1
|
Liu C, Du S, Wei A, Cheng Z, Meng H, Han Y. Hybrid Prediction in Horticulture Crop Breeding: Progress and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:2790. [PMID: 39409660 PMCID: PMC11479247 DOI: 10.3390/plants13192790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024]
Abstract
In the context of rapidly increasing population and diversified market demands, the steady improvement of yield and quality in horticultural crops has become an urgent challenge that modern breeding efforts must tackle. Heterosis, a pivotal theoretical foundation for plant breeding, facilitates the creation of superior hybrids through crossbreeding and selection among a variety of parents. However, the vast number of potential hybrids presents a significant challenge for breeders in efficiently predicting and selecting the most promising candidates. The development and refinement of effective hybrid prediction methods have long been central to research in this field. This article systematically reviews the advancements in hybrid prediction for horticultural crops, including the roles of marker-assisted breeding and genomic prediction in phenotypic forecasting. It also underscores the limitations of some predictors, like genetic distance, which do not consistently offer reliable hybrid predictions. Looking ahead, it explores the integration of phenomics with genomic prediction technologies as a means to elevate prediction accuracy within actual breeding programs.
Collapse
Affiliation(s)
- Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Shengli Du
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| | - Zhihui Cheng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Huanwen Meng
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.L.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin 300192, China
| |
Collapse
|
2
|
Weber SE, Roscher-Ehrig L, Kox T, Abbadi A, Stahl A, Snowdon RJ. Genomic prediction in Brassica napus: evaluating the benefit of imputed whole-genome sequencing data. Genome 2024; 67:210-222. [PMID: 38708850 DOI: 10.1139/gen-2023-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Advances in sequencing technology allow whole plant genomes to be sequenced with high quality. Combining genotypic and phenotypic data in genomic prediction helps breeders to select crossing partners in partially phenotyped populations. In plant breeding programs, the cost of sequencing entire breeding populations still exceeds available genotyping budgets. Hence, the method for genotyping is still mainly single nucleotide polymorphism (SNP) arrays; however, arrays are unable to assess the entire genome- and population-wide diversity. A compromise involves genotyping the entire population using an SNP array and a subset of the population with whole-genome sequencing. Both datasets can then be used to impute markers from whole-genome sequencing onto the entire population. Here, we evaluate whether imputation of whole-genome sequencing data enhances genomic predictions, using data from a nested association mapping population of rapeseed (Brassica napus). Employing two cross-validation schemes that mimic scenarios for the prediction of close and distant relatives, we show that imputed marker data do not significantly improve prediction accuracy, likely due to redundancy in relationship estimates and imputation errors. In simulation studies, only small improvements were observed, further corroborating the findings. We conclude that SNP arrays are already equipped with the information that is added by imputation through relationship and linkage disequilibrium.
Collapse
Affiliation(s)
- Sven E Weber
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Lennard Roscher-Ehrig
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | | | | | - Andreas Stahl
- Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Song J, Liu Y, Guo R, Pacheco A, Muñoz-Zavala C, Song W, Wang H, Cao S, Hu G, Zheng H, Dhliwayo T, San Vicente F, Prasanna BM, Wang C, Zhang X. Exploiting genomic tools for genetic dissection and improving the resistance to Fusarium stalk rot in tropical maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:109. [PMID: 38649662 DOI: 10.1007/s00122-024-04597-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
KEY MESSAGE A stable genomic region conferring FSR resistance at ~250 Mb on chromosome 1 was identified by GWAS. Genomic prediction has the potential to improve FSR resistance. Fusarium stalk rot (FSR) is a global destructive disease in maize; the efficiency of phenotypic selection for improving FSR resistance was low. Novel genomic tools of genome-wide association study (GWAS) and genomic prediction (GP) provide an opportunity for genetic dissection and improving FSR resistance. In this study, GWAS and GP analyses were performed on 562 tropical maize inbred lines consisting of two populations. In total, 15 SNPs significantly associated with FSR resistance were identified across two populations and the combinedPOP consisting of all 562 inbred lines, with the P-values ranging from 1.99 × 10-7 to 8.27 × 10-13, and the phenotypic variance explained (PVE) values ranging from 0.94 to 8.30%. The genetic effects of the 15 favorable alleles ranged from -4.29 to -14.21% of the FSR severity. One stable genomic region at ~ 250 Mb on chromosome 1 was detected across all populations, and the PVE values of the SNPs detected in this region ranged from 2.16 to 5.18%. Prediction accuracies of FSR severity estimated with the genome-wide SNPs were moderate and ranged from 0.29 to 0.51. By incorporating genotype-by-environment interaction, prediction accuracies were improved between 0.36 and 0.55 in different breeding scenarios. Considering both the genome coverage and the threshold of the P-value of SNPs to select a subset of molecular markers further improved the prediction accuracies. These findings extend the knowledge of exploiting genomic tools for genetic dissection and improving FSR resistance in tropical maize.
Collapse
Affiliation(s)
- Junqiao Song
- Henan University of Science and Technology, Luoyang, 471000, Henan, China
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yubo Liu
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 200063, China
| | - Rui Guo
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Angela Pacheco
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Carlos Muñoz-Zavala
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Wei Song
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, Hebei, China
| | - Hui Wang
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 200063, China
| | - Shiliang Cao
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150070, Heilongjiang, China
| | - Guanghui Hu
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
- Institute of Maize Research, Heilongjiang Academy of Agricultural Sciences, Harbin, 150070, Heilongjiang, China
| | - Hongjian Zheng
- CIMMYT-China Specialty Maize Research Center, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 200063, China
| | - Thanda Dhliwayo
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Felix San Vicente
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P. O. Box 1041, Nairobi, 00621, Kenya
| | - Chunping Wang
- Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), 56237, Texcoco, Mexico.
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), CIMMYT-China Office, 12 Zhongguancun South Street, Beijing, 100081, China.
- Nanfan Research Institute, CAAS, Sanya, 572024, Hainan, China.
| |
Collapse
|
4
|
Weber SE, Chawla HS, Ehrig L, Hickey LT, Frisch M, Snowdon RJ. Accurate prediction of quantitative traits with failed SNP calls in canola and maize. FRONTIERS IN PLANT SCIENCE 2023; 14:1221750. [PMID: 37936929 PMCID: PMC10627008 DOI: 10.3389/fpls.2023.1221750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023]
Abstract
In modern plant breeding, genomic selection is becoming the gold standard to select superior genotypes in large breeding populations that are only partially phenotyped. Many breeding programs commonly rely on single-nucleotide polymorphism (SNP) markers to capture genome-wide data for selection candidates. For this purpose, SNP arrays with moderate to high marker density represent a robust and cost-effective tool to generate reproducible, easy-to-handle, high-throughput genotype data from large-scale breeding populations. However, SNP arrays are prone to technical errors that lead to failed allele calls. To overcome this problem, failed calls are often imputed, based on the assumption that failed SNP calls are purely technical. However, this ignores the biological causes for failed calls-for example: deletions-and there is increasing evidence that gene presence-absence and other kinds of genome structural variants can play a role in phenotypic expression. Because deletions are frequently not in linkage disequilibrium with their flanking SNPs, permutation of missing SNP calls can potentially obscure valuable marker-trait associations. In this study, we analyze published datasets for canola and maize using four parametric and two machine learning models and demonstrate that failed allele calls in genomic prediction are highly predictive for important agronomic traits. We present two statistical pipelines, based on population structure and linkage disequilibrium, that enable the filtering of failed SNP calls that are likely caused by biological reasons. For the population and trait examined, prediction accuracy based on these filtered failed allele calls was competitive to standard SNP-based prediction, underlying the potential value of missing data in genomic prediction approaches. The combination of SNPs with all failed allele calls or the filtered allele calls did not outperform predictions with only SNP-based prediction due to redundancy in genomic relationship estimates.
