1
|
Wei J, Yao C, Zhu Z, Gao Z, Yang G, Pan Y. Nitrate reductase is required for sclerotial development and virulence of Sclerotinia sclerotiorum. FRONTIERS IN PLANT SCIENCE 2023; 14:1096831. [PMID: 37342142 PMCID: PMC10277653 DOI: 10.3389/fpls.2023.1096831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is required for nitrate assimilation that mediates the reduction of nitrate to nitrite and is the major enzymatic source for NO production in fungi. To explore the possible effects of nitrate reductase SsNR on the development, stress response, and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was performed. The results showed that SsNR-silenced mutants showed abnormity in mycelia growth, sclerotia formation, infection cushion formation, reduced virulence on rapeseed and soybean with decreased oxalic acid production. Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic changes in the gene silenced mutants indicate that SsNR plays important roles in the mycelia growth, sclerotia development, stress response and fungal virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Junjun Wei
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chuanchun Yao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhimou Gao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuemin Pan
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Katayama T, Maruyama JI. Trace copper-mediated asexual development via a superoxide dismutase and induction of AobrlA in Aspergillus oryzae. Front Microbiol 2023; 14:1135012. [PMID: 36970664 PMCID: PMC10030727 DOI: 10.3389/fmicb.2023.1135012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
The filamentous fungus Aspergillus oryzae, in which sexual reproduction remains to be discovered, proliferates mainly via asexual spores (conidia). Therefore, despite its industrial importance in food fermentation and recombinant protein production, breeding beneficial strains by genetic crosses is difficult. In Aspergillus flavus, which is genetically close to A. oryzae, structures known as sclerotia are formed asexually, but they are also related to sexual development. Sclerotia are observed in some A. oryzae strains, although no sclerotia formation has been reported in most strains. A better understanding of the regulatory mechanisms underlying sclerotia formation in A. oryzae may contribute to discover its sexual development. Some factors involved in sclerotia formation have been previously identified, but their regulatory mechanisms have not been well studied in A. oryzae. In this study, we found that copper strongly inhibited sclerotia formation and induced conidiation. Deletion of AobrlA encoding a core regulator of conidiation and ecdR involved in transcriptional induction of AobrlA suppressed the copper-mediated inhibition of sclerotia formation, suggesting that AobrlA induction in response to copper leads not only to conidiation but also to inhibition of sclerotia formation. In addition, deletion of the copper-dependent superoxide dismutase (SOD) gene and its copper chaperone gene partially suppressed such copper-mediated induction of conidiation and inhibition of sclerotia formation, indicating that copper regulates asexual development via the copper-dependent SOD. Taken together, our results demonstrate that copper regulates asexual development, such as sclerotia formation and conidiation, via the copper-dependent SOD and transcriptional induction of AobrlA in A. oryzae.
Collapse
Affiliation(s)
- Takuya Katayama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Jun-ichi Maruyama,
| |
Collapse
|
3
|
Wang H, Yang X, Wei S. Analysis of Aspergillus versicolor exudate composition. J Basic Microbiol 2022; 62:1241-1253. [PMID: 35972830 DOI: 10.1002/jobm.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/07/2022]
Abstract
Aspergillus versicolor, a widely distributed fungus, is associated with pollution and carcinogenic hazards. This study aimed to examine the functions of the A. versicolor exudate and laid a scientific foundation for improving our understanding, utilization, and control of A. versicolor. The A. versicolor exudate proteome, ion content, and amino acid components were determined using label-free quantitation, atomic absorption spectrophotometry, and high-performance liquid chromatography, respectively. In total, 502 proteins were identified in the A. versicolor exudate. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and cluster of orthologous group analyses were used to annotate the functional classification and pathways of the aligned proteins. Proteins identified in the exudate were mainly enriched in carbohydrate metabolic process, translation, oxidoreductase activity, oxidoreductase activity, hydrolase activity, cell wall-related processes, catalytic activity, and unknown functions. The exudate comprised Na, K, Ca, Fe, and Mg cations. Among the 17 types of amino acids detected in the exudate, 7 were essential and 10 were nonessential. The exudate may be involved in the vital processes of A. versicolor. Additionally, the exudate may play an important role in the growth, development, reproduction, homeostasis, nutrient supply for regrowth, and virulence of A. versicolor.
Collapse
Affiliation(s)
- Haining Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang Province, China
| | - Songhong Wei
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| |
Collapse
|
4
|
Cong J, Xiao K, Jiao W, Zhang C, Zhang X, Liu J, Zhang Y, Pan H. The Coupling Between Cell Wall Integrity Mediated by MAPK Kinases and SsFkh1 Is Involved in Sclerotia Formation and Pathogenicity of Sclerotinia sclerotiorum. Front Microbiol 2022; 13:816091. [PMID: 35547112 PMCID: PMC9081980 DOI: 10.3389/fmicb.2022.816091] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
The plant pathogenic fungus Sclerotinia sclerotiorum can survive on a wide range of hosts and cause significant losses on crop yields. FKH, a forkhead box (FOX)-containing protein, functions to regulate transcription and signal transduction. As a transcription factor (TF) with multiple biological functions in eukaryotic organisms, little research has been done on the role of FKH protein in pathogenic fungi. SsFkh1 encodes a protein which has been predicted to contain FOX domain in S. sclerotiorum. In this study, the deletion mutant of SsFkh1 resulted in severe defects in hyphal development, virulence, and sclerotia formation. Moreover, knockout of SsFkh1 lead to gene functional enrichment in mitogen-activated protein kinase (MAPK) signaling pathway in transcriptome analysis and SsFkh1 was found to be involved in the maintenance of the cell wall integrity (CWI) and the MAPK signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SsFkh1 interacts with SsMkk1. In addition, we explored the conserved MAPK signaling pathway components, including Bck1, Mkk1, Pkc1, and Smk3 in S. sclerotiorum. ΔSsmkk1, ΔSspkc1, ΔSsbck1, and ΔSssmk3knockout mutant strains together with ΔSsmkk1com, ΔSspkc1com, ΔSsbck1com, and ΔSssmk3com complementation mutant strains were obtained. The results indicated that ΔSsmkk1, ΔSspkc1, ΔSsbck1, and ΔSssmk3 displayed similar phenotypes to ΔSsfkh1 in sclerotia formation, compound appressorium development, and pathogenicity. Taken together, SsFkh1 may be the downstream substrate of SsMkk1 and involved in sclerotia formation, compound appressorium development, and pathogenicity in S. sclerotiorum.
Collapse
Affiliation(s)
- Jie Cong
- College of Plant Sciences, Jilin University, Changchun, China
| | - Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun, China
| | - Cheng Zhang
- College of Resource and Environment, Jilin Agricultural University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
5
|
Atallah O, Yassin S. Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia. Environ Microbiol 2020; 22:5265-5279. [PMID: 32844537 DOI: 10.1111/1462-2920.15213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/23/2020] [Indexed: 12/29/2022]
Abstract
Sclerotinia sclerotiorum, a pathogen of more than 600 host plants, secretes oxalic acid to regulate the ambient acidity and provide conducive environment for pathogenicity and reproduction. Few Aspergillus spp. were previously proposed as potential biocontrol agents for S. sclerotiorum as they deteriorate sclerotia and prevent pathogen's overwintering and initial infections. We studied the nature of physical and biochemical interactions between Aspergillus and Sclerotinia. Aspergillus species inhibited sclerotial germination as they colonized its rind layer. However, Aspergillus-infested sclerotia remain solid and viable for vegetative and carpogenic germination, indicating that Aspergillus infestation is superficial. Aspergillus spp. of section Nigri (Aspergillus japonicus and Aspergillus niger) were also capable of suppressing sclerotial formation by S. sclerotiorum on agar plates. Their culture filtrate contained high levels of oxalic, citric and glutaric acids comparing to the other Aspergillus spp. tested. Exogenous supplementation of oxalic acid altered growth and reproduction of S. sclerotiorum at low concentrations. Inhibitory concentrations of oxalic acid displayed lower pH values comparing to their parallel concentrations of other organic acids. Thus, S. sclerotiorum growth and reproduction are sensitive to the ambient oxalic acid fluctuations and the environmental acidity. Together, Aspergillus species parasitize colonies of Sclerotinia and prevent sclerotial formation through their acidic secretions.
