and medical research. The study findings are expected to provide the requisite knowledge to guide future cancer research programs in lung cancer.
Collapse
Affiliation(s)
- Ajay Aggarwal
- Institute of Cancer Policy, Kings College London, London, United Kingdom.
| | - Grant Lewison
- Institute of Cancer Policy, Kings College London, London, United Kingdom; Evaluametrics Ltd., London, United Kingdom
| | - Saliha Idir
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Matthew Peters
- Oncology Europe, Africa, and Middle East Business Unit, Pfizer International Operations, Paris, France
| | | | | | - Peter Boyle
- International Prevention Research Institute, Lyon, France
| | - Edward L Trimble
- National Cancer Institute Center for Global Health, Bethesda, Maryland
| | - Philip Roe
- Evaluametrics Ltd., London, United Kingdom
| | - Tariq Sethi
- Department of Respiratory Medicine, Kings College London, London, United Kingdom
| | - Jesme Fox
- Roy Castle Lung Cancer Foundation, Liverpool, United Kingdom
| | - Richard Sullivan
- Institute of Cancer Policy, Kings College London, London, United Kingdom
| |
Collapse
|
20
|
Examining the effect of gene reduction in miR-95 and enhanced radiosensitivity in non-small cell lung cancer. Cancer Gene Ther 2016; 23:66-71. [DOI: 10.1038/cgt.2016.2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/19/2016] [Accepted: 01/27/2016] [Indexed: 12/25/2022]
|
21
|
Meldolesi E, van Soest J, Damiani A, Dekker A, Alitto AR, Campitelli M, Dinapoli N, Gatta R, Gambacorta MA, Lanzotti V, Lambin P, Valentini V. Standardized data collection to build prediction models in oncology: a prototype for rectal cancer. Future Oncol 2015; 12:119-36. [PMID: 26674745 DOI: 10.2217/fon.15.295] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The advances in diagnostic and treatment technology are responsible for a remarkable transformation in the internal medicine concept with the establishment of a new idea of personalized medicine. Inter- and intra-patient tumor heterogeneity and the clinical outcome and/or treatment's toxicity's complexity, justify the effort to develop predictive models from decision support systems. However, the number of evaluated variables coming from multiple disciplines: oncology, computer science, bioinformatics, statistics, genomics, imaging, among others could be very large thus making traditional statistical analysis difficult to exploit. Automated data-mining processes and machine learning approaches can be a solution to organize the massive amount of data, trying to unravel important interaction. The purpose of this paper is to describe the strategy to collect and analyze data properly for decision support and introduce the concept of an 'umbrella protocol' within the framework of 'rapid learning healthcare'.
Collapse
Affiliation(s)
- Elisa Meldolesi
- Radiotherapy Department, Sacred Heart University, Rome, Italy
| | - Johan van Soest
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Damiani
- Radiotherapy Department, Sacred Heart University, Rome, Italy
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | - Nicola Dinapoli
- Radiotherapy Department, Sacred Heart University, Rome, Italy
| | - Roberto Gatta
- Radiotherapy Department, Sacred Heart University, Rome, Italy
| | | | - Vito Lanzotti
- Radiotherapy Department, Sacred Heart University, Rome, Italy
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | |
Collapse
|
22
|
Allen KT, Chin-Sinex H, DeLuca T, Pomerening JR, Sherer J, Watkins JB, Foley J, Jesseph JM, Mendonca MS. Dichloroacetate alters Warburg metabolism, inhibits cell growth, and increases the X-ray sensitivity of human A549 and H1299 NSC lung cancer cells. Free Radic Biol Med 2015; 89:263-73. [PMID: 26393423 DOI: 10.1016/j.freeradbiomed.2015.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/02/2015] [Accepted: 08/06/2015] [Indexed: 12/22/2022]
Abstract
We investigated whether altering Warburg metabolism (aerobic glycolysis) by treatment with the metabolic agent dichloroacetate (DCA) could increase the X-ray-induced cell killing of the radiation-resistant human non-small-cell lung cancer (NSCLC) cell lines A549 and H1299. Treatment with 50mM DCA decreased lactate production and glucose consumption in both A549 and H1299, clear indications of attenuated aerobic glycolysis. In addition, we found that DCA treatment also slowed cell growth, increased population-doubling time, and altered cell cycle distribution. Furthermore, we report that treatment with 50mM DCA significantly increased single and fractionated X-ray-induced cell killing of A549 and H1299 cells. Assay of DNA double-strand break repair by neutral comet assays demonstrated that DCA inhibited both the fast and the slow kinetics of X-ray-induced DSB repair in both A549 and H1299 NSCL cancer cells. Taken together the data suggest a correlation between an attenuated aerobic glycolysis and enhanced cytotoxicity and radiation-induced cell killing in radiation-resistant NSCLC cells.