Collapse
Affiliation(s)
- Sven E. Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | | | - Lennard Ehrig
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Lee T. Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Matthias Frisch
- Department of Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| |
Collapse
|
5
|
Weber SE, Frisch M, Snowdon RJ, Voss-Fels KP. Haplotype blocks for genomic prediction: a comparative evaluation in multiple crop datasets. FRONTIERS IN PLANT SCIENCE 2023; 14:1217589. [PMID: 37731980 PMCID: PMC10507710 DOI: 10.3389/fpls.2023.1217589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
In modern plant breeding, genomic selection is becoming the gold standard for selection of superior genotypes. The basis for genomic prediction models is a set of phenotyped lines along with their genotypic profile. With high marker density and linkage disequilibrium (LD) between markers, genotype data in breeding populations tends to exhibit considerable redundancy. Therefore, interest is growing in the use of haplotype blocks to overcome redundancy by summarizing co-inherited features. Moreover, haplotype blocks can help to capture local epistasis caused by interacting loci. Here, we compared genomic prediction methods that either used single SNPs or haplotype blocks with regards to their prediction accuracy for important traits in crop datasets. We used four published datasets from canola, maize, wheat and soybean. Different approaches to construct haplotype blocks were compared, including blocks based on LD, physical distance, number of adjacent markers and the algorithms implemented in the software "Haploview" and "HaploBlocker". The tested prediction methods included Genomic Best Linear Unbiased Prediction (GBLUP), Extended GBLUP to account for additive by additive epistasis (EGBLUP), Bayesian LASSO and Reproducing Kernel Hilbert Space (RKHS) regression. We found improved prediction accuracy in some traits when using haplotype blocks compared to SNP-based predictions, however the magnitude of improvement was very trait- and model-specific. Especially in settings with low marker density, haplotype blocks can improve genomic prediction accuracy. In most cases, physically large haplotype blocks yielded a strong decrease in prediction accuracy. Especially when prediction accuracy varies greatly across different prediction models, prediction based on haplotype blocks can improve prediction accuracy of underperforming models. However, there is no "best" method to build haplotype blocks, since prediction accuracy varied considerably across methods and traits. Hence, criteria used to define haplotype blocks should not be viewed as fixed biological parameters, but rather as hyperparameters that need to be adjusted for every dataset.
Collapse
Affiliation(s)
- Sven E. Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Matthias Frisch
- Department of Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Kai P. Voss-Fels
- Institute for Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
6
|
Alemu A, Batista L, Singh PK, Ceplitis A, Chawade A. Haplotype-tagged SNPs improve genomic prediction accuracy for Fusarium head blight resistance and yield-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:92. [PMID: 37009920 PMCID: PMC10068637 DOI: 10.1007/s00122-023-04352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Linkage disequilibrium (LD)-based haplotyping with subsequent SNP tagging improved the genomic prediction accuracy up to 0.07 and 0.092 for Fusarium head blight resistance and spike width, respectively, across six different models. Genomic prediction is a powerful tool to enhance genetic gain in plant breeding. However, the method is accompanied by various complications leading to low prediction accuracy. One of the major challenges arises from the complex dimensionality of marker data. To overcome this issue, we applied two pre-selection methods for SNP markers viz. LD-based haplotype-tagging and GWAS-based trait-linked marker identification. Six different models were tested with preselected SNPs to predict the genomic estimated breeding values (GEBVs) of four traits measured in 419 winter wheat genotypes. Ten different sets of haplotype-tagged SNPs were selected by adjusting the level of LD thresholds. In addition, various sets of trait-linked SNPs were identified with different scenarios from the training-test combined and only from the training populations. The BRR and RR-BLUP models developed from haplotype-tagged SNPs had a higher prediction accuracy for FHB and SPW by 0.07 and 0.092, respectively, compared to the corresponding models developed without marker pre-selection. The highest prediction accuracy for SPW and FHB was achieved with tagged SNPs pruned at weak LD thresholds (r2 < 0.5), while stringent LD was required for spike length (SPL) and flag leaf area (FLA). Trait-linked SNPs identified only from training populations failed to improve the prediction accuracy of the four studied traits. Pre-selection of SNPs via LD-based haplotype-tagging could play a vital role in optimizing genomic selection and reducing genotyping costs. Furthermore, the method could pave the way for developing low-cost genotyping methods through customized genotyping platforms targeting key SNP markers tagged to essential haplotype blocks.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Pawan K Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
7
|
Gritsenko D, Daurova A, Pozharskiy A, Nizamdinova G, Khusnitdinova M, Sapakhova Z, Daurov D, Zhapar K, Shamekova M, Kalendar R, Zhambakin K. Investigation of mutation load and rate in androgenic mutant lines of rapeseed in early generations evaluated by high-density SNP genotyping. Heliyon 2023; 9:e14065. [PMID: 36923873 PMCID: PMC10008989 DOI: 10.1016/j.heliyon.2023.e14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Oilseed rape (Brassica napus) is an important oil crop distributed worldwide with a broad adaptation to different climate zones. The cultivation of rapeseed is one of the most commercially viable areas in crop production. Altogether 269,093 ha of rapeseed are cultivated in Kazakhstan. However, all rapeseed cultivars and lines cultivated in Kazakhstan on an industrial scale predominantly belong to the foreign breeding system. Therefore, the formation of a diverse genetic pool for breeding new, highly productive cultivars adopted to the environmental conditions of Kazakhstan is the most important goal in country selection programs. In this work, we have developed ethyl methanesulfonate (EMS) doubled haploid mutant lines from plant material of cultivars 'Galant' and 'Kris' to broad diversity of rapeseed in Kazakhstan. The development of mutant lines was performed via embryo callusogenesis or embryo secondary callusogenesis. Mutants were investigated by Brassica90k SNP array, and we were able to locate 24,657 SNPs from 26,256 SNPs filtered by quality control on the genome assembly (Bra_napus_v2.0). Only 18,831 SNPs were assigned to the available annotated genomic features. The most frequent combination of mutations according to reference controls was adenine with guanine (70%), followed by adenine with cytosine (28.8%), and only minor fractions were cytosine with guanine (0.54%) and adenine with thymine (0.59%). We revealed 5606.27 markers for 'Kris' and 4893.01 markers for 'Galant' by mutation occurrence. Most mutation occurrences were occupied by double mutations where progenitors and offspring were homozygous by different alleles, enabling the selection of appropriate genotypes in a short period of time. Regarding the biological impact of mutations, 861 variants were reported as having a low predicted impact, with 1042 as moderate and 121 as high; all others were reported as belonging to non-coding sequences, intergenic regions, and other features with the effect of modifiers. Protein encoding genes, such as wall-associated receptor kinase-like protein 5, TAO1-like disease resistance protein, receptor-like protein 12, and At5g42460-like F-box protein, contained more than two variable positions, with an impact on their biological activities. Nevertheless, the obtained mutant lines were able to survive and reproduce. Mutant lines, which include moderate and high impact mutations in encoding genes, are a perfect pool not only for MAS but also for the investigation of the fundamental basis of protein functions. For the first time, a collection of mutant lines was developed in our country to improve the selection of local rapeseed cultivars.