Collapse
Affiliation(s)
- Osama Atallah
- Department of Plant Pathology, Zagazig University, Zagazig, 44519, Egypt
| | - Sherene Yassin
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
6
|
Marin MV, Peres NA. First Report of Sclerotinia sclerotiorum Causing Strawberry Fruit Rot in Florida. PLANT DISEASE 2020; 104:3250-3250. [PMID: 32748719 DOI: 10.1094/pdis-04-20-0879-pdn] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the 2019-2020 Florida strawberry season (October to April), a strawberry (Fragaria × ananassa) fruit rot was observed in two fields (Plant City and Wimauma, FL) with up to 5% incidence on short-day cultivars SensationTM Florida127, and Florida Brilliance. Symptoms on pink and ripe fruit consisted of softening, discoloration, watery rot with white fuzzy mycelium, and initial sclerotium formation. Diseased tissue was placed on General Isolation (GI) medium (Amiri et al. 2018) and incubated at 25°C under a 12-h photoperiod. A fungus producing spreading cottony white colonies with dark sclerotia near the outer edges of the plates was consistently isolated. One isolate from each cultivar field (20-51 and 20-55) was selected for identification and pathogenicity tests. Apothecial production was induced following the protocol of Li and Rollins (2009), and apothecia (n=30) had an average diameter of 4.5 (3.5 to 7.2) mm. Sclerotia were 3.6 (2.5 to 6.2) mm by 4.5 (3.1 to 5.9) mm (n=30) in size. Dimensions of asci were 130.2 (115.1 to 160.5) μm by 8.5 (6.2 to 13.1) μm (n=30), and those of ascospores were 12.2 (10.8 to 14.6) μm by 6.8 (5.7 to 8.1) μm (n=30). Based on these morphological features, the pathogen was tentatively identified as Sclerotinia sclerotiorum (Lib.) de Bary (Maas 1998). DNA was extracted from the same two isolates using the FastDNA kit (MP Biomedicals, Solon, OH), and the ribosomal internal transcribed spacer (ITS) region was amplified using the primers ITS1 and ITS4 (White et al. 1990). Sequences were deposited in GenBank (accession nos. MT378215 and MT378216). BLASTn searches revealed that isolates 20-51 and 20-55 were 99.62% identical (526 / 528 bp) to S. sclerotiorum CBS 499.50 (MH856725.1). Immature pink fruit of SensationTM 'Florida127' were harvested, surface disinfested in bleach solution (0.08% NaClO) for 90 sec, rinsed twice with deionized water, then placed into styrofoam egg cartons inside clean plastic boxes (30x24x7 cm) containing 150 ml of sterile deionized water to maintain moisture, and kept at 25°C with a 12-h photoperiod. Ascospores and sclerotia were used for inoculation tests with three repetitions in an egg carton containing 12 fruit each per isolate and inoculation method. The experiment was repeated once. Fruit were inoculated by placing 20 μl of a 1 × 106 ascospores/mL suspension or a single sclerotium on the upper half of the fruit. Controls were included, by placing 20 μl of sterile DI water or fruit with no sclerotia. Evaluations were done 6, 10, and 15 days after inoculation (DAI). Control fruit remained healthy, while inoculated fruit developed symptoms of softening and discoloration. For ascospore inoculation, disease incidence was 55 (± 5) and 78% (± 4), for 6 and 15 DAI, respectively, whereas for sclerotia inoculation incidence was 100% 6 DAI. Morphologically identical fungi to the original isolates were re-isolated from the diseased fruit. No other fruit decay fungi were observed. S. sclerotiorum has been previously reported causing strawberry fruit rot in Washington state in the United States, England, Israel, and Scotland (Alcorn 1966; Maas 1998; McLean 1957). It has also been listed in the indices of plant diseases from Florida, North Carolina, and California as causing crown rot (Farr and Rossman 2020). To our knowledge, this is the first report of S. sclerotiorum causing strawberry fruit rot in Florida. The pathogen is an aggressive necrotroph with prolonged survival and affects several vegetable crops grown in Florida (Paret et al. 2018). Because only the strawberry beds are fumigated, sclerotia remaining in the alleys could serve as inoculum sources. Currently, the disease is rare and of minor significance to strawberry production. However, efforts should be implemented to monitor its occurrence and spread.
Collapse
Affiliation(s)
- Marcus Vinicius Marin
- University of Florida, Plant Pathology, 14625 County Roady 672, Wimauma, Florida, United States, 33598;
| | - Natalia A Peres
- University of Florida, GCREC, 14625 CR 672, Wimauma, Florida, United States, 33598
- United States;
| |
Collapse
|
7
|
Jørgensen TR, Burggraaf AM, Arentshorst M, Schutze T, Lamers G, Niu J, Kwon MJ, Park J, Frisvad JC, Nielsen KF, Meyer V, van den Hondel CA, Dyer PS, Ram AF. Identification of SclB, a Zn(II)2Cys6 transcription factor involved in sclerotium formation in Aspergillus niger. Fungal Genet Biol 2020; 139:103377. [DOI: 10.1016/j.fgb.2020.103377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
|
8
|
The Formaldehyde Dehydrogenase SsFdh1 Is Regulated by and Functionally Cooperates with the GATA Transcription Factor SsNsd1 in Sclerotinia sclerotiorum. mSystems 2019; 4:4/5/e00397-19. [PMID: 31506263 PMCID: PMC6739101 DOI: 10.1128/msystems.00397-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
S. sclerotiorum is a pathogenic fungus with sclerotium and infection cushion development, making S. sclerotiorum one of the most challenging agricultural pathogens with no effective control method. We identified important sclerotium and compound appressorium formation determinants, SsNsd1 and SsFdh1, and investigated their regulatory mechanism at the molecular level. SsNsd1 and SsFdh1 are zinc finger motif-containing proteins and associate with each other in the nucleus. On other hand, SsNsd1, as a GATA transcription factor, directly binds to GATA-box DNA in the promoter region of Ssfdh1. The SsNsd1-SsFdh1 interaction and nuclear translocation were found to prevent efficient binding of SsNsd1 to GATA-box DNA. Our results provide insights into the role of the GATA transcription factor and its regulation of formaldehyde dehydrogenase in stress resistance, fungal sclerotium and compound appressorium development, and pathogenicity. GATA transcription factors (TFs) are common eukaryotic regulators, and glutathione-dependent formaldehyde dehydrogenases (GD-FDH) are ubiquitous enzymes with formaldehyde detoxification activity. In this study, the formaldehyde dehydrogenase Sclerotinia sclerotiorum Fdh1 (SsFdh1) was first characterized as an interacting partner of a GATA TF, SsNsd1, in S. sclerotiorum. Genetic analysis reveals that SsFdh1 functions in formaldehyde detoxification, nitrogen metabolism, sclerotium development, and pathogenicity. Both SsNsd1 and SsFdh1 harbor typical zinc finger motifs with conserved cysteine residues. SsNsd1 regulates SsFdh1 in two distinct manners. SsNsd1 directly binds to GATA-box DNA in the promoter region of Ssfdh1; SsNsd1 associates with SsFdh1 through disulfide bonds formed by conserved Cys residues. The SsNsd1-SsFdh1 interaction and nuclear translocation were found to prevent efficient binding of SsNsd1 to GATA-box DNA. Site-directed point mutation of these Cys residues influences the SsNsd1-SsFdh1 interaction and SsNsd1 DNA binding capacity. SsFdh1 is regulated by and functions jointly with the SsNsd1 factor, providing new insights into the complex transcriptional regulatory mechanisms of GATA factors. IMPORTANCES. sclerotiorum is a pathogenic fungus with sclerotium and infection cushion development, making S. sclerotiorum one of the most challenging agricultural pathogens with no effective control method. We identified important sclerotium and compound appressorium formation determinants, SsNsd1 and SsFdh1, and investigated their regulatory mechanism at the molecular level. SsNsd1 and SsFdh1 are zinc finger motif-containing proteins and associate with each other in the nucleus. On other hand, SsNsd1, as a GATA transcription factor, directly binds to GATA-box DNA in the promoter region of Ssfdh1. The SsNsd1-SsFdh1 interaction and nuclear translocation were found to prevent efficient binding of SsNsd1 to GATA-box DNA. Our results provide insights into the role of the GATA transcription factor and its regulation of formaldehyde dehydrogenase in stress resistance, fungal sclerotium and compound appressorium development, and pathogenicity.
