1
|
Wang SF, Chang YL, Liu TY, Huang KH, Fang WL, Li AFY, Yeh TS, Hung GY, Lee HC. Mitochondrial dysfunction decreases cisplatin sensitivity in gastric cancer cells through upregulation of integrated stress response and mitokine GDF15. FEBS J 2024; 291:1131-1150. [PMID: 37935441 DOI: 10.1111/febs.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Gastric neoplasm is a high-mortality cancer worldwide. Chemoresistance is the obstacle against gastric cancer treatment. Mitochondrial dysfunction has been observed to promote malignant progression. However, the underlying mechanism is still unclear. The mitokine growth differentiation factor 15 (GDF15) is a significant biomarker for mitochondrial disorder and is activated by the integrated stress response (ISR) pathway. The serum level of GDF15 was found to be correlated with the poor prognosis of gastric cancer patients. In this study, we found that high GDF15 protein expression might increase disease recurrence in adjuvant chemotherapy-treated gastric cancer patients. Moreover, treatment with mitochondrial inhibitors, especially oligomycin (a complex V inhibitor) and salubrinal (an ISR activator), respectively, was found to upregulate GDF15 and enhance cisplatin insensitivity of human gastric cancer cells. Mechanistically, it was found that the activating transcription factor 4-C/EBP homologous protein pathway has a crucial function in the heightened manifestation of GDF15. In addition, reactive oxygen species-activated general control nonderepressible 2 mediates the oligomycin-induced ISR, and upregulates GDF15. The GDF15-glial cell-derived neurotrophic factor family receptor a-like-ISR-cystine/glutamate transporter-enhanced glutathione production was found to be involved in cisplatin resistance. These results suggest that mitochondrial dysfunction might enhance cisplatin insensitivity through GDF15 upregulation, and targeting mitokine GDF15-ISR regulation might be a strategy against cisplatin resistance of gastric cancer.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taiwan
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taiwan
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yu Liu
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hung Huang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
- Department of Surgery, Gastric Cancer Medical Center, Taipei Veterans General Hospital, Taiwan
| | - Wen-Liang Fang
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
- Department of Surgery, Gastric Cancer Medical Center, Taipei Veterans General Hospital, Taiwan
| | - Anna Fen-Yau Li
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Anatomical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Giun-Yi Hung
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pharmacy, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Mostafavi S, Eskandari N. Mitochondrion: Main organelle in orchestrating cancer escape from chemotherapy. Cancer Rep (Hoboken) 2024; 7:e1942. [PMID: 38151790 PMCID: PMC10849933 DOI: 10.1002/cnr2.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Chemoresistance is a challenging barrier to cancer therapy, and in this context, the role of mitochondria is significant. We put emphasis on key biological characteristics of mitochondria, contributing to tumor escape from various therapies, to find the "Achilles' Heel" of cancer cells for future drug design. RECENT FINDINGS The mitochondrion is a dynamic organelle, and its existence is important for tumor growth. Its metabolites also cooperate with cell signaling in tumor proliferation and drug resistance. CONCLUSION Biological characteristics of this organelle, such as redox balance, DNA depletion, and metabolic reprogramming, provide flexibility to cancer cells to cope with therapy-induced stress.