Collapse
Affiliation(s)
- Dilyara Gritsenko
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ainash Daurova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Alexandr Pozharskiy
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Gulnaz Nizamdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Marina Khusnitdinova
- Dept. of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Zagipa Sapakhova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Dias Daurov
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kuanysh Zhapar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Malika Shamekova
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Ruslan Kalendar
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| | - Kabyl Zhambakin
- Dept. of Breeding and Biotechnology, Institute of Plant Biology and Biotechnology, Almaty, 050040, Kazakhstan
| |
Collapse
|
8
|
Cerioli T, Hernandez CO, Angira B, McCouch SR, Robbins KR, Famoso AN. Development and validation of an optimized marker set for genomic selection in southern U.S. rice breeding programs. THE PLANT GENOME 2022; 15:e20219. [PMID: 35611838 DOI: 10.1002/tpg2.20219] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The potential of genomic selection (GS) to increase the efficiency of breeding programs has been clearly demonstrated; however, the implementation of GS in rice (Oryza sativa L.) breeding programs has been limited. In recent years, efforts have begun to work toward implementing GS into the Louisiana State University (LSU) Agricultural Center rice breeding program. One of the first steps for successful GS implementation is to establish a suitable marker set for the target germplasm and a reliable, cost-effective genotyping platform capable of providing informative marker data with an adequate turnaround time. The objective of this study was to develop a marker set for routine GS and demonstrate its effectiveness in southern U.S. rice germplasm. The utility of the resulting marker set, the LSU500, for GS applications was demonstrated using four years of breeding data across 7,607 experimental lines and four elite biparental populations. The predictive ability of GS ranged from 0.13 to 0.78 for key traits across different market classes and yield trials. Comparisons between phenotypic selection and GS within biparental populations demonstrates similar performance of GS compared with phenotypic selection in predicting future performance. The prediction accuracies obtained with the LSU500 marker set demonstrates the utility of this marker set for cost-effective GS applications in southern U.S. rice breeding programs. The LSU500 marker set has been established through the genotyping service provider Agriplex Genomics, and in the future, it will undergo improvements to reduce the cost and increase the accuracy of GS.
Collapse
Affiliation(s)
- Tommaso Cerioli
- H. Rouse Caffey Rice Research Station, Louisiana State Univ. Agricultural Center, Rayne, LA, 70578, USA
| | - Christopher O Hernandez
- H. Rouse Caffey Rice Research Station, Louisiana State Univ. Agricultural Center, Rayne, LA, 70578, USA
| | - Brijesh Angira
- H. Rouse Caffey Rice Research Station, Louisiana State Univ. Agricultural Center, Rayne, LA, 70578, USA
| | - Susan R McCouch
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell Univ., Ithaca, NY, 14850, USA
- Cornell Institute for Digital Agriculture, Cornell Univ., Ithaca, NY, 14850, USA
| | - Kelly R Robbins
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell Univ., Ithaca, NY, 14850, USA
| | - Adam N Famoso
- H. Rouse Caffey Rice Research Station, Louisiana State Univ. Agricultural Center, Rayne, LA, 70578, USA
| |
Collapse
|
9
|
Shen F, Bianco L, Wu B, Tian Z, Wang Y, Wu T, Xu X, Han Z, Velasco R, Fontana P, Zhang X. A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. J Adv Res 2022; 42:149-162. [PMID: 36513410 PMCID: PMC9788957 DOI: 10.1016/j.jare.2022.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Genomic heterozygosity, self-incompatibility, and rich-in somatic mutations hinder the molecular breeding efficiency of outcrossing plants. OBJECTIVES We attempted to develop an efficient integrated strategy to identify quantitative trait loci (QTLs) and trait-associated genes, to develop gene markers, and to construct genomics-assisted prediction (GAP) modes. METHODS A novel protocol, bulked segregant analysis tool for out-crossing species (BSATOS), is presented here, which is characterized by taking full advantage of all segregation patterns (including AB × AB markers) and haplotype information. To verify the effectiveness of the protocol in dealing with the complex traits of outbreeding species, three apple cross populations with 9,654 individuals were adopted. RESULTS By using BSATOS, 90, 60, and 77 significant QTLs were identified successfully and candidate genes were predicted for apple fruit weight (FW), fruit ripening date (FRD), and fruit soluble solid content (SSC), respectively. The gene-based markers were developed and genotyped for 1,396 individuals in a training population, including 145 Malus accessions and 1,251 F1 plants of the three full-sib families. GAP models were trained using marker genotype effect estimates of the training population. The prediction accuracy was 0.7658, 0.6455, and 0.3758 for FW, FRD, and SSC, respectively. CONCLUSION The BSATOS and GAP models provided a convenient and efficient methodology for candidate gene mining and molecular breeding in out-crossing plant species. The BSATOS pipeline can be freely downloaded from: https://github.com/maypoleflyn/BSATOS.
Collapse
Affiliation(s)
- Fei Shen
- College of Horticulture, China Agricultural University, Beijing 100193, China,Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Luca Bianco
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy
| | - Bei Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, CREA, Conegliano, Italy
| | - Paolo Fontana
- Research and Innovation Center, Edmund Mach Foundation, 38010 S. Michele all’Adige, Italy,Corresponding authors.
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China,Corresponding authors.
| |
Collapse
|
10
|
Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S. Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate-Resilient Crops. Front Genet 2022; 13:832153. [PMID: 35222548 PMCID: PMC8864149 DOI: 10.3389/fgene.2022.832153] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Since the inception of the theory and conceptual framework of genomic selection (GS), extensive research has been done on evaluating its efficiency for utilization in crop improvement. Though, the marker-assisted selection has proven its potential for improvement of qualitative traits controlled by one to few genes with large effects. Its role in improving quantitative traits controlled by several genes with small effects is limited. In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained from genome-wide markers to choose candidates for the next breeding cycle is a powerful approach to improve quantitative traits. In the last two decades, GS has been widely adopted in animal breeding programs globally because of its potential to improve selection accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In addition, given the promising initial evaluation outcomes of GS for the improvement of yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and rice, prospects of integrating it in breeding crops are also being explored. Improved statistical models that leverage the genomic information to increase the prediction accuracies are critical for the effectiveness of GS-enabled breeding programs. Study on genetic architecture under drought and heat stress helps in developing production markers that can significantly accelerate the development of stress-resilient crop varieties through GS. This review focuses on the transition from traditional selection methods to GS, underlying statistical methods and tools used for this purpose, current status of GS studies in crop plants, and perspectives for its successful implementation in the development of climate-resilient crops.
Collapse
Affiliation(s)
- Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anuj Kumar
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | | | | | - D C Mishra
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sundeep Kumar
- ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
11
|
Sandhu KS, Merrick LF, Sankaran S, Zhang Z, Carter AH. Prospectus of Genomic Selection and Phenomics in Cereal, Legume and Oilseed Breeding Programs. Front Genet 2022. [PMCID: PMC8814369 DOI: 10.3389/fgene.2021.829131] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The last decade witnessed an unprecedented increase in the adoption of genomic selection (GS) and phenomics tools in plant breeding programs, especially in major cereal crops. GS has demonstrated the potential for selecting superior genotypes with high precision and accelerating the breeding cycle. Phenomics is a rapidly advancing domain to alleviate phenotyping bottlenecks and explores new large-scale phenotyping and data acquisition methods. In this review, we discuss the lesson learned from GS and phenomics in six self-pollinated crops, primarily focusing on rice, wheat, soybean, common bean, chickpea, and groundnut, and their implementation schemes are discussed after assessing their impact in the breeding programs. Here, the status of the adoption of genomics and phenomics is provided for those crops, with a complete GS overview. GS’s progress until 2020 is discussed in detail, and relevant information and links to the source codes are provided for implementing this technology into plant breeding programs, with most of the examples from wheat breeding programs. Detailed information about various phenotyping tools is provided to strengthen the field of phenomics for a plant breeder in the coming years. Finally, we highlight the benefits of merging genomic selection, phenomics, and machine and deep learning that have resulted in extraordinary results during recent years in wheat, rice, and soybean. Hence, there is a potential for adopting these technologies into crops like the common bean, chickpea, and groundnut. The adoption of phenomics and GS into different breeding programs will accelerate genetic gain that would create an impact on food security, realizing the need to feed an ever-growing population.