Collapse
Affiliation(s)
- Kah Tan Allen
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Helen Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Thomas DeLuca
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Jeremy Sherer
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John B Watkins
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - John Foley
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jerry M Jesseph
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
23
|
Méry B, Guy JB, Swalduz A, Vallard A, Guibert C, Almokhles H, Ben Mrad M, Rivoirard R, Falk AT, Fournel P, Magné N. The evolving locally-advanced non-small cell lung cancer landscape: Building on past evidence and experience. Crit Rev Oncol Hematol 2015; 96:319-27. [DOI: 10.1016/j.critrevonc.2015.05.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/30/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
|
24
|
Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization. Biochem Biophys Res Commun 2015; 460:198-204. [PMID: 25770423 DOI: 10.1016/j.bbrc.2015.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/03/2015] [Indexed: 01/24/2023]
Abstract
Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation.
Collapse
|
25
|
He Z, Liu Y, Xiao B, Qian X. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression. Biochem Biophys Res Commun 2015; 457:235-41. [PMID: 25576360 DOI: 10.1016/j.bbrc.2014.12.094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/20/2014] [Indexed: 12/25/2022]
Abstract
A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 and BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells.
Collapse
Affiliation(s)
- Zhiwei He
- Pneumology Department, Civil Aviation General Hospital, Beijing 100123, China.
| | - Yi Liu
- Pneumology Department, Civil Aviation General Hospital, Beijing 100123, China.
| | - Bing Xiao
- Pneumology Department, Civil Aviation General Hospital, Beijing 100123, China.
| | - Xiaosen Qian
- Pneumology Department, Civil Aviation General Hospital, Beijing 100123, China.
| |
Collapse
|
26
|
Lundholm L, Hååg P, Juntti T, Lewensohn R, Viktorsson K. Phosphoprotein analysis reveals MEK inhibition as a way to target non-small cell lung cancer tumor initiating cells. Int J Radiat Biol 2014; 90:718-26. [DOI: 10.3109/09553002.2014.905725] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Silencing miR-21 sensitizes non-small cell lung cancer A549 cells to ionizing radiation through inhibition of PI3K/Akt. BIOMED RESEARCH INTERNATIONAL 2014; 2014:617868. [PMID: 24804226 PMCID: PMC3997135 DOI: 10.1155/2014/617868] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/14/2022]
Abstract
We investigated the role of microRNA-21 (miR-21) in radiotherapy resistance of non-small cell lung cancers (NSCLC) and the underlying molecular mechanism. A549 cells were transfected with anti-miR-21 or the negative control oligonucleotides and real-time PCR was applied to detect miR-21 expression level. After ionizing radiation (IR), the survival fractions, proliferation, apoptosis, and expression of phosphorylated-Akt of A549 cells were determined by clonogenic survival analysis, MTT assay, flow cytometry, and Western blotting. Downregulation of miR-21 in radioresistant NSCLC A549 cells inhibited the colony-forming ability and proliferation of A549 cells after IR. Moreover, silencing miR-21 enhanced apoptosis of A549 cells induced by IR accompanied by decreased phosphorylated-Akt protein level. However, PI3K activator IGF-1 reversed suppression of phosphorylated-Akt protein level and promotion of apoptosis of A549 cells after IR caused by miR-21 knockdown. Silencing miR-21 in radioresistant NSCLC A549 cells sensitized them to IR by inhibiting cell proliferation and enhancing cell apoptosis through inhibition of PI3K/Akt signaling pathway. This might help in sensitization of NSCLC to radiotherapy.