Collapse
|
9
|
Sang H, Chang HX, Chilvers MI. A Sclerotinia sclerotiorum Transcription Factor Involved in Sclerotial Development and Virulence on Pea. mSphere 2019; 4:e00615-18. [PMID: 30674647 PMCID: PMC6344603 DOI: 10.1128/msphere.00615-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022] Open
Abstract
Sclerotinia sclerotiorum is a plant-pathogenic ascomycete fungus and infects over 400 host plants, including pea (Pisum sativum L.). The fungus causes white mold on pea, and substantial yield loss is attributed to the disease. To improve white mold management, further understanding of S. sclerotiorum pathogenicity is crucial. In this study, 389 transcription factors (TFs) were mined from the complete genome sequence of S. sclerotiorum and their in planta expression patterns were determined in susceptible and partially resistant pea lines and compared to in vitro expression patterns on culture medium. One of the transcription factors was significantly induced in planta at 24 and 48 h postinfection compared to the expression in vitro This putative C6 transcription factor of S. sclerotiorum (SsC6TF1) was knocked down using a gene-silencing approach to investigate its functions in vegetative growth and sclerotial development as well as its virulence and pathogenicity in pea. While the SsC6TF1 knockdown mutants had hyphal growth rates identical to those of the wild-type strain and were capable of infection, the knockdown mutants produced no sclerotia or significantly fewer and smaller sclerotia on the culture medium and exhibited reduced virulence on both pea lines. This study profiled genome-wide expression for S. sclerotiorum transcription factors in planta and in vitro and functionally characterized a novel transcription factor, SsC6TF1, which positively regulates sclerotial development and virulence on pea. The finding provides molecular insights into S. sclerotiorum biology and interaction with pea and other economically important crops.IMPORTANCE White mold, caused by Sclerotinia sclerotiorum, is a destructive disease on important legume species such as soybean, dry bean, and pea. This study investigated expression levels of transcription factors in S. sclerotiorumin planta (pea lines) and in vitro (culture medium). One transcription factor displaying high expression in planta was found to be involved in sclerotial development and virulence on pea. This report provides a new understanding regarding transcription factors of S. sclerotiorum in development and virulence.
Collapse
Affiliation(s)
- Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Hao-Xun Chang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Xu T, Li J, Yu B, Liu L, Zhang X, Liu J, Pan H, Zhang Y. Transcription Factor SsSte12 Was Involved in Mycelium Growth and Development in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:2476. [PMID: 30386319 PMCID: PMC6200020 DOI: 10.3389/fmicb.2018.02476] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Sclerotinia sclerotiorum is a challenging agricultural pathogen for management, causing large global economic losses annually. The sclerotia and infection cushions are critical for its long-term survival and successful penetration on a wide spectrum of hosts. The mitogen-activated protein kinase (MAPK) cascades serve as central signaling complexes that are involved in various aspects of sclerotia development and infection. In this study, the putative downstream transcription factor of MAPK pathway, SsSte12, was analyzed in S. sclerotiorum. Silencing SsSte12 in S. sclerotiorum resulted in phenotypes of delayed vegetative growth, reduced size of sclerotia, and fewer appressoria formation. Consequently, the SsSte12 RNAi mutants showed attenuated pathogenicity on the host plants due to the defect compound appressorium. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation assays demonstrated that the SsSte12 interacts with SsMcm1. However, the SsMcm1 expression is independent of the regulation of SsSte12 as revealed by qRT-PCR analysis in SsSte12 RNAi mutants. Together with high accumulation of SsSte12 transcripts in the early development of S. sclerotiorum, our results demonstrated that SsSte12 function was essential in the vegetative mycelial growth, sclerotia development, appressoria formation and penetration-dependent pathogenicity. Moreover, the SsSte12-SsMcm1 interaction might play a critical role in the regulation of the genes encoding these traits in S. sclerotiorum.
Collapse
Affiliation(s)
- Tingtao Xu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jingtao Li
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baodong Yu
- Department of Emergency of Xinmin, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
11
|
Xu L, Li G, Jiang D, Chen W. Sclerotinia sclerotiorum: An Evaluation of Virulence Theories. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:311-338. [PMID: 29958073 DOI: 10.1146/annurev-phyto-080417-050052] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Oxalic acid production in Sclerotinia sclerotiorum has long been associated with virulence. Research involving UV-induced, genetically undefined mutants that concomitantly lost oxalate accumulation, sclerotial formation, and pathogenicity supported the conclusion that oxalate is an essential pathogenicity determinant of S. sclerotiorum. However, recent investigations showed that genetically defined mutants that lost oxalic acid production but accumulated fumaric acid could cause disease on many plants and substantiated the conclusion that acidic pH, not oxalic acid per se, is the necessary condition for disease development. Critical evaluation of available evidence showed that the UV-induced mutants harbored previously unrecognized confounding genetic defects in saprophytic growth and pH responsiveness, warranting reevaluation of the conclusions about virulence based on the UV-induced mutants. Furthermore, analyses of the evidence suggested a hypothesis for the existence of an unrecognized regulator responsive to acidic pH. Identifying the unknown pH regulator would offer a new avenue for investigating pH sensing/regulation in S. sclerotiorum and novel targets for intervention in disease control strategies.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | - Weidong Chen
- Grain Legume Genetics and Physiology Research Unit, US Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, Washington 99164, USA
- Departments of Plant Pathology and Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164, USA;
| |
Collapse
|
12
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
13
|
Li J, Mu W, Veluchamy S, Liu Y, Zhang Y, Pan H, Rollins JA. The GATA-type IVb zinc-finger transcription factor SsNsd1 regulates asexual-sexual development and appressoria formation in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2018; 19:1679-1689. [PMID: 29227022 PMCID: PMC6638148 DOI: 10.1111/mpp.12651] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/21/2017] [Accepted: 12/07/2017] [Indexed: 05/18/2023]
Abstract
The sclerotium, a multicellular structure composed of the compact aggregation of vegetative hyphae, is critical for the long-term survival and sexual reproduction of the plant-pathogenic fungus Sclerotinia sclerotiorum. The development and carpogenic germination of sclerotia are regulated by integrating signals from both environmental and endogenous processes. Here, we report the regulatory functions of the S. sclerotiorum GATA-type IVb zinc-finger transcription factor SsNsd1 in these processes. SsNsd1 is orthologous to the Aspergillus nidulans NsdD (never in sexual development) and the Neurospora crassa SUB-1 (submerged protoperithecia-1) proteins. Ssnsd1 gene transcript accumulation remains relatively low, but variable, during vegetative mycelial growth and multicellular development. Ssnsd1 deletion mutants (Δnsd1-KOs) produce phialides and phialospores (spermatia) excessively in vegetative hyphae and promiscuously within the interior medulla of sclerotia. In contrast, phialospore development occurs only on the sclerotium surface in the wild-type. Loss of SsNsd1 function affects sclerotium structural integrity and disrupts ascogonia formation during conditioning for carpogenic germination. As a consequence, apothecium development is abolished. The Ssnsd1 deletion mutants are also defective in the transition from hyphae to compound appressorium formation, resulting in a loss of pathogenicity on unwounded hosts. In sum, our results demonstrate that SsNsd1 functions in a regulatory role similar to its ascomycete orthologues in regulating sexual and asexual development. Further, SsNsd1 appears to have evolved as a regulator of pre-penetration infectious development required for the successful infection of its many hosts.
Collapse
Affiliation(s)
- Jingtao Li
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Wenhui Mu
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Selvakumar Veluchamy
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- Present address:
Mountain Horticultural Crops Research & Extension CenterNorth Carolina State UniversityMills RiverNC 28759USA
| | - Yanzhi Liu
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Yanhua Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Hongyu Pan
- College of Plant ScienceJilin UniversityChangchunJilin Province130062China
| | - Jeffrey A. Rollins
- Department of Plant PathologyUniversity of FloridaGainesvilleFL 32611USA
| |
Collapse
|
14
|
De Miccolis Angelini RM, Abate D, Rotolo C, Gerin D, Pollastro S, Faretra F. De novo assembly and comparative transcriptome analysis of Monilinia fructicola, Monilinia laxa and Monilinia fructigena, the causal agents of brown rot on stone fruits. BMC Genomics 2018; 19:436. [PMID: 29866047 PMCID: PMC5987419 DOI: 10.1186/s12864-018-4817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Brown rots are important fungal diseases of stone and pome fruits. They are caused by several Monilinia species but M. fructicola, M. laxa and M. fructigena are the most common all over the world. Although they have been intensively studied, the availability of genomic and transcriptomic data in public databases is still scant. We sequenced, assembled and annotated the transcriptomes of the three pathogens using mRNA from germinating conidia and actively growing mycelia of two isolates of opposite mating types per each species for comparative transcriptome analyses. RESULTS Illumina sequencing was used to generate about 70 million of paired-end reads per species, that were de novo assembled in 33,861 contigs for M. fructicola, 31,103 for M. laxa and 28,890 for M. fructigena. Approximately, 50% of the assembled contigs had significant hits when blasted against the NCBI non-redundant protein database and top-hits results were represented by Botrytis cinerea, Sclerotinia sclerotiorum and Sclerotinia borealis proteins. More than 90% of the obtained sequences were complete, the percentage of duplications was always less than 14% and fragmented and missing transcripts less than 5%. Orthologous transcripts were identified by tBLASTn analysis using the B. cinerea proteome as reference. Comparative transcriptome analyses revealed 65 transcripts over-expressed (FC ≥ 8 and FDR ≤ 0.05) or unique in M. fructicola, 30 in M. laxa and 31 in M. fructigena. Transcripts were involved in processes affecting fungal development, diversity and host-pathogen interactions, such as plant cell wall-degrading and detoxifying enzymes, zinc finger transcription factors, MFS transporters, cell surface proteins, key enzymes in biosynthesis and metabolism of antibiotics and toxins, and transposable elements. CONCLUSIONS This is the first large-scale reconstruction and annotation of the complete transcriptomes of M. fructicola, M. laxa and M. fructigena and the first comparative transcriptome analysis among the three pathogens revealing differentially expressed genes with potential important roles in metabolic and physiological processes related to fungal morphogenesis and development, diversity and pathogenesis which need further investigations. We believe that the data obtained represent a cornerstone for research aimed at improving knowledge on the population biology, physiology and plant-pathogen interactions of these important phytopathogenic fungi.
