1
|
Mohan I, Joshi B, Pathania D, Dhar S, Bhau BS. Phytobial remediation advances and application of omics and artificial intelligence: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37988-38021. [PMID: 38780844 DOI: 10.1007/s11356-024-33690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Industrialization and urbanization increased the use of chemicals in agriculture, vehicular emissions, etc., and spoiled all environmental sectors. It causes various problems among living beings at multiple levels and concentrations. Phytoremediation and microbial association are emerging as a potential method for removing heavy metals and other contaminants from soil. The treatment uses plant physiology and metabolism to remove or clean up various soil contaminants efficiently. In recent years, omics and artificial intelligence have been seen as powerful techniques for phytobial remediation. Recently, AI and modeling are used to analyze large data generated by omics technologies. Machine learning algorithms can be used to develop predictive models that can help guide the selection of the most appropriate plant and plant growth-promoting rhizobacteria combination that is most effective at remediation. In this review, emphasis is given to the phytoremediation techniques being explored worldwide in soil contamination.
Collapse
Affiliation(s)
- Indica Mohan
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, U.P., 226001, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Sunil Dhar
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani, Bagla, District Samba, Jammu and Kashmir, 181143, India.
| |
Collapse
|
2
|
Etesami H, Jeong BR, Maathuis FJM, Schaller J. Exploring the potential: Can arsenic (As) resistant silicate-solubilizing bacteria manage the dual effects of silicon on As accumulation in rice? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166870. [PMID: 37690757 DOI: 10.1016/j.scitotenv.2023.166870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Rice (Oryza sativa L.) cultivation in regions marked by elevated arsenic (As) concentrations poses significant health concerns due to As uptake by the plant and its subsequent entry into the human food chain. With rice serving as a staple crop for a substantial share of the global population, addressing this issue is critical for food security. In flooded paddy soils, where As availability is pronounced, innovative strategies to reduce As uptake and enhance agricultural sustainability are mandatory. Silicon (Si) and Si nanoparticles have emerged as potential candidates to mitigate As accumulation in rice. However, their effects on As uptake exhibit complexity, influenced by initial Si levels in the soil and the amount of Si introduced through fertilization. While low Si additions may inadvertently increase As uptake, higher Si concentrations may alleviate As uptake and toxicity. The interplay among existing Si and As availability, Si supplementation, and soil biogeochemistry collectively shapes the outcome. Adding water-soluble Si fertilizers (e.g., Na2SiO3 and K2SiO3) has demonstrated efficacy in mitigating As toxicity stress in rice. Nonetheless, the expense associated with these fertilizers underscores the necessity for low cost innovative solutions. Silicate-solubilizing bacteria (SSB) resilient to As hold promise by enhancing Si availability by accelerating mineral dissolution within the rhizosphere, thereby regulating the Si biogeochemical cycle in paddy soils. Promoting SSB could make cost-effective Si sources more soluble and, consequently, managing the intricate interplay of Si's dual effects on As accumulation in rice. This review paper offers a comprehensive exploration of Si's nuanced role in modulating As uptake by rice, emphasizing the potential synergy between As-resistant SSB and Si availability enhancement. By shedding light on this interplay, we aspire to shed light on an innovative attempt for reducing As accumulation in rice while advancing agricultural sustainability.