Collapse
|
28
|
You S, Li R, Park D, Xie M, Sica GL, Cao Y, Xiao ZQ, Deng X. Disruption of STAT3 by niclosamide reverses radioresistance of human lung cancer. Mol Cancer Ther 2014; 13:606-16. [PMID: 24362463 PMCID: PMC3964811 DOI: 10.1158/1535-7163.mct-13-0608] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A major challenge affecting the outcomes of patients with lung cancer is the development of acquired radioresistance. However, the mechanisms underlying the development of resistance to therapy are not fully understood. Here, we discovered that ionizing radiation induces phosphorylation of Janus-associated kinase (JAK)-2 and STAT3 in association with increased levels of Bcl2/Bcl-XL in various human lung cancer cells. To uncover new mechanism(s) of radioresistance of lung cancer, we established lung cancer cell model systems with acquired radioresistance. As compared with radiosensitive parental lung cancer cells (i.e., A549, H358, and H157), the JAK2/STAT3/Bcl2/Bcl-XL survival pathway is significantly more activated in acquired radioresistant lung cancer cells (i.e., A549-IRR, H358-IRR, and H157-IRR). Higher levels of STAT3 were found to be accumulated in the nucleus of radioresistant lung cancer cells. Niclosamide, a potent STAT3 inhibitor, can reduce STAT3 nuclear localization in radioresistant lung cancer cells. Intriguingly, either inhibition of STAT3 activity by niclosamide or depletion of STAT3 by RNA interference reverses radioresistance in vitro. Niclosamide alone or in combination with radiation overcame radioresistance in lung cancer xenografts. These findings uncover a novel mechanism of radioresistance and provide a more effective approach to overcome radioresistance by blocking the STAT3/Bcl2/Bcl-XL survival signaling pathway, which may potentially improve lung cancer outcome, especially for those patients who have resistance to radiotherapy.
Collapse
Affiliation(s)
- Shuo You
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Second Affiliated Hospital of Xiangya, Central South University, Changsha, Hunan 410008, China
| | - Rui Li
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dongkyoo Park
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Maohua Xie
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Gabriel L. Sica
- Department of Pathology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Ya Cao
- Cancer Research Institute, Central South University, Changsha, Hunan 410008, China
| | - Zhi-Qiang Xiao
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xingming Deng
- Department of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Passaro A, Cortesi E, de Marinis F. Second-line treatment of non-small-cell lung cancer: chemotherapy or tyrosine kinase inhibitors? Expert Rev Anticancer Ther 2014; 11:1587-97. [DOI: 10.1586/era.11.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Kuo CH, Chen KF, Chou SH, Huang YF, Wu CY, Cheng DE, Chen YW, Yang CJ, Hung JY, Huang MS. Lung tumor-associated dendritic cell-derived resistin promoted cancer progression by increasing Wolf-Hirschhorn syndrome candidate 1/Twist pathway. Carcinogenesis 2013; 34:2600-9. [PMID: 23955539 DOI: 10.1093/carcin/bgt281] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The interaction between tumors and their microenvironments leads to a vicious cycle, which strengthens both immune suppression and cancer progression. The present study demonstrates for the first time that tumor-associated dendritic cells (TADCs) are a source of resistin, which