Collapse
Affiliation(s)
- Rita M. De Miccolis Angelini
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Domenico Abate
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
15
|
Liang Y, Xiong W, Steinkellner S, Feng J. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2018; 19:1444-1453. [PMID: 29024255 PMCID: PMC6638068 DOI: 10.1111/mpp.12627] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/02/2017] [Accepted: 10/08/2017] [Indexed: 05/29/2023]
Abstract
The fungus Sclerotinia sclerotiorum is a necrotrophic plant pathogen causing significant damage on a broad range of crops. This fungus produces sclerotia that serve as the long-term survival structures in the life cycle and the primary inoculum in the disease cycle. Melanin plays an important role in protecting mycelia and sclerotia from ultraviolet radiation and other adverse environmental conditions. In this study, two genes, SCD1 encoding a scytalone dehydratase and THR1 encoding a trihydroxynaphthalene reductase, were disrupted by target gene replacement, and their roles in mycelial growth, sclerotial development and fungal pathogenicity were investigated. Phylogenetic analyses indicated that the deduced amino acid sequences of SCD1 and THR1 were similar to the orthologues of Botrytis cinerea. Expression of SCD1 was at higher levels in sclerotia relative to mycelia. THR1 was expressed at similar levels in mycelia and sclerotia at early stages, but was up-regulated in sclerotia at the maturation stage. Disruption of SCD1 or THR1 did not change the pathogenicity of the fungus, but resulted in slower radial growth, less biomass, wider angled hyphal branches, impaired sclerotial development and decreased resistance to ultraviolet light.
Collapse
Affiliation(s)
- Yue Liang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoning 110866China
| | - Wei Xiong
- School of Life SciencesChongqing UniversityChongqing 400045China
| | - Siegrid Steinkellner
- Division of Plant Protection, Department of Crop SciencesUniversity of Natural Resources and Life Sciences ViennaVienna 1190Austria
| | - Jie Feng
- Alberta Plant Health Laboratory, Alberta Agriculture and ForestryEdmontonAlberta T5Y 6H3Canada
| |
Collapse
|
16
|
Pan Y, Wei J, Yao C, Reng H, Gao Z. SsSm1, a Cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:37-46. [PMID: 29576085 DOI: 10.1016/j.plantsci.2018.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/18/2017] [Accepted: 02/02/2018] [Indexed: 05/28/2023]
Abstract
The filamentous fungus Sclerotinia sclerotiorum is an important plant pathogen with a worldwide distribution. It can infect a wide variety of plants, causing serious disease in many types of crops, such as rapeseed, sunflower and soybean. Sclerotinia stem rot caused by this fungus affects main crops and has led to great economic loss. Elicitors are a group of compounds that inspire the host plant to produce an immune response against invading pathogens. This study describes a protein that has high homology with the Trichoderma elicitor Sm1 and was found in the genome of S. sclerotiorum. We named this protein SsSm1. To determine whether this protein has an elicitor function like its homology protein, we constructed a heterologous expression vector for SsSm1 and expressed it in Escherichia coli. The protein of heterologous expression led to the formation of lesions in tobacco that closely resemble hypersensitive response lesions. Transient expression of the encoding gene of SsSm1 in tobacco leaves also caused hypersensitive response. Then, RNA silencing was used to identify the function of SsSm1. The hyphal growth and pathogenicity of silenced transformants were shown to be obviously lagging and branched abnormally. Transformants produced less infection cushions and deformed sclerotiorum. In addition, SsSm1 silencing caused weak tolerance to NaCl, sorbitol and SDS, and the sensitivity of mutants to carbendazim was also significantly decreased. Based on the above results, we speculate that this protein may be related to the development of hyphae, infection cushions and sclerotiorum, but the specific molecular mechanism needs to be studied further.
Collapse
Affiliation(s)
- Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Junjun Wei
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Chuanchun Yao
- Anhui Academy of Agricultural Sciences, Hefei 230036, China
| | - Hengxue Reng
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zhimou Gao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
17
|
Moore GG, Mack BM, Beltz SB, Puel O. Genome sequence of an aflatoxigenic pathogen of Argentinian peanut, Aspergillus arachidicola. BMC Genomics 2018; 19:189. [PMID: 29523080 PMCID: PMC5845213 DOI: 10.1186/s12864-018-4576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/02/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Aspergillus arachidicola is an aflatoxigenic fungal species, first isolated from the leaves of a wild peanut species native to Argentina. It has since been reported in maize, Brazil nut and human sputum samples. This aflatoxigenic species is capable of secreting both B and G aflatoxins, similar to A. parasiticus and A. nomius. It has other characteristics that may result in its misidentification as one of several other section Flavi species. This study offers a preliminary analysis of the A. arachidicola genome. RESULTS In this study we sequenced the genome of the A. arachidicola type strain (CBS 117610) and found its genome size to be 38.9 Mb, and its number of predicted genes to be 12,091, which are values comparable to those in other sequenced Aspergilli. A comparison of 57 known Aspergillus secondary metabolite gene clusters, among closely-related aflatoxigenic species, revealed nearly half were predicted to exist in the type strain of A. arachidicola. Of its predicted genes, 691 were identified as unique to the species and 60% were assigned Gene Ontology terms using BLAST2GO. Phylogenomic inference shows CBS 117610 sharing a most recent common ancestor with A. parasiticus. Finally, BLAST query of A. flavus mating-type idiomorph sequences to this strain revealed the presence of a single mating-type (MAT1-1) idiomorph. CONCLUSIONS Based on A. arachidicola morphological, genetic and chemotype similarities with A. flavus and A. parasiticus, sequencing the genome of A. arachidicola will contribute to our understanding of the evolutionary relatedness among aflatoxigenic fungi.
Collapse
Affiliation(s)
- Geromy G. Moore
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, Louisiana, 70124 USA
| | - Brian M. Mack
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, Louisiana, 70124 USA
| | - Shannon B. Beltz
- Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 1100 Robert E Lee Blvd, New Orleans, Louisiana, 70124 USA
| | - Olivier Puel
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
18
|
Fountain JC, Koh J, Yang L, Pandey MK, Nayak SN, Bajaj P, Zhuang WJ, Chen ZY, Kemerait RC, Lee RD, Chen S, Varshney RK, Guo B. Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Sci Rep 2018; 8:3430. [PMID: 29467403 PMCID: PMC5821837 DOI: 10.1038/s41598-018-21653-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/03/2018] [Indexed: 12/24/2022] Open
Abstract
Aspergillus flavus is an opportunistic pathogen of plants such as maize and peanut under conducive conditions such as drought stress resulting in significant aflatoxin production. Drought-associated oxidative stress also exacerbates aflatoxin production by A. flavus. The objectives of this study were to use proteomics to provide insights into the pathogen responses to H2O2-derived oxidative stress, and to identify potential biomarkers and targets for host resistance breeding. Three isolates, AF13, NRRL3357, and K54A with high, moderate, and no aflatoxin production, were cultured in medium supplemented with varying levels of H2O2, and examined using an iTRAQ (Isobaric Tags for Relative and Absolute Quantification) approach. Overall, 1,173 proteins were identified and 220 were differentially expressed (DEPs). Observed DEPs encompassed metabolic pathways including antioxidants, carbohydrates, pathogenicity, and secondary metabolism. Increased lytic enzyme, secondary metabolite, and developmental pathway expression in AF13 was correlated with oxidative stress tolerance, likely assisting in plant infection and microbial competition. Elevated expression of energy and cellular component production in NRRL3357 and K54A implies a focus on oxidative damage remediation. These trends explain isolate-to-isolate variation in oxidative stress tolerance and provide insights into mechanisms relevant to host plant interactions under drought stress allowing for more targeted efforts in host resistance research.