Collapse
Affiliation(s)
| | - Byoung Ryong Jeong
- Division of Applied Life Science, Graduate School, Gyeongsang National University, Republic of Korea 52828
| | | | - Jörg Schaller
- "Silicon Biogeochemistry" Working Group, Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
3
|
Sehar S, Adil MF, Ma Z, Karim MF, Faizan M, Zaidi SSA, Siddiqui MH, Alamri S, Zhou F, Shamsi IH. Phosphorus and Serendipita indica synergism augments arsenic stress tolerance in rice by regulating secondary metabolism related enzymatic activity and root metabolic patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114866. [PMID: 37023649 DOI: 10.1016/j.ecoenv.2023.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The multifarious problems created by arsenic (As), for collective environment and human health, serve a cogent case for searching integrative agricultural approaches to attain food security. Rice (Oryza sativa L.) acts as a sponge for heavy metal(loid)s accretion, specifically As, due to anaerobic flooded growth conditions facilitating its uptake. Acclaimed for their positive impact on plant growth, development and phosphorus (P) nutrition, 'mycorrhizas' are able to promote stress tolerance. Albeit, the metabolic alterations underlying Serendipita indica (S. indica; S.i) symbiosis-mediated amelioration of As stress along with nutritional management of P are still understudied. By using biochemical, RT-qPCR and LC-MS/MS based untargeted metabolomics approach, rice roots of ZZY-1 and GD-6 colonized by S. indica, which were later treated with As (10 µM) and P (50 µM), were compared with non-colonized roots under the same treatments with a set of control plants. The responses of secondary metabolism related enzymes, especially polyphenol oxidase (PPO) activities in the foliage of ZZY-1 and GD-6 were enhanced 8.5 and 12-fold, respectively, compared to their respective control counterparts. The current study identified 360 cationic and 287 anionic metabolites in rice roots, and the commonly enriched pathway annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was biosynthesis of phenylalanine, tyrosine and tryptophan, which validated the results of biochemical and gene expression analyses associated with secondary metabolic enzymes. Particularly under As+S.i+P comparison, both genotypes exhibited an upregulation of key detoxification and defense related metabolites, including fumaric acid, L-malic acid, choline, 3,4-dihydroxybenzoic acid, to name a few. The results of this study provided the novel insights into the promising role of exogenous P and S. indica in alleviating As stress.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengxin Ma
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Fazal Karim
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad 500032, India
| | - Syed Shujaat Ali Zaidi
- Center for Innovation in Brain Science, Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fanrui Zhou
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Anani OA, Abel I, Olomukoro JO, Onyeachu IB. Insights to proteomics and metabolomics metal chelation in food crops. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:159-173. [PMID: 35754947 PMCID: PMC9208750 DOI: 10.1007/s42485-022-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State Nigeria
| | - Inobeme Abel
- Department of Chemistry, Faculty of Science, Edo State University, Uzairue, Auchi, Edo State Nigeria
| | - John Ovie Olomukoro
- Department of Animal and Environmental Biology, University of Benin, Benin City, Edo State Nigeria
| | - Ikenna Benedict Onyeachu
- Department of Chemistry, Faculty of Science, Edo State University, Uzairue, Auchi, Edo State Nigeria
| |
Collapse
|
5
|
Mondal S, Pramanik K, Ghosh SK, Pal P, Ghosh PK, Ghosh A, Maiti TK. Molecular insight into arsenic uptake, transport, phytotoxicity, and defense responses in plants: a critical review. PLANTA 2022; 255:87. [PMID: 35303194 DOI: 10.1007/s00425-022-03869-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
A critical investigation into arsenic uptake and transportation, its phytotoxic effects, and defense strategies including complex signaling cascades and regulatory networks in plants. The metalloid arsenic (As) is a leading pollutant of soil and water. It easily finds its way into the food chain through plants, more precisely crops, a common diet source for humans resulting in serious health risks. Prolonged As exposure causes detrimental effects in plants and is diaphanously observed through numerous physiological, biochemical, and molecular attributes. Different inorganic and organic As species enter into the plant system via a variety of transporters e.g., phosphate transporters, aquaporins, etc. Therefore, plants tend to accumulate elevated levels of As which leads to severe phytotoxic damages including anomalies in biomolecules like protein, lipid, and DNA. To combat this, plants employ quite a few mitigation strategies such as efficient As efflux from the cell, iron plaque formation, regulation of As transporters, and intracellular chelation with an array of thiol-rich molecules such as phytochelatin, glutathione, and metallothionein followed by vacuolar compartmentalization of As through various vacuolar transporters. Moreover, the antioxidant machinery is also implicated to nullify the perilous outcomes of the metalloid. The stress ascribed by the metalloid also marks the commencement of multiple signaling cascades. This whole complicated system is indeed controlled by several transcription factors and microRNAs. This review aims to understand, in general, the plant-soil-arsenic interaction, effects of As in plants, As uptake mechanisms and its dynamics, and multifarious As detoxification mechanisms in plants. A major portion of this article is also devoted to understanding and deciphering the nexus between As stress-responsive mechanisms and its underlying complex interconnected regulatory networks.