is responsible for increasing lung cancer epithelial-to-mesenchymal transition. In addition, large amounts of resistin in the condition medium (CM) of TADCs increase cell migration and invasion, as well as the osteolytic bone metastatic properties of lung cancer cells. Neutralization of resistin from TADC-CM prevents the advanced malignancy-inducing features of TADC-CM. Significantly elevated levels of resistin have been observed in mice transplanted with lung cancer cells, tumor-infiltrating CD11c(+) DCs in human lung cancer samples and lung cancer patients' sera. Induction of lung cancer progression by TADC-derived resistin is associated with increased expression of Wolf-Hirschhorn syndrome candidate 1 (WHSC1), a histone methyltransferase. Resistin-induced WHSC1 increases the dimethylation of histone 3 at lysine 36 and decreases the trimethylation of histone 3 at lysine 27 on the promoter of Twist, resulting in an enhancement of the expression of Twist. Knockdown of WHSC1 by small interfering RNA transfection significantly decreases resistin-mediated cancer progression by decreasing the upregulation of Twist, suggesting that WHSC1 plays a critical role in the regulation of Twist by epigenetic modification. Furthermore, mice that received antiresistin antibodies showed a decreased incidence of cancer development and metastasis. These findings suggest that TADC-derived resistin may be a novel candidate in promoting the development of lung cancer.
Collapse
Affiliation(s)
- Chih-Hsin Kuo
- The Affiliated Senior High School of National Kaohsiung Normal University, Kaohsiung 802, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cao R, Ding Q, Li P, Xue J, Zou Z, Huang J, Peng G. SHP1-mediated cell cycle redistribution inhibits radiosensitivity of non-small cell lung cancer. Radiat Oncol 2013; 8:178. [PMID: 23842094 PMCID: PMC3723552 DOI: 10.1186/1748-717x-8-178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022] Open
Abstract
Background Radioresistance is the common cause for radiotherapy failure in non-small cell lung cancer (NSCLC), and the degree of radiosensitivity of tumor cells is different during different cell cycle phases. The objective of the present study was to investigate the effects of cell cycle redistribution in the establishment of radioresistance in NSCLC, as well as the signaling pathway of SH2 containing Tyrosine Phosphatase (SHP1). Methods A NSCLC subtype cell line, radioresistant A549 (A549S1), was induced by high-dose hypofractionated ionizing radiations. Radiosensitivity-related parameters, cell cycle distribution and expression of cell cycle-related proteins and SHP1 were investigated. siRNA was designed to down-regulate SHP1expression. Results Compared with native A549 cells, the proportion of cells in the S phase was increased, and cells in the G0/G1 phase were consequently decreased, however, the proportion of cells in the G2/M phase did not change in A549S1 cells. Moreover, the expression of SHP1, CDK4 and CylinD1 were significantly increased, while p16 was significantly down-regulated in A549S1 cells compared with native A549 cells. Furthermore, inhibition of SHP1 by siRNA increased the radiosensitivity of A549S1 cells, induced a G0/G1 phase arrest, down-regulated CDK4 and CylinD1expressions, and up-regulated p16 expression. Conclusions SHP1 decreases the radiosensitivity of NSCLC cells through affecting cell cycle distribution. This finding could unravel the molecular mechanism involved in NSCLC radioresistance.
