1
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2024; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
2
|
Intranasal application of adeno-associated viruses: a systematic review. Transl Res 2022; 248:87-110. [PMID: 35597541 DOI: 10.1016/j.trsl.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 01/13/2023]
Abstract
Adeno-associated viruses (AAVs) represent some of the most commonly employed vectors for targeted gene delivery and their extensive study has resulted in the approval of multiple gene therapies to treat human diseases. The intranasal route of vector application in gene therapy offers several advantages over traditional ways of administration. In addition to targeting local tissue like the olfactory epithelium, it provides minimally invasive access to various organ systems, including the central nervous system and the respiratory tract. Through a systematic literature review, a total of 53 articles that investigated the intranasal application of AAVs were identified, included, and summarized in this manuscript. Within these studies, AAV-based gene therapy was mainly investigated for its application in various infectious, pulmonary, or neurologic and/or psychiatric diseases. This review gives a comprehensive overview of the current technological state of the art regarding the intranasal application of AAVs for gene transfer and discusses remaining hurdles, which still have to be resolved before this approach can effectively be implemented in the routine clinical setting.
Collapse
|
3
|
Hasyim AA, Iyori M, Mizuno T, Abe YI, Yamagoshi I, Yusuf Y, Syafira I, Sakamoto A, Yamamoto Y, Mizukami H, Shida H, Yoshida S. Adeno-associated virus-based malaria booster vaccine following attenuated replication-competent vaccinia virus LC16m8Δ priming. Parasitol Int 2022; 92:102652. [PMID: 36007703 DOI: 10.1016/j.parint.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
We previously demonstrated that boosting with adeno-associated virus (AAV) type 1 (AAV1) can induce highly effective and long-lasting protective immune responses against malaria parasites when combined with replication-deficient adenovirus priming in a rodent model. In the present study, we compared the efficacy of two different AAV serotypes, AAV1 and AAV5, as malaria booster vaccines following priming with the attenuated replication-competent vaccinia virus strain LC16m8Δ (m8Δ), which harbors the fusion gene encoding both the pre-erythrocytic stage protein, Plasmodium falciparum circumsporozoite (PfCSP) and the sexual stage protein (Pfs25) in a two-dose heterologous prime-boost immunization regimen. Both regimens, m8Δ/AAV1 and m8Δ/AAV5, induced robust anti-PfCSP and anti-Pfs25 antibodies. To evaluate the protective efficacy, the mice were challenged with sporozoites twice after immunization. At the first sporozoite challenge, m8Δ/AAV5 achieved 100% sterile protection whereas m8Δ/AAV1 achieved 70% protection. However, at the second challenge, 100% of the surviving mice from the first challenge were protected in the m8Δ/AAV1 group whereas only 55.6% of those in the m8Δ/AAV5 group were protected. Regarding the transmission-blocking efficacy, we found that both immunization regimens induced high levels of transmission-reducing activity (>99%) and transmission-blocking activity (>95%). Our data indicate that the AAV5-based multistage malaria vaccine is as effective as the AAV1-based vaccine when administered following an m8Δ-based vaccine. These results suggest that AAV5 could be a viable alternate vaccine vector as a malaria booster vaccine.