Collapse
Affiliation(s)
- Samaneh Mostafavi
- Department of Immunology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Nahid Eskandari
- Department of Immunology, Faculty of MedicineIsfahan University of Medical ScienceIsfahanIran
| |
Collapse
|
3
|
Potter A, Cabrera-Orefice A, Spelbrink JN. Let's make it clear: systematic exploration of mitochondrial DNA- and RNA-protein complexes by complexome profiling. Nucleic Acids Res 2023; 51:10619-10641. [PMID: 37615582 PMCID: PMC10602928 DOI: 10.1093/nar/gkad697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Johannes N Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Liu H, Wu X, Yang T, Wang C, Huang F, Xu Y, Peng J. NARFL deficiency caused mitochondrial dysfunction in lung cancer cells by HIF-1α-DNMT1 axis. Sci Rep 2023; 13:17176. [PMID: 37821486 PMCID: PMC10567771 DOI: 10.1038/s41598-023-44418-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
NARFL was reported to be a component of cytosolic iron-sulfur cluster assembly pathway and a causative gene of the diffused pulmonary arteriovenous malformations (dPAVMs). NARFL knockout dramatically impaired mitochondrial integrity in mice, which might promote mitochondrial dysfunction and lead to worse survival rate of lung cancer. However, the underlying molecular mechanism of NARFL deficiency in non-small cell lung cancer (NSCLC) is unknown. Knockdown assay was performed in A549 and H1299 cells. The protein levels of HIF-1α and DNMT1 were measured, and then Complex I activity, mtDNA copy numbers and mRNA levels of mtND genes were determined. Cisplatin resistance and cell proliferation were conducted using CCK8 assay. Cell migration and invasion were detected using wound heal assay and transwell assay. Survival analysis of lung cancer patients and KM plotter database were used for evaluating the potential value of NARFL deficiency. NARFL protein was expressed in two cell lines and knockdown assay significantly reduced its levels. Knockdown NARFL increased the protein levels of HIF-1α and DNMT1, and downregulated the mRNA levels of ND genes, mitochondrial Complex I activity, mtDNA copy number, and ATP levels. The mitochondrial dysfunction caused by NARFL deficiency were ameliorated by siHIF-1α and DNMT1 inhibitor. Knockdown NARFL increased the drug resistance and cell migration, and siHIF-1α reversed this effect. Moreover, NSCLC patients with NARFL deficiency had a poor survival rate using a tissue array and KM plotter database, and it would be a target for cancer prognosis and treatment. NARFL deficiency caused dysregulation of energy metabolism in lung cancer cells via HIF-1α-DNMT1 axis, which promoted drug resistance and cell migration. It provided a potential target for treatment and prognosis of lung cancer.
Collapse
Affiliation(s)
- Hongzhou Liu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26# Shengli Road, Wuhan, 430014, Hubei Province, People's Republic of China
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, 82# Qinglong Street, Chengdu, 610014, Sichuan Province, People's Republic of China
| | - Xueqin Wu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
| | - Tianrong Yang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
| | - Chen Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, People's Republic of China
| | - Fei Huang
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China.
| | - Jie Peng
- School of Clinical Medicine, The First Affiliated Hospital of Chengdu Medical College, 783# Xindu Avenue, Chengdu, 610500, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
The role of mitochondria in pharmacological ascorbate-induced toxicity. Sci Rep 2022; 12:22521. [PMID: 36581766 PMCID: PMC9800562 DOI: 10.1038/s41598-022-27185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
At pharmacological levels, ascorbate (P-AscH-) acts as a pro-oxidant by generating H2O2, depleting ATP in sensitive cells leading to cell death. The aim of this study was to determine the role of ATP production by oxidative phosphorylation or glycolysis in mechanisms of resistance to P-AscH-induced cell death. Pancreatic cancer cells were used to generate ρ0 cells by mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase or Herpes Simplex Virus protein. The ρ0 phenotype was confirmed by probing for mitochondrial DNA, mitochondrial DNA-encoded cytochrome c oxidase subunit 2, and monitoring the rate of oxygen consumption. In ρ0 cells, glycolysis accounted for 100% of ATP production as there was no mitochondrial oxygen consumption. Even though the activities of H2O2-removing antioxidant enzymes were similar in both the parental and ρ0 clones, P-AscH- -induced clonogenic cell death in ρ0 cells showed more resistance than the parental cell line. In addition, P-AscH- induced more DNA damage and more consumption of NAD+ and greater decreases in the production of ATP in the parental cell line compared to the ρ0 cells. Thus, cancer cells that largely use oxidative phosphorylation to generate ATP may be more sensitive to P-AscH- compared with cells that are glycolysis-dependent.
Collapse
|
6
|
Will Castro LSEP, Pieters W, Alemdehy MF, Aslam MA, Buoninfante OA, Raaijmakers JA, Pilzecker B, van den Berk PCM, Te Riele H, Medema RH, Pedrosa RC, Jacobs H. The Widely Used Antihelmintic Drug Albendazole is a Potent Inducer of Loss of Heterozygosity. Front Pharmacol 2021; 12:596535. [PMID: 33679394 PMCID: PMC7935534 DOI: 10.3389/fphar.2021.596535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The antihelmintic drug ABZ and its metabolites belong to the chemical family of benzimidazoles (BZM) that act as potent tubulin polymerization inhibitors, suggesting a potential re-direction of BZMs for cancer therapy. Applying UV-Vis spectrometry we here demonstrate ABZ as a DNA intercalator. This insight led us to determine the primary mode of ABZ action in mammalian cells. As revealed by RNA sequencing, ABZ did neither grossly affect replication as analyzed by survival and replication stress signaling, nor the transcriptome. Actually, unbiased transcriptome analysis revealed a marked cell cycle signature in ABZ exposed cells. Indeed, short-term exposure to ABZ arrested mammalian cells in G2/M cell cycle stages associated with frequent gains and losses of chromatin. Cellular analyses revealed ABZ as a potent mammalian spindle poison for normal and malignant cells, explaining the serious chromosome segregation defects. Since chromosomal aberrations promote both cancer development and cell death, we determined if besides its general cytotoxicity, ABZ could predispose to tumor development. As measured by loss of heterozygosity (LOH) in vitro and in vivo ABZ was found as a potent inducer of LOH and accelerator of chromosomal missegregation.