Collapse
Affiliation(s)
- Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Krishnendu Pramanik
- Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Birbhum, Santiniketan, West Bengal, 731235, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Pallab Kumar Ghosh
- Directorate of Open and Distance Learning, University of Kalyani, Nadia, Kalyani, West Bengal, 741235, India
| | - Antara Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P.O.-Rajbati, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
6
|
Zhang J, Hamza A, Xie Z, Hussain S, Brestic M, Tahir MA, Ulhassan Z, Yu M, Allakhverdiev SI, Shabala S. Arsenic transport and interaction with plant metabolism: Clues for improving agricultural productivity and food safety. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117987. [PMID: 34425370 DOI: 10.1016/j.envpol.2021.117987] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/12/2021] [Accepted: 08/14/2021] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a ubiquitous metalloid that is highly toxic to all living organisms. When grown in As-contaminated soils, plants may accumulate significant amounts of As in the grains or edible shoot parts which then enter a food chain. Plant growth and development per se are also both affected by arsenic. These effects are traditionally attributed to As-induced accumulation of reactive oxygen species (ROS) and a consequent lipid peroxidation and damage to cellular membranes. However, this view is oversimplified, as As exposure have a major impact on many metabolic processes in plants, including availability of essential nutrients, photosynthesis, carbohydrate metabolism, lipid metabolism, protein metabolism, and sulfur metabolism. This review is aimed to fill this gap in the knowledge. In addition, the molecular basis of arsenic uptake and transport in plants and prospects of creating low As-accumulating crop species, for both agricultural productivity and food safety, are discussed.
Collapse
Affiliation(s)
- Jie Zhang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Ameer Hamza
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China; College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zuoming Xie
- School of Environment Science and Engineering, China University of Geoscience, Wuhan, 430074, China
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang, Chengdu, 611130, China.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Mukkram Ali Tahir
- College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China
| | - Suleyman I Allakhverdiev
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas7001, Australia.
| |
Collapse
|
7
|
Vats S, Sudhakaran S, Bhardwaj A, Mandlik R, Sharma Y, Kumar S, Tripathi DK, Sonah H, Sharma TR, Deshmukh R. Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124910. [PMID: 33453583 DOI: 10.1016/j.jhazmat.2020.124910] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Uptake of hazardous metal(loid)s adversely affects plants and imposes a threat to the entire food chain. Here, the role of aquaporins (AQPs) providing tolerance against hazardous metal(loid)s in plants is discussed to provide a perspective on the present understanding, knowledge gaps, and opportunities. Plants adopt complex molecular and physiological mechanisms for better tolerance, adaptability, and survival under metal(loid)s stress. Water conservation in plants is one such primary strategies regulated by AQPs, a family of channel-forming proteins facilitating the transport of water and many other solutes. The strategy is more evident with reports suggesting differential expression of AQPs adopted by plants to cope with the heavy metal stress. In this regard, numerous studies showing enhanced tolerance against hazardous elements in plants due to AQPs activity are discussed. Consequently, present understanding of various aspects of AQPs, such as tertiary-structure, transport activity, solute-specificity, differential expression, gating mechanism, and subcellular localization, are reviewed. Similarly, various tools and techniques are discussed in detail aiming at efficient utilization of resources and knowledge to combat metal(loid)s stress. The scope of AQP transgenesis focusing on heavy metal stresses is also highlighted. The information provided here will be helpful to design efficient strategies for the development of metal(loid)s stress-tolerant crops.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sreeja Sudhakaran
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Anupriya Bhardwaj
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India; Department of Biotechnology, Punjab University, Chandigarh, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Sudhir Kumar
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research (ICAR), New Delhi, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India.