Collapse
Affiliation(s)
- Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- *Correspondence: Karansher S. Sandhu,
| | - Lance F. Merrick
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sindhuja Sankaran
- Department of Biological System Engineering, Washington State University, Pullman, WA, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
12
|
Tilhou NW, Casler MD. Subsampling and DNA pooling can increase gains through genomic selection in switchgrass. THE PLANT GENOME 2021; 14:e20149. [PMID: 34626166 DOI: 10.1002/tpg2.20149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Genomic selection (GS) can accelerate breeding cycles in perennial crops such as the bioenergy grass switchgrass (Panicum virgatum L.). The sequencing costs of GS can be reduced by pooling DNA samples in the training population (TP), only sequencing TP phenotypic outliers, or pooling candidate population (CP) samples. These strategies were simulated for two traits (spring vigor and anthesis date) in three breeding populations. Sequencing only the outlier 50% of the TP phenotype distribution resulted in a penalty of <5% of the predictive ability, measured using cross-validation. Predictive ability also decreased when sequencing progressively fewer TP DNA pools, but TPs constructed from only two phenotypically contrasting DNA samples retained a mean of >80% predictive ability relative to individual TP sequencing. Novel group testing methods allowed greater than one CP individual to be screened per sequenced DNA sample but resulted in a predictive ability penalty. To determine the impact of reduced sequencing, genetic gain was calculated for seven GS scenarios with variable sequencing budgets. Reduced TP sequencing and most CP pooling methods were superior to individual sequence-based GS when sequencing resources were restricted (2,000 DNA samples per 5-yr cycle). Only one scenario was superior to individual sequencing when sequencing budgets were large (8,000 DNA samples per 5-yr cycle). This study highlights multiple routes for reduced sequencing costs in GS.
Collapse
Affiliation(s)
- Neal Wepking Tilhou
- Department of Agronomy, University of Wisconsin, 1575 Linden Dr, Madison, WI, 53706, USA
| | - Michael D Casler
- U.S. Dairy Forage Research Center, USDA-ARS, 1925 Linden Dr, Madison, WI, 53706-1108, USA
| |
Collapse
|
13
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
14
|
Amas J, Anderson R, Edwards D, Cowling W, Batley J. Status and advances in mining for blackleg (Leptosphaeria maculans) quantitative resistance (QR) in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3123-3145. [PMID: 34104999 PMCID: PMC8440254 DOI: 10.1007/s00122-021-03877-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/29/2021] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE Quantitative resistance (QR) loci discovered through genetic and genomic analyses are abundant in the Brassica napus genome, providing an opportunity for their utilization in enhancing blackleg resistance. Quantitative resistance (QR) has long been utilized to manage blackleg in Brassica napus (canola, oilseed rape), even before major resistance genes (R-genes) were extensively explored in breeding programmes. In contrast to R-gene-mediated qualitative resistance, QR reduces blackleg symptoms rather than completely eliminating the disease. As a polygenic trait, QR is controlled by numerous genes with modest effects, which exerts less pressure on the pathogen to evolve; hence, its effectiveness is more durable compared to R-gene-mediated resistance. Furthermore, combining QR with major R-genes has been shown to enhance resistance against diseases in important crops, including oilseed rape. For these reasons, there has been a renewed interest among breeders in utilizing QR in crop improvement. However, the mechanisms governing QR are largely unknown, limiting its deployment. Advances in genomics are facilitating the dissection of the genetic and molecular underpinnings of QR, resulting in the discovery of several loci and genes that can be potentially deployed to enhance blackleg resistance. Here, we summarize the efforts undertaken to identify blackleg QR loci in oilseed rape using linkage and association analysis. We update the knowledge on the possible mechanisms governing QR and the advances in searching for the underlying genes. Lastly, we lay out strategies to accelerate the genetic improvement of blackleg QR in oilseed rape using improved phenotyping approaches and genomic prediction tools.
Collapse
Affiliation(s)
- Junrey Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Robyn Anderson
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| | - Wallace Cowling
- School of Agriculture and Environment and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001 Australia
| |
Collapse
|
15
|
Yu S, Bekkering CS, Tian L. Metabolic engineering in woody plants: challenges, advances, and opportunities. ABIOTECH 2021; 2:299-313. [PMID: 36303882 PMCID: PMC9590576 DOI: 10.1007/s42994-021-00054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/06/2021] [Indexed: 06/16/2023]
Abstract
Woody plant species represent an invaluable reserve of biochemical diversity to which metabolic engineering can be applied to satisfy the need for commodity and specialty chemicals, pharmaceuticals, and renewable energy. Woody plants are particularly promising for this application due to their low input needs, high biomass, and immeasurable ecosystem services. However, existing challenges have hindered their widespread adoption in metabolic engineering efforts, such as long generation times, large and highly heterozygous genomes, and difficulties in transformation and regeneration. Recent advances in omics approaches, systems biology modeling, and plant transformation and regeneration methods provide effective approaches in overcoming these outstanding challenges. Promises brought by developments in this space are steadily opening the door to widespread metabolic engineering of woody plants to meet the global need for a wide range of sustainably sourced chemicals and materials.