Collapse
Affiliation(s)
- Jake C Fountain
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA.,USDA-ARS Crop Protection and Management Research Unit, Tifton, GA, USA.,Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Jin Koh
- Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Liming Yang
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA.,USDA-ARS Crop Protection and Management Research Unit, Tifton, GA, USA.,College of Biology and Environmental Science, Nanjing Forestry University, Nanjing, China
| | - Manish K Pandey
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Spurthi N Nayak
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Prasad Bajaj
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Wei-Jian Zhuang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhi-Yuan Chen
- Department of Plant Pathology and Crop Physiology, Louisiana State University, Baton Rouge, LA, USA
| | - Robert C Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - R Dewey Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Baozhu Guo
- USDA-ARS Crop Protection and Management Research Unit, Tifton, GA, USA.
| |
Collapse
|
19
|
Wang D, Fu JF, Zhou RJ, Li ZB, Xie YJ. Proteomics research and related functional classification of liquid sclerotial exudates of Sclerotinia ginseng. PeerJ 2017; 5:e3979. [PMID: 29104825 PMCID: PMC5669253 DOI: 10.7717/peerj.3979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/11/2017] [Indexed: 02/01/2023] Open
Abstract
Sclerotinia ginseng is a necrotrophic soil pathogen that mainly infects the root and basal stem of ginseng, causing serious commercial losses. Sclerotia, which are important in the fungal life cycle, are hard, asexual, resting structures that can survive in soil for several years. Generally, sclerotium development is accompanied by the exudation of droplets. Here, the yellowish droplets of S. ginseng were first examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the proteome was identified by a combination of different analytical platforms. A total of 59 proteins were identified and classified into six categories: carbohydrate metabolism (39%), oxidation-reduction process (12%), transport and catabolism (5%), amino acid metabolism (3%), other functions (18%), and unknown protein (23%), which exhibited considerable differences in protein composition compared with droplets of S. sclerotium. In the carbohydrate metabolism group, several proteins were associated with sclerotium development, particularly fungal cell wall formation. The pathogenicity and virulence of the identified proteins are also discussed in this report. The findings of this study may improve our understanding of the function of exudate droplets as well as the life cycle and pathogenesis of S. ginseng.
Collapse
Affiliation(s)
- Dan Wang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jun Fan Fu
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ru Jun Zhou
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zi Bo Li
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yu Jiao Xie
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H. An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2017; 18:963-975. [PMID: 27353472 PMCID: PMC6638265 DOI: 10.1111/mpp.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/24/2016] [Indexed: 05/15/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic plant pathogen with a worldwide distribution. The sclerotia of S. sclerotiorum are pigmented multicellular structures formed from the aggregation of vegetative hyphae. These survival structures play a central role in the life and infection cycles of this pathogen. Here, we characterized an atypical forkhead (FKH)-box-containing protein, SsFKH1, involved in sclerotial development and virulence. To investigate the role of SsFkh1 in S. sclerotiorum, the partial sequence of SsFkh1 was cloned and RNA interference (RNAi)-based gene silencing was employed to alter the expression of SsFkh1. RNA-silenced mutants with significantly reduced SsFkh1 RNA levels exhibited slow hyphal growth and sclerotial developmental defects. In addition, the expression levels of a set of putative melanin biosynthesis-related laccase genes and a polyketide synthase-encoding gene were significantly down-regulated in silenced strains. Disease assays demonstrated that pathogenicity in RNAi-silenced strains was significantly compromised with the development of a smaller infection lesion on tomato leaves. Collectively, the results suggest that SsFkh1 is involved in hyphal growth, virulence and sclerotial formation in S. sclerotiorum.
Collapse
Affiliation(s)
- Huidong Fan
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Gang Yu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanzhi Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Xianghui Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jinliang Liu
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yanhua Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | | | - Fengjie Sun
- School of Science and TechnologyGeorgia Gwinnett CollegeLawrencevilleGA30024USA
| | - Hongyu Pan
- College of Plant SciencesJilin UniversityChangchun130062China
| |
Collapse
|
21
|
Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics 2017; 18:266. [PMID: 28356071 PMCID: PMC5372324 DOI: 10.1186/s12864-017-3642-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. Results Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. Conclusions The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. napus by S. sclerotiorum and provides information for further characterization of genes involved in the S. sclerotiorum-host plant interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3642-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shirin Seifbarghi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M Hossein Borhan
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
22
|
Lǚ Z, Kang X, Xiang Z, He N. Laccase Gene Sh-lac Is Involved in the Growth and Melanin Biosynthesis of Scleromitrula shiraiana. PHYTOPATHOLOGY 2017; 107:353-361. [PMID: 27870600 DOI: 10.1094/phyto-04-16-0180-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Scleromitrula shiraiana causes the popcorn disease in mulberry trees resulting in severe economic losses. Previous studies have shown that melanin may play a vital role in establishing the pathogenicity of fungi. In the present study, we identified the melanin produced in S. shiraiana belongs to DHN melanin by gas chromatography-mass spectrometry, and cloned the laccase Sh-lac, a potential DHN melanin biosynthesis gene from S. shiraiana. We obtained two stable Sh-lac silenced transformants using RNAi, ilac-4 and 8 to elucidate the DHN melanin biosynthetic pathway in S. shiraiana. The melanin production of ilac-4 and ilac-8 was significantly reduced, and their vegetative growth was also suppressed. Results such as these led to a proposal that Sh-lac played a key role in DHN melanin formation in S. shiraiana and may function differentially with other melanin biosynthetic genes. The inhibition of melanin was accompanied by the decrease of oxalic acid and the adhesion of hyphae was impaired. Our results indicated that laccase was an important enzyme in the synthesis of melanin and might play a critical role in the pathogenicity of S. shiraiana.
Collapse
Affiliation(s)
- Zhiyuan Lǚ
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xin Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
23
|
Zhang Z, Li H, Qin G, He C, Li B, Tian S. The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Sci Rep 2016; 6:33901. [PMID: 27658442 PMCID: PMC5034256 DOI: 10.1038/srep33901] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023] Open
Abstract
MADS-box transcription factors are highly conserved in eukaryotic species and involved in a variety of biological processes. Little is known, however, regarding the function of MADS-box genes in Botrytis cinerea, a fungal pathogen with a wide host range. Here, the functional role of the B. cinerea MADS-box gene, Bcmads1, was characterized in relation to the development, pathogenicity and production of sclerotia. The latter are formed upon incubation in darkness and serve as survival structures during winter and as the female parent in sexual reproduction. Bcmads1 is indispensable for sclerotia production. RT-qPCR analysis suggested that Bcmads1 modulated sclerotia formation by regulating the expression of light-responsive genes. Bcmads1 is required for the full virulence potential of B. cinerea on apple fruit. A comparative proteomic analysis identified 63 proteins, representing 55 individual genes that are potential targets of Bcmads1. Among them, Bcsec14 and Bcsec31 are associated with vesicle transport. Deletion of Bcsec14 and Bcsec31 resulted in a reduction in the virulence and protein secretion of B. cinerea. These results suggest that Bcmads1 may influence sclerotia formation by modulating light responsive gene expression and regulate pathogenicity by its effect on the protein secretion process.
Collapse
Affiliation(s)
- Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hua Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chang He
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Doughan B, Rollins JA. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 2016; 120:1105-17. [PMID: 27567717 DOI: 10.1016/j.funbio.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/09/2016] [Accepted: 06/07/2016] [Indexed: 01/13/2023]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus that relies on the completion of the sexual cycle to initiate aerial infections. The sexual cycle produces apothecia required for inoculum dispersal. In this study, insight into the regulation of apothecial multicellular development was pursued through functional characterization of mating-type genes. These genes are hypothesized to encode master regulatory proteins required for aspects of sexual development ranging from fertilization through fertile fruiting body development. Experimentally, loss-of-function mutants were created for the conserved core mating-type genes (MAT1-1-1, and MAT1-2-1), and the lineage-specific genes found only in S. sclerotiorum and closely related fungi (MAT1-1-5, and MAT1-2-4). The MAT1-1-1, MAT1-1-5, and MAT1-2-1 mutants are able to form ascogonia but are blocked in all aspects of apothecium development. These mutants also exhibit defects in secondary sexual characters including lower numbers of spermatia. The MAT1-2-4 mutants are delayed in carpogenic germination accompanied with altered disc morphogenesis and ascospore production. They too produce lower numbers of spermatia. All four MAT gene mutants showed alterations in the expression of putative pheromone precursor (Ppg-1) and pheromone receptor (PreA, PreB) genes. Our findings support the involvement of MAT genes in sexual fertility, gene regulation, meiosis, and morphogenesis in S. sclerotiorum.