Collapse
Affiliation(s)
- Rubo Cao
- Cancer Center of Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No, 1227 Jiefang Dadao, Wuhan 430022, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Komatsu T, Kunieda E, Oizumi Y, Tamai Y, Akiba T. Clinical characteristics of brain metastases from lung cancer according to histological type: Pretreatment evaluation and survival following whole-brain radiotherapy. Mol Clin Oncol 2013; 1:692-698. [PMID: 24649230 PMCID: PMC3915483 DOI: 10.3892/mco.2013.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 04/30/2013] [Indexed: 11/06/2022] Open
Abstract
The histological type of lung cancer in patients with brain metastases may affect response to treatment and survival. We evaluated the clinical characteristics of brain metastases from lung cancer according to histological type in 70 consecutive patients with brain metastases from histologically confirmed lung cancer, who had been previously treated with whole-brain radiotherapy (WBRT). Histological type was divided into three categories: adenocarcinoma, small-cell lung carcinoma (SCLC) and other non-small cell lung cancer (NSCLC). The number, size and maximum diameter of brain metastases, the size and maximum diameter of peritumoral edema, the ratio of tumor and peritumoral edema, the asymptomatic ratio, the tumor size reduction rate, the complete response (CR) rate, the intracranial progression-free survival (PFS) and the overall survival (OS) were also evaluated. The median survival time for all patients was 26.2 weeks. Patients with SCLC exhibited a significantly smaller edema size and maximum diameter of edema compared to patients with other NSCLC (P=0.016 and 0.010, respectively). The ratio of tumor and peritumoral edema was also significantly lower in patients with SCLC compared to that in patients with adenocarcinoma and other NSCLC (P= 0.001). Significant differences in intracranial PFS and OS between adenocarcinoma and other NSCLC were also observed (P=0.018 and 0.004, respectively). Patients with adenocarcinoma who were treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) following WBRT, demonstrated a significant improvement in intracranial PFS and OS (P=0.008 and 0.004, respectively). The findings presented in this study may provide useful information for the management of brain metastases. Patients with SCLC exhibit a tendency to develop peritumoral edema to a lesser extent, compared to patients with other histological tumor types. Findings in the present study suggest that patients with adenocarcinoma, particularly those treated with EGFR-TKIs, exhibit improved survival rates.
Collapse
Affiliation(s)
- Tetsuya Komatsu
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Etsuo Kunieda
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Yukio Oizumi
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Yoshifumi Tamai
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Takeshi Akiba
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
33
|
Willers H, Azzoli CG, Santivasi WL, Xia F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. Cancer J 2013; 19:200-7. [PMID: 23708066 PMCID: PMC3668666 DOI: 10.1097/ppo.0b013e318292e4e3] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, there have been multiple breakthroughs in our understanding of lung cancer biology. Despite significant advances in molecular targeted therapies, DNA-damaging cytotoxic therapies will remain the mainstay of lung cancer management for the near future. Similar to the concept of personalized targeted therapies, there is mounting evidence that perturbations in DNA repair pathways are common in lung cancers, altering the resistance of the affected tumors to many chemotherapeutics as well as radiation. Defects in DNA repair may be due to a multitude of mechanisms including gene mutations, epigenetic events, and alterations in signal transduction pathways such as epidermal growth factor receptor and phosphoinositide 3-kinase/AKT. Functional biomarkers that assess the subcellular localization of central repair proteins in response to DNA damage may prove useful for individualization of cytotoxic therapies including poly(adenosine diphosphate-ribose) polymerase inhibitors. A better mechanistic understanding of cellular sensitivity and resistance to DNA damaging agents should facilitate the development of novel, individualized treatment approaches. Absolute resistance to radiation therapy, however, does not exist. To some extent, radiation therapy will always have to remain unselective and indiscriminant to eradicate persistent, drug-resistant tumor stem cell pools.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA 02114
| | - Christopher G. Azzoli
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA 02114
| | - Wil L. Santivasi
- Department of Radiation Oncology, College of Medicine, Ohio State University, Columbus, OH 43210
| | - Fen Xia
- Department of Radiation Oncology, College of Medicine, Ohio State University, Columbus, OH 43210
| |
Collapse
|
34
|
Chen FH, Fu SY, Yang YC, Wang CC, Chiang CS, Hong JH. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway. Int J Radiat Oncol Biol Phys 2013; 86:777-84. [PMID: 23601898 DOI: 10.1016/j.ijrobp.2013.02.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/14/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. METHODS AND MATERIALS Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. RESULTS After F-RT, the tumor microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. CONCLUSIONS Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.