| |
Collapse
|
8
|
Yadav P, Srivastava S, Patil T, Raghuvanshi R, Srivastava AK, Suprasanna P. Tracking the time-dependent and tissue-specific processes of arsenic accumulation and stress responses in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124307. [PMID: 33221079 DOI: 10.1016/j.jhazmat.2020.124307] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The present study analysed time (0.5 h to 24 h) and tissue [roots, old leaves (OL) and young leaves (YL)] dependent nature of arsenic (As) accumulation and ensuing responses in two contrasting varieties of rice (Oryza sativa L.); Pooja (tolerant) and CO-50 (moderately sensitive). Arsenic accumulation was 5.4-, 4.7- and 7.3-fold higher at 24 h in roots, OL and YL, respectively of var. CO-50 than that in var. Pooja. Arsenic accumulation in YL depicted a delayed accumulation; at 2 h onwards in var. Pooja (0.23 µg g-1 dw) while at 1 h onwards in var. CO50 (0.26 µg g-1 dw). The responses of oxidative stress parameters, antioxidant enzymes, metabolites and ions were also found to be tissue- and time-dependent and depicted differential pattern in the two varieties. Among hormone, salicylic acid and abscisic acid showed variable response in var. Pooja and var. CO-50. Metabolite analysis depicted an involvement of various metabolites in As stress responses of two varieties. In conclusion, an early sensing of the As stress, proper coordination of hormones, biochemical responses, ionic and metabolic profiles allowed var. Pooja to resist As stress and reduce As accumulation more effectively as compared to that of var. CO-50.
Collapse
Affiliation(s)
- Poonam Yadav
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India.
| | - Tanmayi Patil
- Centre for Cellular and Molecular Platforms, GKVK Post, Bengaluru 560065, India
| | - Rishiraj Raghuvanshi
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ashish K Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Penna Suprasanna
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
9
|
|
10
|
Thakur S, Choudhary S, Dubey P, Bhardwaj P. Comparative transcriptome profiling reveals the reprogramming of gene networks under arsenic stress in Indian mustard. Genome 2019; 62:833-847. [PMID: 31518504 DOI: 10.1139/gen-2018-0152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenic is a widespread toxic metalloid that is classified as a class I carcinogen known to cause adverse health effects in humans. In the present study, we investigated arsenic accumulation potential and comparative gene expression in Indian mustard. The amount of arsenic accumulated in shoots varied in the range of 15.99-1138.70 mg/kg on a dry weight basis among five cultivars. Comparative expression analysis revealed 10 870 significantly differentially expressed genes mostly belonging to response to stress, metabolic processes, signal transduction, transporter activity, and transcription regulator activity to be up-regulated, while most of the genes involved in photosynthesis, developmental processes, and cell growth were found to be down-regulated in arsenic-treated tissues. Further, pathway analysis using the KEGG Automated Annotation server (KAAS) revealed a large-scale reprogramming of genes involved in genetic and environmental information processing pathways. Top pathways with maximum KEGG orthology hits included carbon metabolism (2.5%), biosynthesis of amino acids (2.1%), plant hormone signal transduction (1.4%), and glutathione metabolism (0.6%). A transcriptomic investigation to understand the arsenic accumulation and detoxification in Indian mustard will not only help to improve its phytoremediation efficiency but also add to the control measures required to check bioaccumulation of arsenic in the food chain.