Collapse
Affiliation(s)
- Benjamin Doughan
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA.
| |
Collapse
|
25
|
Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H. The Sclerotinia sclerotiorum FoxE2 Gene Is Required for Apothecial Development. PHYTOPATHOLOGY 2016; 106:484-490. [PMID: 26756829 DOI: 10.1094/phyto-08-15-0181-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sclerotinia sclerotiorum is a widely dispersed plant pathogenic fungus causing many diseases such as white mold, Sclerotinia stem rot, stalk rot, and Sclerotinia head rot on many varieties of broadleaf crops worldwide. Previous studies have shown that the Forkhead-box transcription factors (FOX TFs) play key regulatory roles in the sexual reproduction of some fungi. Ss-FoxE2 is one of four FOX TF family member genes in S. sclerotiorum. Based on ortholog function in other fungi it is hypothesized to function in S. sclerotiorum sexual reproduction. In this study, the role of Ss-FoxE2 in S. sclerotiorum was identified with a gene knock-out strategy. Following transformation and screening, strains having undergone homologous recombination in which the hygromycin resistance gene replaced the gene Ss-FoxE2 from the genomic DNA were identified. No difference in hyphae growth, number, and weight of sclerotia and no obvious change in virulence was observed among the wild type Ss-FoxE2 knock-out mutant and genetically complemented mutant; however, following induction of sclerotia for sexual development, apothecia were not formed in Ss-FoxE2 knock-out mutant. The Ss-FoxE2 gene expressed significantly higher in the apothecial stages than in other developmental stages. These results indicate that Ss-FoxE2 appears to be necessary for the regulation of sexual reproduction, but may not affect the pathogenicity and vegetative development of S. sclerotiorum significantly.
Collapse
Affiliation(s)
- Lu Wang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Yanzhi Liu
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062
| |
Collapse
|
26
|
Liang X, Moomaw EW, Rollins JA. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function. MOLECULAR PLANT PATHOLOGY 2015; 16:825-36. [PMID: 25597873 PMCID: PMC6638544 DOI: 10.1111/mpp.12239] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sclerotinia sclerotiorum pathogenesis requires the accumulation of high levels of oxalic acid (OA). To better understand the factors affecting OA accumulation, two putative oxalate decarboxylase (OxDC) genes (Ss-odc1 and Ss-odc2) were characterized. Ss-odc1 transcripts exhibited significant accumulation in vegetative hyphae, apothecia, early stages of compound appressorium development and during plant colonization. Ss-odc2 transcripts, in contrast, accumulated significantly only during mid to late stages of compound appressorium development. Neither gene was induced by low pH or exogenous OA in vegetative hyphae. A loss-of-function mutant for Ss-odc1 (Δss-odc1) showed wild-type growth, morphogenesis and virulence, and was not characterized further. Δss-odc2 mutants hyperaccumulated OA in vitro, were less efficient at compound appressorium differentiation and exhibited a virulence defect which could be fully bypassed by wounding the host plant prior to inoculation. All Δss-odc2 phenotypes were restored to the wild-type by ectopic complementation. An S. sclerotiorum strain overexpressing Ss-odc2 exhibited strong OxDC, but no oxalate oxidase activity. Increasing inoculum nutrient levels increased compound appressorium development, but not penetration efficiency, of Δss-odc2 mutants. Together, these results demonstrate differing roles for S. sclerotiorum OxDCs, with Odc2 playing a significant role in host infection related to compound appressorium formation and function.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Plant Pathology, University of Florida, PO Box 110680, Gainesville, FL, 32611-0680, USA
| | - Ellen W Moomaw
- Department of Chemistry and Biochemistry, Kennesaw State University, 1000 Chastain Road, MD# 1203, Kennesaw, GA, 30144, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, PO Box 110680, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
27
|
Liang X, Liberti D, Li M, Kim YT, Hutchens A, Wilson R, Rollins JA. Oxaloacetate acetylhydrolase gene mutants of Sclerotinia sclerotiorum do not accumulate oxalic acid, but do produce limited lesions on host plants. MOLECULAR PLANT PATHOLOGY 2015; 16:559-71. [PMID: 25285668 PMCID: PMC6638444 DOI: 10.1111/mpp.12211] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The oxaloacetate acetylhydrolase (OAH, EC 3.7.1.1)-encoding gene Ss-oah1 was cloned and functionally characterized from Sclerotinia sclerotiorum. Ss-oah1 transcript accumulation mirrored oxalic acid (OA) accumulation with neutral pH induction dependent on the pH-responsive transcriptional regulator Ss-Pac1. Unlike previously characterized ultraviolet (UV)-induced oxalate-deficient mutants ('A' mutants) which retain the capacity to accumulate OA, gene deletion Δss-oah1 mutants did not accumulate OA in culture or during plant infection. This defect in OA accumulation was fully restored on reintroduction of the wild-type (WT) Ss-oah1 gene. The Δss-oah1 mutants were also deficient in compound appressorium and sclerotium development and exhibited a severe radial growth defect on medium buffered at neutral pH. On a variety of plant hosts, the Δss-oah1 mutants established very restricted lesions in which the infectious hyphae gradually lost viability. Cytological comparisons of WT and Δss-oah1 infections revealed low and no OA accumulation, respectively, in subcuticular hyphae. Both WT and mutant hyphae exhibited a transient association with viable host epidermal cells at the infection front. In summary, our experimental data establish a critical requirement for OAH activity in S. sclerotiorum OA biogenesis and pathogenesis, but also suggest that factors independent of OA contribute to the establishment of primary lesions.
Collapse
Affiliation(s)
- Xiaofei Liang
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611-0680, USA
| | - Daniele Liberti
- Nunhems Netherlands BV, PO Box 4005, Haelen, 6080, AA, the Netherlands
| | - Moyi Li
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Young-Tae Kim
- Environmental Biotechnology Research Centre, 125 Gwahak-Ro, Yuseong-Gu, Daejeon, 305-806, South Korea
| | - Andrew Hutchens
- University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Ron Wilson
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611-0680, USA
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611-0680, USA
| |
Collapse
|
28
|
Terhem RB, van Kan JAL. Functional analysis of hydrophobin genes in sexual development of Botrytis cinerea. Fungal Genet Biol 2014; 71:42-51. [PMID: 25181040 DOI: 10.1016/j.fgb.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/03/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
Hydrophobins are small secreted fungal proteins that play roles in growth and development of filamentous fungi, i.e. in the formation of aerial structures and the attachment of hyphae to hydrophobic surfaces. In Botrytis cinerea, three hydrophobin genes have been identified. Studies by Mosbach et al. (2011) showed that hydrophobins are neither involved in conferring surface hydrophobicity to conidia and aerial hyphae of B. cinerea, nor are they required for virulence. The present study investigated the role of hydrophobins in sclerotium and apothecium development. Expression analysis revealed high expression of the Bhp1 gene during different stages of apothecium development. Two Bhp1 splice variants were detected that differ by an internal stretch of 13 amino acid residues. Seven different mutants in which either a single, two or three hydrophobin genes were knocked out, as well as two wild type strains of opposite mating types, were characterized for sclerotium and apothecium development. No aberrant morphology was observed in sclerotium development when single deletion mutants in hydrophobin genes were analyzed. Sclerotia of double knock out mutant ΔBhp1/ΔBhp3 and the triple knock out mutant, however, showed easily wettable phenotypes. For analyzing apothecium development, a reciprocal crossing scheme was setup. Morphological aberrations were observed in crosses with two hydrophobin mutants. When the double knock out mutant ΔBhp1/ΔBhp2 and the triple knock out mutant were used as the maternal parent (sclerotia), and fertilized with wild type microconidia, the resulting apothecia were swollen, dark brown in color and had a blotched surface. After initially growing upwards toward the light source, the apothecia in many cases collapsed due to loss of structural integrity. Aberrant apothecium development was not observed in the reciprocal cross, when these same mutants were used as the paternal parent (microconidia). These results indicate that the presence of hydrophobins in maternal tissue is important for normal development of apothecia of B. cinerea.