Collapse
Affiliation(s)
- Fang-Hsin Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
35
|
Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:828143. [PMID: 23533526 PMCID: PMC3595678 DOI: 10.1155/2013/828143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.
Collapse
|
36
|
Lu X, Xiao L, Wang L, Ruden DM. Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 2012; 83:995-1004. [PMID: 22120678 PMCID: PMC3299878 DOI: 10.1016/j.bcp.2011.11.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/31/2011] [Accepted: 11/14/2011] [Indexed: 12/11/2022]
Abstract
Hsp90 is a chaperone protein that interacts with client proteins that are known to be in the cell cycle, signaling and chromatin-remodeling pathways. Hsp90 inhibitors act additively or synergistically with many other drugs in the treatment of both solid tumors and leukemias in murine tumor models and humans. Hsp90 inhibitors potentiate the actions of anti-cancer drugs that target Hsp90 client proteins, including trastuzumab (Herceptin™) which targets Her2/Erb2B, as Hsp90 inhibition elicits the drug effects in cancer cell lines that are otherwise resistant to the drug. A phase II study of the Hsp90 inhibitor 17-AAG and trastuzumab showed that this combination therapy has anticancer activity in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. In this review, we discuss the results of Hsp90 inhibitors in combination with trastuzumab and other cancer drugs. We also discuss recent results from yeast focused on the genetics of drug resistance when Hsp90 is inhibited and the implications that this might have in understanding the effects of genetic variation in treating cancer in humans.
Collapse
Affiliation(s)
- Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Li Xiao
- University of Alabama at Birmingham, Department of Immunology and Rheumatology, Birmingham, AL 35294
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Douglas M. Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| |
Collapse
|
37
|
Effective inhibition of irradiation on human gliomas growth in vitro and in vivo after epidermal growth factor receptor silencing with RNA interference. Neuroreport 2012; 22:773-7. [PMID: 21876467 DOI: 10.1097/wnr.0b013e32834af64f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we found that irradiation in the presence of small interfering RNA-epidermal growth factor receptor (EGFR) arrested U373 glioma cells in G₀ and G₁ phases, delayed cell cycle progression, and effectively inhibited cell proliferation compared with cells that received only radiotherapy. In addition, combined therapy enhanced the percent of apoptotic U373 cells in vitro and also reduced the tumor size and increased the survival rate in tumor xenograft studies. This study demonstrates the antitumor activity of ionizing radiation therapy in combination with small interfering RNA-EGFR in gliomas both in vitro and in vivo and provides a scientific rationale for targeting EGFR to enhance the sensitivity to radiotherapy in patients with glioblastoma multiforme.
Collapse
|
38
|
Vallejo Ocańa C, Garrido López P, Muguruza Trueba I. Multidisciplinary approach in stage III non-small-cell lung cancer: standard of care and open questions. Clin Transl Oncol 2012; 13:629-35. [PMID: 21865134 DOI: 10.1007/s12094-011-0708-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer is the most frequent cause of cancer death worldwide and its global incidence has been steadily increasing during recent decades. A third of patients with newly diagnosed non-small-cell lung cancer (NSCLC) present with locally advanced disease. There is not a single widely accepted standard of care for these patients because of the wide spectrum of presentation of the disease. Although feasible and safe in experienced hands, evidence that surgical resection after induction treatment improves overall survival (OS) is lacking. For resectable or potentially resectable stage III, the findings of two phase III trials suggest that surgical resection should not be considered a standard of care but rather reserved for selected patients after critical multidisciplinary assessment, in whom surgery improves survival after downstaging if pneumonectomy can be avoided or in some T4N0-1 resectable tumours. For unresectable stage III NSCLC the standard of care is a combination of chemotherapy and radiotherapy. In those patients with good performance status and minimal weight loss, the concurrent approach has resulted in a statistically significant improvement in OS rates compared with a sequential approach in randomised clinical trials, although several questions remain unresolved.