Collapse
Affiliation(s)
- Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsushi Mizuno
- Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Sulawesi Selatan 90245, Indonesia
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Yamamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
4
|
Fernandez-Sendin M, Tenesaca S, Vasquez M, Aranda F, Berraondo P. Production and use of adeno-associated virus vectors as tools for cancer immunotherapy. Methods Enzymol 2019; 635:185-203. [PMID: 32122545 DOI: 10.1016/bs.mie.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombinant adeno-associated viruses (rAAVs) are attractive tools for research in cancer immunotherapy. A single administration of an AAV vector in tumor mouse models induces a progressive increase in transgene expression which reaches a plateau 1 or 2 weeks after administration. The rAAV is then able to maintain the expression of the immunostimulatory transgene. Thus, the use of these vectors obviates the need for frequent administrations of the therapeutic protein to achieve the antitumor effect. The long-term expression of AAV vectors can be exploited for the evaluation of the antitumor activity of immune-enhancing proteins. Most preclinical studies have focused on the expression of cytokines and on the induction of immune responses elicited by tumor-associated antigens expressed by rAAVs. Notwithstanding, rAAVs may not be suitable for immunostimulatory proteins that require high and/or immediate expression. In this chapter, we review a feasible, reliable and detailed protocol to produce and purify AAV vectors as a tool for cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Shirley Tenesaca
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Marcos Vasquez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain; Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
5
|
Zhu F, Wang Y, Xu Z, Qu H, Zhang H, Niu L, Xue H, Jing D, He H. Novel adeno‑associated virus‑based genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Mol Med Rep 2018; 19:1016-1023. [PMID: 30569131 PMCID: PMC6323296 DOI: 10.3892/mmr.2018.9739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue despite the introduction of several direct-acting antiviral agents (DAAs), with some 185 million individuals infected with HCV worldwide. There is an urgent need for an effective prophylactic HCV vaccine. In the present study, we constructed genetic vaccines based on novel recombinant adeno-associated viral (rAAV) vectors (AAV2/8 or AAV2/rh32.33) that express the envelope glycoprotein E2 from the HCV genotype 1b. Expression of HCV E2 protein in 293 cells was confirmed by western blot analysis. rAAV2/8.HCV E2 vaccine or rAAV2/rh32.33.HCV E2 vaccine was intramuscularly injected into C57BL/6 mice. HCV E2-specific antigen was produced, and long-lasting specific antibody responses remained detectable XVI weeks following immunization. In addition, the rAAV2/rh32.33 vaccine induced higher antigen-specific antibody levels than the rAAV2/8 vaccine or AAV plasmid. Moreover, both AAV vaccines induced neutralizing antibodies against HCV genotypes 1a and 1b. Finally, it is worth mentioning that neutralizing antibody levels directed against AAV2/rh32.33 were lower than those against AAV2/8 in both mouse and human serum. These results demonstrate that AAV vectors, especially the AAVrh32.33, have particularly favorable immunogenicity for development into an effective HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haiyang Qu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingling Niu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
6
|
Paulk NK, Pekrun K, Charville GW, Maguire-Nguyen K, Wosczyna MN, Xu J, Zhang Y, Lisowski L, Yoo B, Vilches-Moure JG, Lee GK, Shrager JB, Rando TA, Kay MA. Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle. Mol Ther Methods Clin Dev 2018; 10:144-155. [PMID: 30101152 PMCID: PMC6077147 DOI: 10.1016/j.omtm.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is ideal for passive vaccine administration as it is easily accessible by intramuscular injection. Recombinant adeno-associated virus (rAAV) vectors are in consideration for passive vaccination clinical trials for HIV and influenza. However, greater human skeletal muscle transduction is needed for therapeutic efficacy than is possible with existing serotypes. To bioengineer capsids with therapeutic levels of transduction, we utilized a directed evolution approach to screen libraries of shuffled AAV capsids in pools of surgically resected human skeletal muscle cells from five patients. Six rounds of evolution were performed in various muscle cell types, and evolved variants were validated against existing muscle-tropic serotypes rAAV1, 6, and 8. We found that evolved variants NP22 and NP66 had significantly increased primary human and rhesus skeletal muscle fiber transduction from surgical explants ex vivo and in various primary and immortalized myogenic lines in vitro. Importantly, we demonstrated reduced seroreactivity compared to existing serotypes against normal human serum from 50 adult donors. These capsids represent powerful tools for human skeletal muscle expression and secretion of antibodies from passive vaccines.