Collapse
Affiliation(s)
- Shu Yu
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Cody S. Bekkering
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| | - Li Tian
- Department of Plant Sciences, Mail Stop 3, University of California, Davis, CA 95616 USA
| |
Collapse
|
16
|
Impact of Marker Pruning Strategies Based on Different Measurements of Marker Distance on Genomic Prediction in Dairy Cattle. Animals (Basel) 2021; 11:ani11071992. [PMID: 34359120 PMCID: PMC8300388 DOI: 10.3390/ani11071992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The usefulness of genomic prediction (GP) has been widely proofed by breeding analysis in livestock, plants and aquatic populations. It is well known that ‘marker density’ is a critical factor that affects the accuracy of GP, however, how to properly measure ‘marker density’ in GP is yet to be determined. With population-level whole-genome sequence data or high-density single nucleotide polymorphism (SNP) data available, this question seems to be answered more convincingly. In this study, we investigated and discussed the impact of four ‘marker density’ measures that reflect genetic or physical distances between SNPs on the accuracy of GP in a Germany Holstein dairy cattle population. Our results showed that the degree of variation of physical distance between adjacent SNPs had significant effects on the accuracy of GP, while the genetic distance between SNPs had no relationship with the accuracy of GP. Therefore, for studies based on high-density SNP data, the default strategy of pruning SNPs based on genetic distance is detrimental to heritability estimation and genomic prediction. The results extended the communities knowledge of ‘marker density’ and provided useful suggestions for the application and research on genome prediction. Abstract With the availability of high-density single-nucleotide polymorphism (SNP) data and the development of genotype imputation methods, high-density panel-based genomic prediction (GP) has become possible in livestock breeding. It is generally considered that the genomic estimated breeding value (GEBV) accuracy increases with the marker density, while studies have shown that the GEBV accuracy does not increase or even decrease when high-density panels were used. Therefore, in addition to the SNP number, other measurements of ‘marker density’ seem to have impacts on the GEBV accuracy, and exploring the relationship between the GEBV accuracy and the measurements of ‘marker density’ based on high-density SNP or whole-genome sequence data is important for the field of GP. In this study, we constructed different SNP panels with certain SNP numbers (e.g., 1 k) by using the physical distance (PhyD), genetic distance (GenD) and random distance (RanD) between SNPs respectively based on the high-density SNP data of a Germany Holstein dairy cattle population. Therefore, there are three different panels at a certain SNP number level. These panels were used to construct GP models to predict fat percentage, milk yield and somatic cell score. Meanwhile, the mean (d¯) and variance (σd2) of the physical distance between SNPs and the mean (r2¯) and variance (σr22) of the genetic distance between SNPs in each panel were used as marker density-related measurements and their influence on the GEBV accuracy was investigated. At the same SNP number level, the d¯ of all panels is basically the same, but the σd2, r2¯ and σr22 are different. Therefore, we only investigated the effects of σd2, r2¯ and σr22 on the GEBV accuracy. The results showed that at a certain SNP number level, the GEBV accuracy was negatively correlated with σd2, but not with r2¯ and σr22. Compared with GenD and RanD, the σd2 of panels constructed by PhyD is smaller. The low and moderate-density panels (< 50 k) constructed by RanD or GenD have large σd2, which is not conducive to genomic prediction. The GEBV accuracy of the low and moderate-density panels constructed by PhyD is 3.8~34.8% higher than that of the low and moderate-density panels constructed by RanD and GenD. Panels with 20–30 k SNPs constructed by PhyD can achieve the same or slightly higher GEBV accuracy than that of high-density SNP panels for all three traits. In summary, the smaller the variation degree of physical distance between adjacent SNPs, the higher the GEBV accuracy. The low and moderate-density panels construct by physical distance are beneficial to genomic prediction, while pruning high-density SNP data based on genetic distance is detrimental to genomic prediction. The results provide suggestions for the development of SNP panels and the research of genome prediction based on whole-genome sequence data.
Collapse
|
17
|
Derbyshire MC, Khentry Y, Severn-Ellis A, Mwape V, Saad NSM, Newman TE, Taiwo A, Regmi R, Buchwaldt L, Denton-Giles M, Batley J, Kamphuis LG. Modeling first order additive × additive epistasis improves accuracy of genomic prediction for sclerotinia stem rot resistance in canola. THE PLANT GENOME 2021; 14:e20088. [PMID: 33629543 DOI: 10.1002/tpg2.20088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
The fungus Sclerotinia sclerotiorum infects hundreds of plant species including many crops. Resistance to this pathogen in canola (Brassica napus L. subsp. napus) is controlled by numerous quantitative trait loci (QTL). For such polygenic traits, genomic prediction may be useful for breeding as it can capture many QTL at once while also considering nonadditive genetic effects. Here, we test application of common regression models to genomic prediction of S. sclerotiorum resistance in canola in a diverse panel of 218 plants genotyped at 24,634 loci. Disease resistance was scored by infection with an aggressive isolate and monitoring over 3 wk. We found that including first-order additive × additive epistasis in linear mixed models (LMMs) improved accuracy of breeding value estimation between 3 and 40%, depending on method of assessment, and correlation between phenotypes and predicted total genetic values by 14%. Bayesian models performed similarly to or worse than genomic relationship matrix-based models for estimating breeding values or overall phenotypes from genetic values. Bayesian ridge regression, which is most similar to the genomic relationship matrix-based approach in the amount of shrinkage it applies to marker effects, was the most accurate of this family of models. This confirms several studies indicating the highly polygenic nature of sclerotinia stem rot resistance. Overall, our results highlight the use of simple epistasis terms for prediction of breeding values and total genetic values for a complex disease resistance phenotype in canola.
Collapse
Affiliation(s)
- Mark C Derbyshire
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Yuphin Khentry
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Anita Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Virginia Mwape
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Nur Shuhadah Mohd Saad
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Toby E Newman
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Akeem Taiwo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Roshan Regmi
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| | - Lone Buchwaldt
- Agriculture and Agri-Food, Saskatoon, Saskatchewan, Canada
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Lars G Kamphuis
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Dos Santos A, Rodrigues EV, Laviola BG, Teodoro LPR, Teodoro PE, Bhering LL. Increasing selection gain and accuracy of harvest prediction models in Jatropha through genome-wide selection. Sci Rep 2021; 11:13583. [PMID: 34193953 PMCID: PMC8245479 DOI: 10.1038/s41598-021-93022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022] Open
Abstract
Genome-wide selection (GWS) has been becoming an essential tool in the genetic breeding of long-life species, as it increases the gain per time unit. This study had a hypothesis that GWS is a tool that can decrease the breeding cycle in Jatropha. Our objective was to compare GWS with phenotypic selection in terms of accuracy and efficiency over three harvests. Models were developed throughout the harvests to evaluate their applicability in predicting genetic values in later harvests. For this purpose, 386 individuals of the breeding population obtained from crossings between 42 parents were evaluated. The population was evaluated in random block design, with six replicates over three harvests. The genetic effects of markers were predicted in the population using 811 SNP's markers with call rate = 95% and minor allele frequency (MAF) > 4%. GWS enables gains of 108 to 346% over the phenotypic selection, with a 50% reduction in the selection cycle. This technique has potential for the Jatropha breeding since it allows the accurate obtaining of GEBV and higher efficiency compared to the phenotypic selection by reducing the time necessary to complete the selection cycle. In order to apply GWS in the first harvests, a large number of individuals in the breeding population are needed. In the case of few individuals in the population, it is recommended to perform a larger number of harvests.
Collapse
Affiliation(s)
| | - Erina Vitório Rodrigues
- Life and Earth Sciences, Universidade de Brasília - Campus Planaltina, Brasília, Distrito Federal, Brazil
| | - Bruno Galvêas Laviola
- Genetics and Biotechnology Laboratory, Embrapa Agroenergia, Brasília, Distrito Federal, Brazil
| | | | - Paulo Eduardo Teodoro
- Department of Agronomy, Universidade Federal Do Mato Grosso Do Sul, Chapadão Do Sul, Mato Grosso Do Sul, Brazil.