Collapse
Affiliation(s)
- Carmen Vallejo Ocańa
- Servicio de Oncología Radioterápica, Hospital Ramón y Cajal, Carretera Colmenar km. 9,100, Madrid, Spain.
| | | | | |
Collapse
|
39
|
The Prognostic Significance of Lymphovascular Invasion on Biopsy Specimens in Lung Cancer Treated With Definitive Chemoradiotherapy. Clin Lung Cancer 2012; 13:59-67. [DOI: 10.1016/j.cllc.2011.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/22/2022]
|
40
|
Estabrook NC, Chin-Sinex H, Borgmann AJ, Dhaemers RM, Shapiro RH, Gilley D, Huda N, Crooks P, Sweeney C, Mendonca MS. Inhibition of NF-κB and DNA double-strand break repair by DMAPT sensitizes non-small-cell lung cancers to X-rays. Free Radic Biol Med 2011; 51:2249-58. [PMID: 22019440 DOI: 10.1016/j.freeradbiomed.2011.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022]
Abstract
We investigated the efficacy and mechanism of dimethylaminoparthenolide (DMAPT), an NF-κB inhibitor, to sensitize human lung cancer cells to X-ray killing in vitro and in vivo. We tested whether DMAPT increased the effectiveness of single and fractionated X-ray treatment through inhibition of NF-κB and/or DNA double-strand break (DSB) repair. Treatment with DMAPT decreased plating efficiency, inhibited constitutive and radiation-induced NF-κB binding activity, and enhanced radiation-induced cell killing by dose modification factors of 1.8 and 1.4 in vitro. X-ray fractionation demonstrated that DMAPT inhibited split-dose recovery/repair, and neutral DNA comet assays confirmed that DMAPT altered the fast and slow components of X-ray-induced DNA DSB repair. Knockdown of the NF-κB family member p65 by siRNA increased radiation sensitivity and completely inhibited split-dose recovery in a manner very similar to DMAPT treatment. The data suggest a link between inhibition of NF-κB and inhibition of DSB repair by DMAPT that leads to enhancement of X-ray-induced cell killing in vitro in non-small-cell lung cancer cells. Studies of A549 tumor xenografts in nude mice demonstrated that DMAPT enhanced X-ray-induced tumor growth delay in vivo.
Collapse
Affiliation(s)
- Neil C Estabrook
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chargari C, Leteur C, Angevin E, Bashir T, Schoentjes B, Arts J, Janicot M, Bourhis J, Deutsch E. Preclinical assessment of JNJ-26854165 (Serdemetan), a novel tryptamine compound with radiosensitizing activity in vitro and in tumor xenografts. Cancer Lett 2011; 312:209-18. [DOI: 10.1016/j.canlet.2011.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 11/29/2022]
|
42
|
Fournel P. RTOG 94-10: keenly awaited results validating the best therapeutic strategy for locally advanced non-small cell lung cancer. J Natl Cancer Inst 2011; 103:1425-7. [PMID: 21903746 DOI: 10.1093/jnci/djr348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
43
|
Rivera S, Quéro L, Wong Hee Kam S, Maylin C, Deutsch E, Hennequin C. [Targeted therapies and radiation therapy in non-small cell lung cancer]. Cancer Radiother 2011; 15:527-35. [PMID: 21885318 DOI: 10.1016/j.canrad.2011.07.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 07/17/2011] [Indexed: 01/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related death. Between 80-85% of lung cancers are non-small cell lung carcinomas. One third of the patients are diagnosed with locally advanced stage. In this condition, concomitant radio-chemotherapy is the standard treatment for patients with good performance status. Despite important improvements in the last years, non-small cell lung carcinoma prognosis remains poor, with high rates of both local recurrences and metastases. The heterogeneity of molecular characteristics of non-small cell lung carcinoma cells and a better knowledge of potential targets offer promising developments for new pharmacologic agents. Hereafter we will review the currently most studied pathways and the most promising ones for the treatment of locally advanced unresectable non-small cell lung carcinoma. Two of the most attractive pathways where new agents have been developed and assessed in combination with thoracic radiotherapy or radiochemotherapy are the EGFR pathway (either with the use of monoclonal antibodies or tyrosine kinase inhibitors) and the angiogenesis inhibition. The development of targeted agents could lead to individualized therapeutic combinations taking into account the intrinsic characteristics of tumor cells. Pharmacological modulation of tumour cells radiosensitivity by targeted therapies is only starting, but yet offers promising perspectives.