Collapse
Affiliation(s)
- Nicole K. Paulk
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gregory W. Charville
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Katie Maguire-Nguyen
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael N. Wosczyna
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jianpeng Xu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Leszek Lisowski
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bryan Yoo
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Gordon K. Lee
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B. Shrager
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University and VA Palo Alto Health Care System, Stanford, CA 94305, USA
| | - Thomas A. Rando
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Mendoza SD, El-Shamayleh Y, Horwitz GD. AAV-mediated delivery of optogenetic constructs to the macaque brain triggers humoral immune responses. J Neurophysiol 2017; 117:2004-2013. [PMID: 28202570 PMCID: PMC5411474 DOI: 10.1152/jn.00780.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 01/21/2023] Open
Abstract
Gene delivery to the primate central nervous system via recombinant adeno-associated viral vectors (AAV) allows neurophysiologists to control and observe neural activity precisely. A current limitation of this approach is variability in vector transduction efficiency. Low levels of transduction can foil experimental manipulations, prompting vector readministration. The ability to make multiple vector injections into the same animal, even in cases where successful vector transduction has already been achieved, is also desirable. However, vector readministration has consequences for humoral immunity and gene delivery that depend on vector dosage and route of administration in complex ways. As part of optogenetic experiments in rhesus monkeys, we analyzed blood sera collected before and after AAV injections into the brain and quantified neutralizing antibodies to AAV using an in vitro assay. We found that injections of AAV1 and AAV9 vectors elevated neutralizing antibody titers consistently. These immune responses were specific to the serotype injected and were long lasting. These results demonstrate that optogenetic manipulations in monkeys trigger immune responses to AAV capsids, suggesting that vector readministration may have a higher likelihood of success by avoiding serotypes injected previously.NEW & NOTEWORTHY Adeno-associated viral vector (AAV)-mediated gene delivery is a valuable tool for neurophysiology, but variability in transduction efficiency remains a bottleneck for experimental success. Repeated vector injections can help overcome this limitation but affect humoral immune state and transgene expression in ways that are poorly understood. We show that AAV vector injections into the primate central nervous system trigger long-lasting and serotype-specific immune responses, raising the possibility that switching serotypes may promote successful vector readministration.
Collapse
Affiliation(s)
- Skyler D Mendoza
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Yasmine El-Shamayleh
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| | - Gregory D Horwitz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240:287-301. [PMID: 26796040 PMCID: PMC4940329 DOI: 10.1016/j.jconrel.2016.01.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 02/06/2023]
Abstract
Gene delivery vectors based on adeno-associated virus (AAV) have been utilized in a large number of gene therapy clinical trials, which have demonstrated their strong safety profile and increasingly their therapeutic efficacy for treating monogenic diseases. For cancer applications, AAV vectors have been harnessed for delivery of an extensive repertoire of transgenes to preclinical models and, more recently, clinical trials involving certain cancers. This review describes the applications of AAV vectors to cancer models and presents developments in vector engineering and payload design aimed at tailoring AAV vectors for transduction and treatment of cancer cells. We also discuss the current status of AAV clinical development in oncology and future directions for AAV in this field.
Collapse
Affiliation(s)
- Jorge L Santiago-Ortiz
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Reprogramming Immune Response With Capsid-Optimized AAV6 Vectors for Immunotherapy of Cancer. J Immunother 2016; 38:292-8. [PMID: 26261893 DOI: 10.1097/cji.0000000000000093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the current studies we generated novel capsid-optimized adeno-associated virus (AAV) serotype 6 (AAV6) vectors expressing a tumor-associated antigen, and assessed their ability to activate a protective T-cell response in an animal model. First, we showed that specific mutations in the AAV6 capsid increase the transduction efficiency of these vectors in mouse bone marrow-derived dendritic cells in vitro for approximately 5-fold compared with the wild-type (WT) AAV6 vectors. Next, we evaluated the ability of the mutant AAV6 vectors to initiate specific T-cell clone proliferation in vivo. Our data indicate that the intramuscular administration of AAV6-S663V+T492V vectors expressing ovalbumin (OVA) led to a strong activation (approximately 9%) of specific T cells in peripheral blood compared with AAV6-WT treated animals (<1%). These OVA-specific T cells have a superior killing ability against mouse prostate cancer cell line RM1 stably expressing the OVA antigen when propagated in vitro. Finally, we evaluated the ability of capsid-optimized AAV6-S663V+T492V vectors to initiate a protective anticancer immune response in vivo. Our results document the suppression of subcutaneous tumor growth in animals immunized with AAV6-S663V+T492V vectors expressing prostatic acid phosphatase (PAP) for approximately 4 weeks in comparison with 1 week and 2 weeks for the negative controls, AAV6-EGFP, and AAV6-WT-PAP treated mice, respectively. These studies suggest that successful inhibition of tumor growth in an animal model would set the stage for potential clinical application of the capsid-optimized AAV6-S663V+T492V vectors.