Collapse
Affiliation(s)
- Sapna Thakur
- Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India.,Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India
| | - Shruti Choudhary
- Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India.,Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India
| | - Preeti Dubey
- Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India.,Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India
| | - Pankaj Bhardwaj
- Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India.,Molecular Genetics Laboratory, Department of Plant Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
11
|
Shukla T, Khare R, Kumar S, Lakhwani D, Sharma D, Asif MH, Trivedi PK. Differential transcriptome modulation leads to variation in arsenic stress response in Arabidopsis thaliana accessions. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:1-10. [PMID: 29506000 DOI: 10.1016/j.jhazmat.2018.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is a ubiquitous metalloid and a health hazard to millions of people worldwide. The presence of As in groundwater poses a threat as it not only affects crop productivity but also contaminates food chain. Therefore, it is essential to understand molecular mechanisms underlying uptake, transport and accumulation of As in plants. In recent past, natural variation in Arabidopsis thaliana has been utilized to understand molecular and genetic adaptation under different stresses. In this study, responses of Arabidopsis accessions were analyzed at biochemical and molecular levels towards arsenate [As(V)] stress. On the basis of reduction in root length, accessions were categorized into tolerant and sensitive ones towards As(V). Root length analysis led to the identification of Col-0 (<10% reduction) and Slavi-1 (>60% reduction) as the most tolerant and sensitive accessions, respectively. Comparative genome-wide expression analysis revealed differential expression of 168 and 548 genes in Col-0 and Slavi-1, respectively, with 120 common differentially expressed genes. A number of genes associated with defense and stress-response, transport system, regulatory mechanisms and biochemical processes showed differential expression in contrasting accessions. The study provides an insight into the molecular mechanisms associated with stress response and processes involved in adaptation strategies towards As stress.
Collapse
Affiliation(s)
- Tapsi Shukla
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Ria Khare
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Smita Kumar
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| | - Deepika Lakhwani
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Deepika Sharma
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| |
Collapse
|
12
|
Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, Ghosh A. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1239-1250. [PMID: 28851144 DOI: 10.1016/j.scitotenv.2017.07.234] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
Arsenic (As) uptake by plants is largely influenced by the presence of microbial consortia and their interactions with As. In the coastal region of Bengal deltaic plain of Eastern India, the As-contaminated groundwater is frequently used for irrigation purposes resulting in an elevated level of soil As in agricultural lands. The health hazards associated with As necessitates development of cost-effective remediation strategies to reclaim contaminated agricultural lands. Among the available technologies developed in recent times, bioremediation using bacteria has been found to be the most propitious. In this study, two As-resistant halophilic bacterial strains Kocuria flava AB402 and Bacillus vietnamensis AB403 were isolated, identified and characterized from mangrove rhizosphere of Sundarban. The isolates, AB402 and AB403, could tolerate 35mM and 20mM of arsenite, respectively. The effect of As on the exopolysaccharide (EPS) synthesis, biofilm formation, and root association was evaluated for both the bacterial strains. Arsenic adsorption on the cell surfaces and intracellular accumulation in both the bacterial strains were promising under culture conditions. Moreover, both the strains when used as inoculum, not only promoted the growth of rice seedlings but also decreased As uptake and accumulation in plants.
Collapse
Affiliation(s)
- Ivy Mallick
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Chandrima Bhattacharyya
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Shayantan Mukherji
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | - Dhritiman Dey
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India
| | | | | | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, P1/12, C.I.T Road, Scheme VIIM, Kolkata 700054, West Bengal, India.
| |
Collapse
|
13
|
Chandrakar V, Parkhey S, Dubey A, Keshavkant S. Modulation in arsenic-induced lipid catabolism in Glycine max using proline, 24-epibrassinolide and diphenylene iodonium. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Hwang SG, Chapagain S, Lee JW, Han AR, Jang CS. Genome-wide transcriptome profiling of genes associated with arsenate toxicity in an arsenic-tolerant rice mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:40-51. [PMID: 28987861 DOI: 10.1016/j.plaphy.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 05/07/2023]
Abstract
The presence of arsenic (As) in polluted environments, such as ground water, affects the accumulation of As in rice grains and causes a serious threat to human health. However, the precise molecular regulations related to As toxicity and tolerance in rice remain largely unknown. In the present study, we developed an arsenic-tolerant type 1 (ATT1) rice mutant by γ-irradiation mutagenesis and performed genome-wide transcriptome analysis for the characterization of As-responsive genes. Toxicity inhibited transcriptional regulation of putative genes involved in photosynthesis, mitochondrial electron transport, and lipid biosynthesis metabolism in wild-type (WT) and ATT1 rice mutant. However, many cysteine biosynthesis-related genes were significantly upregulated in both plants. We also attempted to elucidate the putative genes associated with As tolerance by comparing transcriptomes and identified ATT1-specific transcriptional regulation of genes involved in stress and RNA-protein synthesis. This analysis identified 50 genes that had DNA polymorphisms in upstream regions that differed from those in the exon regions, which suggested that genetic variations in the upstream regions might enhance As tolerance in the mutants. Therefore, the expression profiles of the genes evaluated in this study may improve understanding of the functional roles of As-related genes in response to As tolerance mechanisms and could potentially be used in molecular breeding to limit As accumulation in rice grains.