Collapse
Affiliation(s)
- S Rivera
- Service de cancérologie radiothérapie, hôpital Saint-Louis, Paris, France.
| | | | | | | | | | | |
Collapse
|
44
|
Current World Literature. Curr Opin Pulm Med 2011. [DOI: 10.1097/mcp.0b013e328348331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
|
46
|
Hong L, Li S, Han Y, Du J, Zhang H, Li J, Zhao Q, Wu K, Fan D. Angiogenesis-related molecular targets in esophageal cancer. Expert Opin Investig Drugs 2011; 20:637-44. [DOI: 10.1517/13543784.2011.571203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
|
48
|
Current world literature. Curr Opin Oncol 2011; 23:227-34. [PMID: 21307677 DOI: 10.1097/cco.0b013e328344b687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Xiong J, Liu J, Rayner S, Tian Z, Li Y, Chen S. Pre-clinical drug prioritization via prognosis-guided genetic interaction networks. PLoS One 2010; 5:e13937. [PMID: 21085674 PMCID: PMC2978107 DOI: 10.1371/journal.pone.0013937] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 10/15/2010] [Indexed: 01/17/2023] Open
Abstract
The high rates of failure in oncology drug clinical trials highlight the problems of using pre-clinical data to predict the clinical effects of drugs. Patient population heterogeneity and unpredictable physiology complicate pre-clinical cancer modeling efforts. We hypothesize that gene networks associated with cancer outcome in heterogeneous patient populations could serve as a reference for identifying drug effects. Here we propose a novel in vivo genetic interaction which we call ‘synergistic outcome determination’ (SOD), a concept similar to ‘Synthetic Lethality’. SOD is defined as the synergy of a gene pair with respect to cancer patients' outcome, whose correlation with outcome is due to cooperative, rather than independent, contributions of genes. The method combines microarray gene expression data with cancer prognostic information to identify synergistic gene-gene interactions that are then used to construct interaction networks based on gene modules (a group of genes which share similar function). In this way, we identified a cluster of important epigenetically regulated gene modules. By projecting drug sensitivity-associated genes on to the cancer-specific inter-module network, we defined a perturbation index for each drug based upon its characteristic perturbation pattern on the inter-module network. Finally, by calculating this index for compounds in the NCI Standard Agent Database, we significantly discriminated successful drugs from a broad set of test compounds, and further revealed the mechanisms of drug combinations. Thus, prognosis-guided synergistic gene-gene interaction networks could serve as an efficient in silico tool for pre-clinical drug prioritization and rational design of combinatorial therapies.
Collapse
Affiliation(s)
- Jianghui Xiong
- School of Computer Science, Wuhan University, Wuhan, People's Republic of China
- Bioinformatics, Systems Biology and Translational Medicine Group, State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, People's Republic of China
- * E-mail: (JX); (JL)
| | - Juan Liu
- School of Computer Science, Wuhan University, Wuhan, People's Republic of China
- * E-mail: (JX); (JL)
| | - Simon Rayner
- Bioinformatics Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Ze Tian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yinghui Li
- Bioinformatics, Systems Biology and Translational Medicine Group, State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, People's Republic of China
| | - Shanguang Chen
- Bioinformatics, Systems Biology and Translational Medicine Group, State Key Lab of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, People's Republic of China
| |
Collapse
|