Collapse
Affiliation(s)
- Razak B Terhem
- Department of Forest Management, Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Malaysia; Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
29
|
Chang PK, Scharfenstein LL, Mack B, Yu J, Ehrlich KC. Transcriptomic profiles of Aspergillus flavus CA42, a strain that produces small sclerotia, by decanal treatment and after recovery. Fungal Genet Biol 2014; 68:39-47. [DOI: 10.1016/j.fgb.2014.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 01/12/2023]
|
30
|
Effect of revulsive cultivation on the yield and quality of newly formed sclerotia in medicinal Wolfiporia cocos. J Nat Med 2014; 68:576-85. [PMID: 24799082 DOI: 10.1007/s11418-014-0842-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Wolfiporia cocos is a well-known medicinal mushroom widely used in China, Japan and other Asiatic countries for its various therapeutic effects. 'Revulsive cultivation' is a newly developed method for promoting sclerotia growth in W. cocos field cultivation in China. In this report, we have systematically examined the effects of 'revulsive cultivation' on the yield and quality of newly formed sclerotia. The results showed that the genetic differences between the cultivated strain and the revulsive strain of T1 used in this study did not affect the formation process of new, large sclerotia in which the mycelia of the cultivated strain grew on pine logs directionally assembled on the revulsive strain. Additionally, 'revulsive cultivation', in which the cultivated strain and the revulsive strain used had the same or different genotypes, could remarkably increase the yield, lower the water content, and increase the water-soluble polysaccharide content of the newly formed sclerotia. Moreover, we observed that the changes in the values of the tested economic traits obtained from different genotype combinations through 'revulsive cultivation' were dissimilar. The correlations of these changes with the original sclerotium-forming ability of the cultivated strains and the genetic differences between the cultivated strain and the revulsive strain were not significant. These results will broaden our knowledge regarding the field cultivation of this medical fungus, stimulate new thinking on the study of sclerotium formation in some sclerotium-forming fungi, and promote further studies on the mechanism of sclerotium formation in W. cocos.
Collapse
|
31
|
The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 2014; 10:e1004040. [PMID: 24415947 PMCID: PMC3886904 DOI: 10.1371/journal.pgen.1004040] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/01/2013] [Indexed: 01/16/2023] Open
Abstract
Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress - even in the absence of light - and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection. Both fungal pathogens and their host plants respond to light, which represents an important environmental cue. Unlike plants using light for energy generation, filamentous fungi use light, or its absence, as a general signal for orientation (night/day, underground/on the surface). Therefore, dependent on the ecological niche of the fungus, light may control the development of reproductive structures (photomorphogenesis), the dispersal of propagules (phototropism of reproductive structures) and the circadian rhythm. As in other organisms, fungi have to protect themselves against the detrimental effects of light, i.e. the damage to macromolecules by emerging singlet oxygen. Adaptive responses are the accumulation of pigments, especially in the reproductive and survival structures such as spores, sclerotia and fruiting bodies. Light is sensed by fungal photoreceptors leading to quick responses on the transcriptional level, and is furthermore considered to result in the accumulation of reactive oxygen species (ROS). In this study, we provide evidence that an unbalanced ROS homoeostasis (generation outweighs detoxification) caused by the deletion of the light-responsive transcription factor BcLTF1 impairs the ability of the necrotrophic pathogen Botrytis cinerea to grow in the presence of additional oxidative stress arising during illumination or during infection of the host.
Collapse
|
32
|
Xiao X, Xie J, Cheng J, Li G, Yi X, Jiang D, Fu Y. Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:40-55. [PMID: 24299212 DOI: 10.1094/mpmi-05-13-0145-r] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
To decipher the mechanism of pathogenicity in Sclerotinia sclerotiorum, a pathogenicity-defective mutant, Sunf-MT6, was isolated from a T-DNA insertional library. Sunf-MT6 could not form compound appressorium and failed to induce lesions on leaves of rapeseed though it could produce more oxalic acid than the wild-type strain. However, it could enter into host tissues via wounds and cause typical necrotic lesions. Furthermore, Sunf-MT6 produced fewer but larger sclerotia than the wild-type strain Sunf-M. A gene, named Ss-caf1, was disrupted by T-DNA insertion in Sunf-MT6. Gene complementation and knockdown experiments confirmed that the disruption of Ss-caf1 was responsible for the phenotypic changes of Sunf-MT6. Ss-caf1 encodes a secretory protein with a putative Ca(2+)-binding EF-hand motif. High expression levels of Ss-caf1 were observed at an early stage of compound appressorium formation and in immature sclerotia. Expression of Ss-caf1 without signal peptides in Nicotiana benthamiana via Tobacco rattle virus-based vectors elicited cell death. These results suggest that Ss-caf1 plays an important role in compound appressorium formation and sclerotial development of S. sclerotiorum. In addition, Ss-Caf1 has the potential to interact with certain host proteins or unknown substances in host cells, resulting in subsequent host cell death.
Collapse
|
33
|
Li M, Liang X, Rollins JA. Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) is required for regulating glutathione accumulation and development of sclerotia and compound appressoria. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:412-420. [PMID: 22046959 DOI: 10.1094/mpmi-06-11-0159] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transcripts encoding Sclerotinia sclerotiorum γ-glutamyl transpeptidase (Ss-Ggt1) were found to accumulate specifically during sclerotium, apothecium, and compound appressorium development in S. sclerotiorum. To determine the requirement of this protein in these developmental processes, gene deletion mutants of Ss-ggt1 were generated and five independent homokaryotic ΔSs-ggt1 mutants were characterized. All deletion mutants overproduced sclerotial initials that were arrested in further development or eventually produced sclerotia with aberrant rind layers. During incubation for carpogenic germination, these sclerotia decayed and failed to produce apothecia. Total glutathione accumulation was approximately 10-fold higher and H(2)O(2) hyperaccumulated in ΔSs-ggt1 sclerotia compared with the wild type. Production of compound appressoria was also negatively affected. On host plants, these mutants exhibited a defect in infection efficiency and a delay in initial symptom development unless the host tissue was wounded prior to inoculation. These results suggest that Ss-Ggt1 is the primary enzyme involved in glutathione recycling during these key developmental stages of the S. sclerotiorum life cycle but Ss-Ggt1 is not required for host colonization and symptom development. The accumulation of oxidized glutathione is hypothesized to negatively impact these developmental processes by disrupting the dynamic redox environment associated with multicellular development.
Collapse
Affiliation(s)
- Moyi Li
- Department of Molecular Genetics and Microbiogical, University of Florida, Gainesville 32611, USA
| | | | | |
Collapse
|
34
|
Jin FJ, Nishida M, Hara S, Koyama Y. Identification and characterization of a putative basic helix-loop-helix transcription factor involved in the early stage of conidiophore development in Aspergillus oryzae. Fungal Genet Biol 2011; 48:1108-15. [PMID: 22008745 DOI: 10.1016/j.fgb.2011.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
Abstract
The helix-loop-helix (HLH) family of transcriptional factors is a key player in a wide range of developmental processes. HLH proteins form homo- and/or heterodimers with other HLH proteins and bind to E-box motifs. The regulation and functions of these proteins can be complex due to their bifunctional roles as activators and repressors of gene transcription. In this study, we isolated and characterized a novel predicted bHLH protein-encoding gene, AO090023000902, designated ecdR (early conidiophore development regulator), in Aspergillus oryzae. The ecdR gene disruptant produced very few conidia. Conversely, the overexpression of ecdR resulted in the formation of a large number of conidia at an early stage, suggesting that the EcdR protein is required for early asexual development. Additionally, when serially diluted conidia were spread-cultivated onto malt agar medium, we found that conidial number of the control strain depended on the cultivated conidium density, while the ecdR-overexpressing strain showed no significant change in conidiation. These phenotypes of ecdR-disruptant and ecdR-overexpressing strains are partially similar to those of the sclR-overexpressing strain and sclR-disruptant, respectively. Yeast two-hybrid assays and sclR, ecdR-double deletion experiment indicated that EcdR plays a major role in conidiation, and SclR represses this function by competitively interacting with EcdR in A. oryzae.