| | - Leonardo Lopes Bhering
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
19
|
Knoch D, Werner CR, Meyer RC, Riewe D, Abbadi A, Lücke S, Snowdon RJ, Altmann T. Multi-omics-based prediction of hybrid performance in canola. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1147-1165. [PMID: 33523261 PMCID: PMC7973648 DOI: 10.1007/s00122-020-03759-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/19/2020] [Indexed: 05/05/2023]
Abstract
Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F1 hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - Christian R. Werner
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Rhonda C. Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 14195 Berlin, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363 Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363 Holtsee, Germany
| | - Sophie Lücke
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363 Holtsee, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| |
Collapse
|
20
|
Mohd Saad NS, Severn-Ellis AA, Pradhan A, Edwards D, Batley J. Genomics Armed With Diversity Leads the Way in Brassica Improvement in a Changing Global Environment. Front Genet 2021; 12:600789. [PMID: 33679880 PMCID: PMC7930750 DOI: 10.3389/fgene.2021.600789] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Meeting the needs of a growing world population in the face of imminent climate change is a challenge; breeding of vegetable and oilseed Brassica crops is part of the race in meeting these demands. Available genetic diversity constituting the foundation of breeding is essential in plant improvement. Elite varieties, land races, and crop wild species are important resources of useful variation and are available from existing genepools or genebanks. Conservation of diversity in genepools, genebanks, and even the wild is crucial in preventing the loss of variation for future breeding efforts. In addition, the identification of suitable parental lines and alleles is critical in ensuring the development of resilient Brassica crops. During the past two decades, an increasing number of high-quality nuclear and organellar Brassica genomes have been assembled. Whole-genome re-sequencing and the development of pan-genomes are overcoming the limitations of the single reference genome and provide the basis for further exploration. Genomic and complementary omic tools such as microarrays, transcriptomics, epigenetics, and reverse genetics facilitate the study of crop evolution, breeding histories, and the discovery of loci associated with highly sought-after agronomic traits. Furthermore, in genomic selection, predicted breeding values based on phenotype and genome-wide marker scores allow the preselection of promising genotypes, enhancing genetic gains and substantially quickening the breeding cycle. It is clear that genomics, armed with diversity, is set to lead the way in Brassica improvement; however, a multidisciplinary plant breeding approach that includes phenotype = genotype × environment × management interaction will ultimately ensure the selection of resilient Brassica varieties ready for climate change.
Collapse
Affiliation(s)
| | | | | | | | - Jacqueline Batley
- School of Biological Sciences Western Australia and UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
21
|
Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, Mishra CN, Khan H, Gangadhara K, Uday G, Singh G, Singh GP. Integrated genomic selection for rapid improvement of crops. Genomics 2021; 113:1070-1086. [PMID: 33610797 DOI: 10.1016/j.ygeno.2021.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/08/2020] [Accepted: 02/15/2021] [Indexed: 11/15/2022]
Abstract
An increase in the rate of crop improvement is essential for achieving sustained food production and other needs of ever-increasing population. Genomic selection (GS) is a potential breeding tool that has been successfully employed in animal breeding and is being incorporated into plant breeding. GS promises accelerated breeding cycles through a rapid selection of superior genotypes. Numerous empirical and simulation studies on GS and realized impacts on improvement in the crop yields are recently being reported. For a holistic understanding of the technology, we briefly discuss the concept of genetic gain, GS methodology, its current status, advantages of GS over other breeding methods, prediction models, and the factors controlling prediction accuracy in GS. Also, integration of speed breeding and other novel technologies viz. high throughput genotyping and phenotyping technologies for enhancing the efficiency and pace of GS, followed by its prospective applications in varietal development programs is reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Satish Kumar
- Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Hanif Khan
- Indian Institute of Wheat and Barley Research, Karnal, India
| | | | | | - Gyanendra Singh
- Indian Institute of Wheat and Barley Research, Karnal, India
| | | |
Collapse
|
22
|
Zheng C, Shen F, Wang Y, Wu T, Xu X, Zhang X, Han Z. Intricate genetic variation networks control the adventitious root growth angle in apple. BMC Genomics 2020; 21:852. [PMID: 33261554 PMCID: PMC7709433 DOI: 10.1186/s12864-020-07257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The root growth angle (RGA) typically determines plant rooting depth, which is significant for plant anchorage and abiotic stress tolerance. Several quantitative trait loci (QTLs) for RGA have been identified in crops. However, the underlying mechanisms of the RGA remain poorly understood, especially in apple rootstocks. The objective of this study was to identify QTLs, validate genetic variation networks, and develop molecular markers for the RGA in apple rootstock. Results Bulked segregant analysis by sequencing (BSA-seq) identified 25 QTLs for RGA using 1955 hybrids of the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., large RGA) and ‘M9’ (M. pumila Mill., small RGA). With RNA sequencing (RNA-seq) and parental resequencing, six major functional genes were identified and constituted two genetic variation networks for the RGA. Two single nucleotide polymorphisms (SNPs) of the MdLAZY1 promoter damaged the binding sites of MdDREB2A and MdHSFB3, while one SNP of MdDREB2A and MdIAA1 affected the interactions of MdDREB2A/MdHSFB3 and MdIAA1/MdLAZY1, respectively. A SNP within the MdNPR5 promoter damaged the interaction between MdNPR5 and MdLBD41, while one SNP of MdLBD41 interrupted the MdLBD41/MdbHLH48 interaction that affected the binding ability of MdLBD41 on the MdNPR5 promoter. Twenty six SNP markers were designed on candidate genes in each QTL interval, and the marker effects varied from 0.22°-26.11°. Conclusions Six diagnostic markers, SNP592, G122, b13, Z312, S1272, and S1288, were used to identify two intricate genetic variation networks that control the RGA and may provide new insights into the accuracy of the molecular markers. The QTLs and SNP markers can potentially be used to select deep-rooted apple rootstocks.
Collapse
Affiliation(s)
- Caixia Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Zheng W, Shen F, Wang W, Wu B, Wang X, Xiao C, Tian Z, Yang X, Yang J, Wang Y, Wu T, Xu X, Han Z, Zhang X. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. THE PLANT GENOME 2020; 13:e20047. [PMID: 33217219 DOI: 10.1002/tpg2.20047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Apple fruit cover color is an important appearance trait determining fruit quality, high degree of fruit cover color or completely red fruit skin is also the ultimate breeding goal. MdMYB1 has repeatedly been reported as a major gene controlling apple fruit cover color. There are also multiple minor-effect genes affecting degree of fruit cover color (DFC). This study was to identify genome-wide quantitative trait loci (QTLs) and to develop genomics-assisted prediction for apple DFC. The DFC phenotype data of 9,422 hybrids from five full-sib families of Malus asiatica 'Zisai Pearl', M. domestica 'Red Fuji', 'Golden Delicious', and 'Jonathan' were collected in 2014-2017. The phenotype varied considerably among hybrids with the same MdMYB1 genotype. Ten QTLs for DFC were identified using MapQTL and bulked segregant analysis via sequencing. From these QTLs, ten candidate genes were predicted, including MdMYB1 from a year-stable QTL on chromosome 9 of 'Zisai Pearl' and 'Red Fuji'. Then, kompetitive allele-specific polymerase chain reaction (KASP) markers were designed on these candidate genes and 821 randomly selected hybrids were genotyped. The genotype effects of the markers were estimated. MdMYB1-1 (represented by marker H162) exhibited a partial dominant allelic effect on MdMYB1-2 and showed non-allelic epistasis on markers H1245 and G6. Finally, a non-additive QTL-based genomics assisted prediction model was established for DFC. The Pearson's correlation coefficient between the genomic predicted value and the observed phenotype value was 0.5690. These results can be beneficial for apple genomics-assisted breeding and may provide insights for understanding the mechanism of fruit coloration.