Collapse
Affiliation(s)
- Sun-Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Sandeep Chapagain
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Jae Woo Lee
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - A-Reum Han
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Sciences, Kangwon National University, Chuncheon 200-713, South Korea.
| |
Collapse
|
15
|
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of Plant Proteins to Heavy Metal Stress-A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1492. [PMID: 28928754 PMCID: PMC5591867 DOI: 10.3389/fpls.2017.01492] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Horticulture, Zhejiang UniversityHangzhou, China
- Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Xian-Yao Chu
- Zhejiang Institute of Geological Survey, Geological Research Center for Agricultural Applications, China Geological SurveyBeijing, China
| | | | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang UniversityHangzhou, China
| |
Collapse
|
16
|
Awasthi S, Chauhan R, Srivastava S, Tripathi RD. The Journey of Arsenic from Soil to Grain in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1007. [PMID: 28676805 PMCID: PMC5476935 DOI: 10.3389/fpls.2017.01007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/26/2017] [Indexed: 05/04/2023]
Abstract
Arsenic (As) is a non-essential toxic metalloid whose elevated concentration in rice grains is a serious issue both for rice yield and quality, and for human health. The rice-As interactions, hence, have been studied extensively in past few decades. A deep understanding of factors influencing As uptake and transport from soil to grains can be helpful to tackle this issue so as to minimize grain As levels. As uptake at the root surface by rice plants depends on factors like iron plaque and radial oxygen loss. There is involvement of a number of transporters viz., phosphate transporters and aquaglyceroporins in the uptake and transport of different As species and in the movement to subcellular compartments. These processes are also affected by sulfur availability and consequently on the level of thiol (-SH)-containing As binding peptides viz., glutathione (GSH) and phytochelatins (PCs). Further, the role of phloem in As movement to the grains is also suggested. This review presents a detailed map of journey of As from soil to the grains. The implications for the utilization of available knowledge in minimizing As in rice grains are presented.
Collapse
Affiliation(s)
- Surabhi Awasthi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
| | - Reshu Chauhan
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
| | - Sudhakar Srivastava
- Institute of Environment and Sustanaible Development, Banaras Hindu UniversityVaranasi, India
| | - Rudra D. Tripathi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial ResearchLucknow, India
| |
Collapse
|
17
|
Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D. Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 2017; 7:3592. [PMID: 28620222 PMCID: PMC5472597 DOI: 10.1038/s41598-017-03923-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Arsenic (As) contamination in rice leads to yield decline and causes carcinogenic risk to human health. Although the role of nitric oxide (NO) in reducing As toxicity is known, NO-mediated genetic modulation in the plant during arsenic toxicity has not yet been established. We analyzed the key components of NO metabolism and the correlations between NO interaction and arsenic stress using rice as a relevant model plant. Illumina sequencing was used to investigate the NO-mediated genome-wide temporal transcriptomic modulation in rice root upon AsIII exposure during 12 days (d) of the growth period. Sodium nitroprusside (SNP) was used as NO donor. SNP supplementation resulted in marked decrease in ROS, cell death and As accumulation during AsIII stress. NO was found to modulate metal transporters particularly NIP, NRAMP, ABC and iron transporters, stress related genes such as CytP450, GSTs, GRXs, TFs, amino acid, hormone(s), signaling and secondary metabolism genes involved in As detoxification. We detected NO-mediated change in jasmonic acid (JA) content during AsIII stress. The study infers that NO reduces AsIII toxicity through modulating regulatory networks involved in As detoxification and JA biosynthesis.