Collapse
|
10
|
Abstract
Human papillomaviruses (HPV) are the causative agents of cervical cancer, the third most common cancer in women. The development of prophylactic HPV vaccines Gardasil® and Cervarix® targeting the major oncogenic HPV types is now the frontline of cervical cancer prevention. Both vaccines have been proven to be highly effective and safe although there are still open questions about their target population, cross-protection, and long-term efficacy. The main limitation for a worldwide implementation of Gardasil® and Cervarix® is their high cost. To develop more affordable vaccines research groups are concentrated in new formulations with different antigens including capsomeres, the minor capsid protein L2 and DNA. In this article we describe the vaccines' impact on HPV-associated disease, the main open questions about the marketed vaccines, and current efforts for the development of second-generation vaccines.
Collapse
|
11
|
Luo J, Luo Y, Sun J, Zhou Y, Zhang Y, Yang X. Adeno-associated virus-mediated cancer gene therapy: current status. Cancer Lett 2014; 356:347-56. [PMID: 25444906 DOI: 10.1016/j.canlet.2014.10.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/18/2023]
Abstract
Gene therapy is one of the frontiers of modern medicine. Adeno-associated virus (AAV)-mediated gene therapy is becoming a promising approach to treat a variety of diseases and cancers. AAV-mediated cancer gene therapies have rapidly advanced due to their superiority to other gene-carrying vectors, such as the lack of pathogenicity, the ability to transfect both dividing and non-dividing cells, low host immune response, and long-term expression. This article reviews and provides up to date knowledge on AAV-mediated cancer gene therapy.
Collapse
Affiliation(s)
- Jingfeng Luo
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Qingchun Road NO.3, Hangzhou, Zhejiang, China
| | - Yuxuan Luo
- Department of Nephrology, Zhuji People's Hospital, Zhuji, Zhejiang, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Qingchun Road NO.3, Hangzhou, Zhejiang, China
| | - Yurong Zhou
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Qingchun Road NO.3, Hangzhou, Zhejiang, China
| | - Yajing Zhang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Qingchun Road NO.3, Hangzhou, Zhejiang, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Qingchun Road NO.3, Hangzhou, Zhejiang, China; Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
12
|
Nieto K, Salvetti A. AAV Vectors Vaccines Against Infectious Diseases. Front Immunol 2014; 5:5. [PMID: 24478774 PMCID: PMC3896988 DOI: 10.3389/fimmu.2014.00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Since their discovery as a tool for gene transfer, vectors derived from the adeno-associated virus (AAV) have been used for gene therapy applications and attracted scientist to this field for their exceptional properties of efficiency of in vivo gene transfer and the level and duration of transgene expression. For many years, AAVs have been considered as low immunogenic vectors due to their ability to induce long-term expression of non-self-proteins in contrast to what has been observed with other viral vectors, such as adenovirus, for which strong immune responses against the same transgene products were documented. The perceived low immunogenicity likely explains why the use of AAV vectors for vaccination was not seriously considered before the early 2000s. Indeed, while analyses conducted using a variety of transgenes and animal species slowly changed the vision of immunological properties of AAVs, an increasing number of studies were also performed in the field of vaccination. Even if the comparison with other modes of vaccination was not systemically performed, the analyses conducted so far in the field of active immunotherapy strongly suggest that AAVs possess some interesting features to be used as tools to produce an efficient and sustained antibody response. In addition, recent studies also highlighted the potential of AAVs for passive immunotherapy. This review summarizes the main studies conducted to evaluate the potential of AAV vectors for vaccination against infectious agents and discusses their advantages and drawbacks. Altogether, the variety of studies conducted in this field contributes to the understanding of the immunological properties of this versatile virus and to the definition of its possible future applications.