Collapse
Affiliation(s)
- Wenyan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Wuqian Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xianglong Yang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Jing Yang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| |
Collapse
|
24
|
Baral K, Coulman B, Biligetu B, Fu YB. Advancing crested wheatgrass [Agropyron cristatum (L.) Gaertn.] breeding through genotyping-by-sequencing and genomic selection. PLoS One 2020; 15:e0239609. [PMID: 33031422 PMCID: PMC7544028 DOI: 10.1371/journal.pone.0239609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022] Open
Abstract
Crested wheatgrass [Agropyron cristatum (L.) Gaertn.] provides high quality, highly palatable forage for early season grazing. Genetic improvement of crested wheatgrass has been challenged by its complex genome, outcrossing nature, long breeding cycle, and lack of informative molecular markers. Genomic selection (GS) has potential for improving traits of perennial forage species, and genotyping-by-sequencing (GBS) has enabled the development of genome-wide markers in non-model polyploid plants. An attempt was made to explore the utility of GBS and GS in crested wheatgrass breeding. Sequencing and phenotyping 325 genotypes representing 10 diverse breeding lines were performed. Bioinformatics analysis identified 827, 3,616, 14,090 and 46,136 single nucleotide polymorphism markers at 20%, 30%, 40% and 50% missing marker levels, respectively. Four GS models (BayesA, BayesB, BayesCπ, and rrBLUP) were examined for the accuracy of predicting nine agro-morphological and three nutritive value traits. Moderate accuracy (0.20 to 0.32) was obtained for the prediction of heading days, leaf width, plant height, clump diameter, tillers per plant and early spring vigor for genotypes evaluated at Saskatoon, Canada. Similar accuracy (0.29 to 0.35) was obtained for predicting fall regrowth and plant height for genotypes evaluated at Swift Current, Canada. The Bayesian models displayed similar or higher accuracy than rrBLUP. These findings show the feasibility of GS application for a non-model species to advance plant breeding.
Collapse
Affiliation(s)
- Kiran Baral
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bruce Coulman
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bill Biligetu
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
Liu J, Shen F, Xiao Y, Fang H, Qiu C, Li W, Wu T, Xu X, Wang Y, Zhang X, Han Z. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks. BMC Genomics 2020; 21:550. [PMID: 32778069 PMCID: PMC7430842 DOI: 10.1186/s12864-020-06961-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background Saline, alkaline, and saline-alkaline stress severely affect plant growth and development. The tolerance of plants to these stressors has long been important breeding objectives, especially for woody perennials like apple. The aims of this study were to identify quantitative trait loci (QTLs) and to develop genomics-assisted prediction models for salt, alkali, and salt-alkali tolerance in apple rootstock. Results A total of 3258 hybrids derived from the apple rootstock cultivars ‘Baleng Crab’ (Malus robusta Rehd., tolerant) × ‘M9’ (M. pumila Mill., sensitive) were used to identify 17, 13, and two QTLs for injury indices of salt, alkali, and salt–alkali stress via bulked segregant analysis. The genotype effects of single nucleotide polymorphism (SNP) markers designed on candidate genes in each QTL interval were estimated. The genomic predicted value of an individual hybrid was calculated by adding the sum of all marker genotype effects to the mean phenotype value of the population. The prediction accuracy was 0.6569, 0.6695, and 0.5834 for injury indices of salt, alkali, and salt–alkali stress, respectively. SNP182G on MdRGLG3, which changes a leucine to an arginine at the vWFA-domain, conferred tolerance to salt, alkali, and salt-alkali stress. SNP761A on MdKCAB, affecting the Kv_beta domain that cooperated with the linked allelic variation SNP11, contributed to salt, alkali, and salt–alkali tolerance in apple rootstock. Conclusions The genomics-assisted prediction models can potentially be used in breeding saline, alkaline, and saline-alkaline tolerant apple rootstocks. The QTLs and the functional markers may provide insight for future studies into the genetic variation of plant abiotic stress tolerance.
Collapse
Affiliation(s)
- Jing Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fei Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yao Xiao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Hongcheng Fang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China.
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Salgotra RK, Stewart CN. Functional Markers for Precision Plant Breeding. Int J Mol Sci 2020; 21:E4792. [PMID: 32640763 PMCID: PMC7370099 DOI: 10.3390/ijms21134792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Advances in molecular biology including genomics, high-throughput sequencing, and genome editing enable increasingly faster and more precise cultivar development. Identifying genes and functional markers (FMs) that are highly associated with plant phenotypic variation is a grand challenge. Functional genomics approaches such as transcriptomics, targeting induced local lesions in genomes (TILLING), homologous recombinant (HR), association mapping, and allele mining are all strategies to identify FMs for breeding goals, such as agronomic traits and biotic and abiotic stress resistance. The advantage of FMs over other markers used in plant breeding is the close genomic association of an FM with a phenotype. Thereby, FMs may facilitate the direct selection of genes associated with phenotypic traits, which serves to increase selection efficiencies to develop varieties. Herein, we review the latest methods in FM development and how FMs are being used in precision breeding for agronomic and quality traits as well as in breeding for biotic and abiotic stress resistance using marker assisted selection (MAS) methods. In summary, this article describes the use of FMs in breeding for development of elite crop cultivars to enhance global food security goals.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
27
|
Gemmer MR, Richter C, Jiang Y, Schmutzer T, Raorane ML, Junker B, Pillen K, Maurer A. Can metabolic prediction be an alternative to genomic prediction in barley? PLoS One 2020; 15:e0234052. [PMID: 32502173 PMCID: PMC7274421 DOI: 10.1371/journal.pone.0234052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/17/2020] [Indexed: 11/18/2022] Open
Abstract
Like other crop species, barley, the fourth most important crop worldwide, suffers from the genetic bottleneck effect, where further improvements in performance through classical breeding methods become difficult. Therefore, indirect selection methods are of great interest. Here, genomic prediction (GP) based on 33,005 SNP markers and, alternatively, metabolic prediction (MP) based on 128 metabolites with sampling at two different time points in one year, were applied to predict multi-year agronomic traits in the nested association mapping (NAM) population HEB-25. We found prediction abilities of up to 0.93 for plant height with SNP markers and of up to 0.61 for flowering time with metabolites. Interestingly, prediction abilities in GP increased after reducing the number of incorporated SNP markers. The estimated effects of GP and MP were highly concordant, indicating MP as an interesting alternative to GP, being able to reflect a stable genotype-specific metabolite profile. In MP, sampling at an early developmental stage outperformed sampling at a later stage. The results confirm the value of GP for future breeding. With MP, an interesting alternative was also applied successfully. However, based on our results, usage of MP alone cannot be recommended in barley. Nevertheless, MP can assist in unravelling physiological pathways for the expression of agronomically important traits.
Collapse
Affiliation(s)
- Mathias Ruben Gemmer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Richter
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Yong Jiang
- Department of Breeding Research, Quantitative Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Manish L. Raorane
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Björn Junker
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
Arbelaez JD, Dwiyanti MS, Tandayu E, Llantada K, Jarana A, Ignacio JC, Platten JD, Cobb J, Rutkoski JE, Thomson MJ, Kretzschmar T. 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. RICE (NEW YORK, N.Y.) 2019; 12:55. [PMID: 31350673 PMCID: PMC6660535 DOI: 10.1186/s12284-019-0311-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs. RESULTS Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%. These technical properties were not affected when two common DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average 430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications. CONCLUSIONS This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.