Collapse
Affiliation(s)
- Pradyumna Kumar Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Yuvraj Indoliya
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Abhisekh Singh Chauhan
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India
| | - Surendra Pratap Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Amit Pal Singh
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Sanjay Dwivedi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Rudra Deo Tripathi
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| | - Debasis Chakrabarty
- Council of Scientific and Industrial Research - National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.
| |
Collapse
|
18
|
Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:266-77. [PMID: 27061371 DOI: 10.1016/j.plaphy.2016.03.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 05/21/2023]
Abstract
The arsenic (As) is a toxic element causing major health concern worldwide. Arsenate stress caused no significant reduction in growth parameters and shoot electrolyte leakage but showed increased root arsenate reductase activity along with relatively lower root As content and shoot translocation rate in As-tolerant BRRI 33 than in As-sensitive BRRI 51. It indicates that As inhibition and tolerance mechanisms are driven by root responses. Interestingly, As stress showed consistent decrease in phosphate content and expression of phosphate transporters (OsPT8, OsPT4, OsPHO1;2) under both high and low phosphate conditions in roots of BRRI 33, suggesting that limiting phosphate transport mainly mediated by OsPHO1;2 directs less As accumulation in BRRI 33. Further, BRRI 33 showed simultaneous increase in OsPCS1 (phytochelatin synthase) expression and phytochelatins (PCs) content in roots under As exposure supporting the hypothesis that root As sequestration acts as 'firewall system' in limiting As translocation in shoots. Furthermore, increased CAT, POD, SOD, GR, along with elevated glutathione, methionine, cysteine and proline suggests that strong antioxidant defense plays integral part to As tolerance in BRRI 33. Again, BRRI 33 self-grafts and plants having BRRI 33 rootstock combined with BRRI 51 scion had no adverse effect on morphological parameters but showed reduced As translocation rate, increased root arsenate reductase activity, shoot PC synthesis and root OsPHO1;2 expression due to As stress. It confirms that signal driving As tolerance mechanisms is generated in the roots. These findings can be implemented for As detoxification and As-free transgenic rice production for health safety.
Collapse
Affiliation(s)
- Most Champa Begum
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | | | - Monirul Islam
- Department of Botany, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Ruhul Amin
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Laboratories, Rajshahi 6206, Bangladesh
| | | | | |
Collapse
|
19
|
Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD. Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:241-51. [PMID: 26073379 DOI: 10.1016/j.jhazmat.2015.06.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 05/06/2023]
Abstract
Arsenic (As) contamination is a global issue, with South Asia and South East Asia being worst affected. Rice is major crop in these regions and can potentially pose serious health risks due to its known As accumulation potential. Sulfur (S) is an essential macronutrient and a vital element to combat As toxicity. The aim of this study was to investigate the role of S with regards to As toxicity in rice under different S regimes. To achieve this aim, plants were stressed with AsIII and AsV under three different S conditions (low sulfur (0.5mM), normal sulfur (3.5mM) and high sulfur (5.0mM)). High S treatment resulted in increased root As accumulation, likely due to As complexation through enhanced synthesis of thiolic ligands, such as non-protein thiols and phytochelatins, which restricted As translocation to the shoots. Enzymes of S assimilatory pathways and downstream thiolic metabolites were up-regulated with increased S supplementation; however, to maintain optimum concentrations of S, transcript levels of sulfate transporters were down-regulated at high S concentration. Oxidative stress generated due to As was counterbalanced in the high S treatment by reducing hydrogen peroxide concentration and enhancing antioxidant enzyme activities. The high S concentration resulted in reduced transcript levels of Lsi2 (a known transporter of As). This reduction in Lsi2 expression level is a probable reason for low shoot As accumulation, which has potential implications in reducing the risk of As in the food chain.
Collapse
Affiliation(s)
- Garima Dixit
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amit Pal Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amit Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Pradyumna Kumar Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Smita Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sanjay Dwivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Vivek Pandey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Gareth John Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, Paige Laboratory Room 318 (Office) and Room 320 (Lab), 161Holdsworth Way, University of Massachusetts, Amherst, MA 01003, USA
| | - Rudra Deo Tripathi
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|