Collapse
Affiliation(s)
- Karen Nieto
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon , Lyon , France ; LabEx Ecofect, Université de Lyon , Lyon , France
| |
Collapse
|
13
|
Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry. J Virol 2012; 86:9163-74. [PMID: 22696661 DOI: 10.1128/jvi.00282-12] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adeno-associated virus type 2 (AAV2) has gained much interest as a gene delivery vector. A hallmark of AAV2-mediated gene transfer is an intracellular conformational change of the virus capsid, leading to the exposure of infection-relevant protein domains. These protein domains, which are located on the N-terminal portion of the structural proteins VP1 and VP2, include a catalytic phospholipase A(2) domain and three clusters of basic amino acids. We have identified additional protein sequence motifs located on the VP1/2 N terminus that also proved to be obligatory for virus infectivity. These motifs include signals that are known to be involved in protein interaction, endosomal sorting and signal transduction in eukaryotic cells. Among different AAV serotypes they are highly conserved and mutation of critical amino acids of the respective motifs led to a severe infection-deficient phenotype. In particular, mutation of a YXXQ-sequence motif significantly reduced accumulation of virus capsids around the nucleus in comparison to wild-type AAV2. Interestingly, intracellular trafficking of AAV2 was shown to be independent of PLA(2) activity. Moreover, mutation of three PDZ-binding motifs, which are located consecutively at the very tip of the VP1 N terminus, revealed a nuclear transport-defective phenotype, suggesting a role in nuclear uptake of the virus through an as-yet-unknown mechanism.
Collapse
|
14
|
Nieto K, Stahl-Hennig C, Leuchs B, Müller M, Gissmann L, Kleinschmidt JA. Intranasal vaccination with AAV5 and 9 vectors against human papillomavirus type 16 in rhesus macaques. Hum Gene Ther 2012; 23:733-41. [PMID: 22401308 DOI: 10.1089/hum.2011.202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy.
Collapse
Affiliation(s)
- Karen Nieto
- Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Gersch ED, Gissmann L, Garcea RL. New approaches to prophylactic human papillomavirus vaccines for cervical cancer prevention. Antivir Ther 2011; 17:425-34. [PMID: 22293302 DOI: 10.3851/imp1941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/12/2022]
Abstract
The currently licensed human papillomavirus (HPV) vaccines are safe and highly effective at preventing HPV infection for a select number of papillomavirus types, thus decreasing the incidence of precursors to cervical cancer. It is expected that vaccination will also ultimately reduce the incidence of this cancer. The licensed HPV vaccines are, however, type restricted and expensive, and also require refrigeration, multiple doses and intramuscular injection. Second-generation vaccines are currently being developed to address these shortcomings. New expression systems, viral and bacterial vectors for HPV L1 capsid protein delivery, and use of the HPV L2 capsid protein will hopefully aid in decreasing cost and increasing ease of use and breadth of protection. These second-generation vaccines could also allow affordable immunization of women in developing countries, where the incidence of cervical cancer is high.
Collapse
Affiliation(s)
- Elizabeth D Gersch
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO, USA
| | | | | |
Collapse
|
16
|
Nieto K, Gissmann L, Schädlich L. Human papillomavirus-specific immune therapy: failure and hope. Antivir Ther 2010; 15:951-7. [DOI: 10.3851/imp1665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|