Collapse
Affiliation(s)
- Juan David Arbelaez
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | | | - Erwin Tandayu
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Krizzel Llantada
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Annalhea Jarana
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Carlos Ignacio
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Damien Platten
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Joshua Cobb
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Jessica Elaine Rutkoski
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Houston, TX 77843 USA
| | - Tobias Kretzschmar
- Southern Cross Plant Sciences, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| |
Collapse
|
29
|
Hassan MA, Yang M, Fu L, Rasheed A, Zheng B, Xia X, Xiao Y, He Z. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. PLANT METHODS 2019; 15:37. [PMID: 31011362 PMCID: PMC6463666 DOI: 10.1186/s13007-019-0419-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/01/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant height is an important selection target since it is associated with yield potential, stability and particularly with lodging resistance in various environments. Rapid and cost-effective estimation of plant height from airborne devices using a digital surface model can be integrated with academic research and practical wheat breeding programs. A bi-parental wheat population consisting of 198 doubled haploid lines was used for time-series assessments of progress in reaching final plant height and its accuracy was assessed by quantitative genomic analysis. UAV-based data were collected at the booting and mid-grain fill stages from two experimental sites and compared with conventional measurements to identify quantitative trait loci (QTL) underlying plant height. RESULTS A significantly high correlation of R 2 = 0.96 with a 5.75 cm root mean square error was obtained between UAV-based plant height estimates and ground truth observations at mid-grain fill across both sites. Correlations for UAV and ground-based plant height data were also very high (R 2 = 0.84-0.85, and 0.80-0.83) between plant height at the booting and mid-grain fill stages, respectively. Broad sense heritabilities were 0.92 at booting and 0.90-0.91 at mid-grain fill across sites for both data sets. Two major QTL corresponding to Rht-B1 on chromosome 4B and Rht-D1 on chromosome 4D explained 61.3% and 64.5% of the total phenotypic variations for UAV and ground truth data, respectively. Two new and stable QTL on chromosome 6D seemingly associated with accelerated plant growth was identified at the booting stage using UAV-based data. Genomic prediction accuracy for UAV and ground-based data sets was significantly high, ranging from r = 0.47-0.55 using genome-wide and QTL markers for plant height. However, prediction accuracy declined to r = 0.20-0.31 after excluding markers linked to plant height QTL. CONCLUSION This study provides a fast way to obtain time-series estimates of plant height in understanding growth dynamics in bread wheat. UAV-enabled phenotyping is an effective, high-throughput and cost-effective approach to understand the genetic basis of plant height in genetic studies and practical breeding.
Collapse
Affiliation(s)
- Muhammad Adeel Hassan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- College of Agronomy, Xinjiang Agricultural University, Ürümqi, 830052 China
| | - Luping Fu
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing, 100081 China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, 4067 Australia
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing, 100081 China
| |
Collapse
|
30
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
31
|
Voss-Fels KP, Cooper M, Hayes BJ. Accelerating crop genetic gains with genomic selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:669-686. [PMID: 30569365 DOI: 10.1007/s00122-018-3270-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/12/2018] [Indexed: 05/05/2023]
Abstract
Genomic prediction based on additive genetic effects can accelerate genetic gain. There are opportunities for further improvement by including non-additive effects that access untapped sources of genetic diversity. Several studies have reported a worrying gap between the projected global future demand for plant-based products and the current annual rates of production increase, indicating that enhancing the rate of genetic gain might be critical for future food security. Therefore, new breeding technologies and strategies are required to significantly boost genetic improvement of future crop cultivars. Genomic selection (GS) has delivered considerable genetic gain in animal breeding and is becoming an essential component of many modern plant breeding programmes as well. In this paper, we review the lessons learned from implementing GS in livestock and the impact of GS on crop breeding, and discuss important features for the success of GS under different breeding scenarios. We highlight major challenges associated with GS including rapid genotyping, phenotyping, genotype-by-environment interaction and non-additivity and give examples for opportunities to overcome these issues. Finally, the potential of combining GS with other modern technologies in order to maximise the rate of crop genetic improvement is discussed, including the potential of increasing prediction accuracy by integration of crop growth models in GS frameworks.
Collapse
Affiliation(s)
- Kai Peter Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben John Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
32
|
Lozada D, Godoy JV, Murray TD, Ward BP, Carter AH. Genetic Dissection of Snow Mold Tolerance in US Pacific Northwest Winter Wheat Through Genome-Wide Association Study and Genomic Selection. FRONTIERS IN PLANT SCIENCE 2019; 10:1337. [PMID: 31736994 PMCID: PMC6830427 DOI: 10.3389/fpls.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/25/2019] [Indexed: 05/23/2023]
Abstract
Snow mold is a yield-limiting disease of wheat in the Pacific Northwest (PNW) region of the US, where there is prolonged snow cover. The objectives of this study were to identify genomic regions associated with snow mold tolerance in a diverse panel of PNW winter wheat lines in a genome-wide association study (GWAS) and to evaluate the usefulness of genomic selection (GS) for snow mold tolerance. An association mapping panel (AMP; N = 458 lines) was planted in Mansfield and Waterville, WA in 2017 and 2018 and genotyped using the Illumina® 90K single nucleotide polymorphism (SNP) array. GWAS identified 100 significant markers across 17 chromosomes, where SNPs on chromosomes 5A and 5B coincided with major freezing tolerance and vernalization loci. Increased number of favorable alleles was related to improved snow mold tolerance. Independent predictions using the AMP as a training population (TP) to predict snow mold tolerance of breeding lines evaluated between 2015 and 2018 resulted in a mean accuracy of 0.36 across models and marker sets. Modeling nonadditive effects improved accuracy even in the absence of a close genetic relatedness between the TP and selection candidates. Selecting lines based on genomic estimated breeding values and tolerance scores resulted in a 24% increase in tolerance. The identified genomic regions associated with snow mold tolerance demonstrated the genetic complexity of this trait and the difficulty in selecting tolerant lines using markers. GS was validated and showed potential for use in PNW winter wheat for selecting on complex traits such tolerance to snow mold.
Collapse
Affiliation(s)
- Dennis Lozada
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Jayfred V. Godoy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Timothy D. Murray
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Brian P. Ward
- USDA-ARS Plant Science Research Unit, Raleigh, NC, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
33
|
Abed A, Pérez-Rodríguez P, Crossa J, Belzile F. When less can be better: How can we make genomic selection more cost-effective and accurate in barley? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1873-1890. [PMID: 29858950 DOI: 10.1007/s00122-018-3120-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 05/13/2023]
Abstract
We were able to obtain good prediction accuracy in genomic selection with ~ 2000 GBS-derived SNPs. SNPs in genic regions did not improve prediction accuracy compared to SNPs in intergenic regions. Since genotyping can represent an important cost in genomic selection, it is important to minimize it without compromising the accuracy of predictions. The objectives of the present study were to explore how a decrease in the unit cost of genotyping impacted: (1) the number of single nucleotide polymorphism (SNP) markers; (2) the accuracy of the resulting genotypic data; (3) the extent of coverage on both physical and genetic maps; and (4) the prediction accuracy (PA) for six important traits in barley. Variations on the genotyping by sequencing protocol were used to generate 16 SNP sets ranging from ~ 500 to ~ 35,000 SNPs. The accuracy of SNP genotypes fluctuated between 95 and 99%. Marker distribution on the physical map was highly skewed toward the terminal regions, whereas a fairly uniform coverage of the genetic map was achieved with all but the smallest set of SNPs. We estimated the PA using three statistical models capturing (or not) the epistatic effect; the one modeling both additivity and epistasis was selected as the best model. The PA obtained with the different SNP sets was measured and found to remain stable, except with the smallest set, where a significant decrease was observed. Finally, we examined if the localization of SNP loci (genic vs. intergenic) affected the PA. No gain in PA was observed using SNPs located in genic regions. In summary, we found that there is considerable scope for decreasing the cost of genotyping in barley (to capture ~ 2000 SNPs) without loss of PA.
Collapse
Affiliation(s)
- Amina Abed
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada
| | - Paulino Pérez-Rodríguez
- Programa de Estadística y Cómputo, Colegio de Postgraduados, CP 56230, Montecillos, Edo. de México, Mexico
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico City, Mexico
| | - François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|