Collapse
Affiliation(s)
- Feng Jie Jin
- Noda Institute for Scientific Research, 399 Noda, Noda City 278-0037, Japan.
| | | | | | | |
Collapse
|
35
|
Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 2011; 7:e1002230. [PMID: 21876677 PMCID: PMC3158057 DOI: 10.1371/journal.pgen.1002230] [Citation(s) in RCA: 661] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/22/2011] [Indexed: 12/03/2022] Open
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
Collapse
Affiliation(s)
- Joelle Amselem
- Unité de Recherche Génomique – Info, UR1164, INRA, Versailles, France
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Christina A. Cuomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jan A. L. van Kan
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Muriel Viaud
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Ernesto P. Benito
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias, Universidad de Salamanca, Salamanca, Spain
| | | | - Pedro M. Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS – Université de la Méditerranée et Université de Provence, Marseille, France
| | - Ronald P. de Vries
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht, The Netherlands
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
| | - Paul S. Dyer
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Sabine Fillinger
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Elisabeth Fournier
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
- Biologie et Génétique des Interactions Plante-Parasite, CIRAD – INRA – SupAgro, Montpellier, France
| | - Lilian Gout
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Matthias Hahn
- Faculty of Biology, Kaiserslautern University, Kaiserslautern, Germany
| | - Linda Kohn
- Biology Department, University of Toronto, Mississauga, Canada
| | - Nicolas Lapalu
- Unité de Recherche Génomique – Info, UR1164, INRA, Versailles, France
| | - Kim M. Plummer
- Botany Department, La Trobe University, Melbourne, Australia
| | - Jean-Marc Pradier
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Emmanuel Quévillon
- Unité de Recherche Génomique – Info, UR1164, INRA, Versailles, France
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Adeline Simon
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Arjen ten Have
- Instituto de Investigaciones Biologicas – CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Bettina Tudzynski
- Molekularbiologie und Biotechnologie der Pilze, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | - Paul Tudzynski
- Molekularbiologie und Biotechnologie der Pilze, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | | | - Marion Andrew
- Biology Department, University of Toronto, Mississauga, Canada
| | | | | | - Rolland Beffa
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Isabelle Benoit
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht, The Netherlands
| | - Ourdia Bouzid
- Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Utrecht, The Netherlands
| | - Baptiste Brault
- Unité de Recherche Génomique – Info, UR1164, INRA, Versailles, France
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Zehua Chen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mathias Choquer
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Jérome Collémare
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Pascale Cotton
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Etienne G. Danchin
- Interactions Biotiques et Santé Plantes, UMR5240, INRA – Université de Nice Sophia-Antipolis – CNRS, Sophia-Antipolis, France
| | | | - Angélique Gautier
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Corinne Giraud
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Tatiana Giraud
- Laboratoire d'Ecologie, Systématique et Evolution, Université Paris-Sud – CNRS – AgroParisTech, Orsay, France
| | - Celedonio Gonzalez
- Departamento de Bioquímica y Biología Molecular, Universidad de La Laguna, Tenerife, Spain
| | - Sandrine Grossetete
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Ulrich Güldener
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Bioinformatics and Systems Biology, Neuherberg, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS – Université de la Méditerranée et Université de Provence, Marseille, France
| | | | - Chinnappa Kodira
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Anne Lappartient
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Michaela Leroch
- Faculty of Biology, Kaiserslautern University, Kaiserslautern, Germany
| | - Caroline Levis
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
| | - Evan Mauceli
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Cécile Neuvéglise
- Biologie Intégrative du Métabolisme Lipidique Microbien, UMR1319, INRA – Micalis – AgroParisTech, Thiverval-Grignon, France
| | - Birgitt Oeser
- Molekularbiologie und Biotechnologie der Pilze, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | - Matthew Pearson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Julie Poulain
- GENOSCOPE, Centre National de Séquençage, Evry, France
| | - Nathalie Poussereau
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Hadi Quesneville
- Unité de Recherche Génomique – Info, UR1164, INRA, Versailles, France
| | - Christine Rascle
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Julia Schumacher
- Molekularbiologie und Biotechnologie der Pilze, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | | | - Adrienne Sexton
- School of Botany, University of Melbourne, Melbourne, Australia
| | - Evelyn Silva
- Fundacion Ciencia para la Vida and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Catherine Sirven
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Darren M. Soanes
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Matt Templeton
- Plant and Food Research, Mt. Albert Research Centre, Auckland, New Zealand
| | - Chandri Yandava
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, Hebrew University Jerusalem, Rehovot, Israel
| | - Qiandong Zeng
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Rollins
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Marc-Henri Lebrun
- Unité de Recherche Génomique – Info, UR1164, INRA, Versailles, France
- Biologie et Gestion des Risques en Agriculture – Champignons Pathogènes des Plantes, UR1290, INRA, Grignon, France
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes de Plantes, UMR5240, Université de Lyon 1 – CNRS – BAYER S.A.S., Lyon, France
| | - Marty Dickman
- Institute for Plant Genomics and Biotechnology, Borlaug Genomics and Bioinformatics Center, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
36
|
SclR, a basic helix-loop-helix transcription factor, regulates hyphal morphology and promotes sclerotial formation in Aspergillus oryzae. EUKARYOTIC CELL 2011; 10:945-55. [PMID: 21551246 DOI: 10.1128/ec.00013-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most known basic-region helix-loop-helix (bHLH) proteins belong to a superfamily of transcription factors often involved in the control of growth and differentiation. Therefore, inappropriate expression of genes encoding bHLH proteins is frequently associated with developmental dysfunction. In our previously reported study, a novel bHLH protein-encoding gene (AO090011000215) of Aspergillus oryzae was identified. The gene-disrupted strain was found to produce dense conidia, but sparse sclerotia, relative to the parent strain. Here, to further analyze its function, we generated an overexpressing strain using the A. oryzae amyB gene promoter. Genetic overexpression led to a large number of initial hyphal aggregations and then the formation of mature sclerotia; it was therefore designated sclR (sclerotium regulator). At the same time, the sclR-overexpressing strain also displayed both delayed and decreased conidiation. Scanning electron microscopy indicated that the aerial hyphae of the sclR-overexpressing strain were extremely branched and intertwined with each other. In the generation of the SclR-enhanced green fluorescent protein (EGFP) expression strain, the SclR-EGFP protein fusion was conditionally detected in the nuclei. In addition, the loss of sclR function led to rapid protein degradation and cell lysis in dextrin-polypeptone-yeast extract liquid medium. Taken together, these observations indicate that SclR plays an important role in hyphal morphology, asexual conidiospore formation, and the promotion of sclerotial production, even retaining normal cell function, at least in submerged liquid culture.
Collapse
|
37
|
Liang Y, Rahman MH, Strelkov SE, Kav NNV. Developmentally induced changes in the sclerotial proteome of Sclerotinia sclerotiorum. Fungal Biol 2010; 114:619-27. [PMID: 20943173 DOI: 10.1016/j.funbio.2010.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 12/01/2022]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal phytopathogen with a broad host range. The fungus produces sclerotia, long-term survival and dissemination structures that serve as the primary source of inoculum during seasonal crop infection cycles. Herein, we report the first proteomics-based analysis of sclerotial development. A total of 88 protein spots were observed by two-dimensional gel electrophoresis (2-DE) to exhibit significant temporal differences in abundance at three representative stages of sclerotial development, and the identities of these proteins were established using LC-MS/MS. The proteins were classified into several functional categories including metabolism, energy, transcription and protein fate, cell defense, differentiation, and proteins with as of yet unknown functions. In addition, proteins involved in the process of melanogenesis were found to be differentially abundant during sclerotial development, as was the development-specific protein, Ssp. This study provides a starting point towards achieving a comprehensive understanding of the proteins and molecular events associated with sclerotial development.
Collapse
Affiliation(s)
- Yue Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | | | | |
Collapse
|
38
|
Liang Y, Strelkov SE, Kav NNV. The Proteome of Liquid Sclerotial Exudates from Sclerotinia sclerotiorum. J Proteome Res 2010; 9:3290-8. [DOI: 10.1021/pr900942w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen E. Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
39
|
The development-specific ssp1 and ssp2 genes of Sclerotinia sclerotiorum encode lectins with distinct yet compensatory regulation. Fungal Genet Biol 2010; 47:531-8. [PMID: 20350614 DOI: 10.1016/j.fgb.2010.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/05/2010] [Accepted: 03/23/2010] [Indexed: 11/21/2022]
Abstract
The Ssp1 development-specific protein is the most abundant soluble protein in sclerotia and apothecia of Sclerotinia sclerotiorum. Although closely associated with these developmental stages, the functions of the Ssp1 protein and its paralog, Ssp2, are not known. In this study, protein structure prediction analysis revealed that Ssp1 and Ssp2 are structurally similar to fucose-specific lectins. In an effort to understand the function of these abundant, development-specific proteins, a homokaryotic ssp1 deletion mutant was generated. The resulting mutant (Deltassp1) displays a wild-type growth and development phenotype in culture but produces approximately 50% fewer sclerotia in cultures supplemented with hygromycin. Genetic complementation with a wild-type copy of ssp1 restores normal sclerotium formation in the presence of hygromycin. This suggests that Ssp1 might play a role in resistance to glycoside-containing antibiotics encountered in the environment. Although a slight delay in carpogenic germination was observed, no additional effects of ssp1 loss-of-function were found in regards to apothecial morphology or fecundity. When the expression of ssp2 was examined in the Deltassp1 mutant, it was found to be expressed earlier in sclerotial development and its encoded protein accumulated to higher levels in both sclerotia and apothecia. These findings suggest regulatory compensation for loss of Ssp1 coupled with potential functional redundancy among lectins accumulating in sclerotia and apothecia.
Collapse
|