Collapse
Affiliation(s)
- Luiza S E P Will Castro
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Wietske Pieters
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Muhammad A Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Jonne A Raaijmakers
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Bas Pilzecker
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Paul C M van den Berk
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Hein Te Riele
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Rozangela C Pedrosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
7
|
Pareek G, Pallanck LJ. Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression. PLoS Genet 2020; 16:e1009118. [PMID: 33075064 PMCID: PMC7595625 DOI: 10.1371/journal.pgen.1009118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/29/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022] Open
Abstract
The m-AAA proteases play a critical role in the proteostasis of inner mitochondrial membrane proteins, and mutations in the genes encoding these proteases cause severe incurable neurological diseases. To further explore the biological role of the m-AAA proteases and the pathological consequences of their deficiency, we used a genetic approach in the fruit fly Drosophila melanogaster to inactivate the ATPase family gene 3-like 2 (AFG3L2) gene, which encodes a critical component of the m-AAA proteases. We found that null alleles of Drosophila AFG3L2 die early in development, but partial inactivation of AFG3L2 using RNAi allowed survival to the late pupal and adult stages of development. Flies with partial inactivation of AFG3L2 exhibited behavioral defects, neurodegeneration, accumulation of unfolded mitochondrial proteins, and diminished respiratory chain (RC) activity. Further work revealed that the reduced RC activity was primarily a consequence of severely diminished mitochondrial transcription and translation. These defects were accompanied by activation of the mitochondrial unfolded protein response (mito-UPR) and autophagy. Overexpression of mito-UPR components partially rescued the AFG3L2-deficient phenotypes, indicating that protein aggregation partly accounts for the defects of AFG3L2-deficient animals. Our work suggests that strategies designed to activate mitochondrial stress pathways and mitochondrial gene expression could be therapeutic in the diseases caused by mutations in AFG3L2.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Genome Sciences, University of Washington, Seattle, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:E2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
9
|
Wang SF, Chen S, Tseng LM, Lee HC. Role of the mitochondrial stress response in human cancer progression. Exp Biol Med (Maywood) 2020; 245:861-878. [PMID: 32326760 PMCID: PMC7268930 DOI: 10.1177/1535370220920558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Dysregulated mitochondria often occurred in cancers. Mitochondrial dysfunction might contribute to cancer progression. We reviewed several mitochondrial stresses in cancers. Mitochondrial stress responses might contribute to cancer progression. Several mitochondrion-derived molecules (ROS, Ca2+, oncometabolites, exported mtDNA, mitochondrial double-stranded RNA, humanin, and MOTS-c), integrated stress response, and mitochondrial unfolded protein response act as retrograde signaling pathways and might be critical in the development and progression of cancer. Targeting these mitochondrial stress responses may be an important strategy for cancer treatment.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, 112 Taipei
- School of Pharmacy, Taipei Medical University, 110 Taipei
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, CA 91010, USA
| | - Ling-Ming Tseng
- Division of General Surgery, Department of Surgery, Comprehensive Breast Health Center, Taipei Veterans General Hospital, 112 Taipei
- Department of Surgery, School of Medicine, National Yang-Ming University, 112 Taipei
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, 112 Taipei
| |
Collapse
|
10
|
Lim JS, Jung GY, Park SY. Nkx-2.5 Regulates MDR1 Expression via Its Upstream Promoter in Breast Cancer Cells. J Korean Med Sci 2019; 34:e100. [PMID: 30940996 PMCID: PMC6439202 DOI: 10.3346/jkms.2019.34.e100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Increased expression of MDR1 gene is one of the major mechanisms responsible for multidrug resistance in cancer cells. Two alternative promoters, upstream and downstream, are responsible for transcription of MDR1 gene in the human. However, the molecular mechanism regarding the transactivation of MDR1 upstream promoter (USP) has not been determined. METHODS Dual-luciferase reporter gene assays were used to assess the effect of Nkx-2.5 on MDR1 USP activity using reporter plasmids for human MDR1 USP and its mutants. MDR1 mRNA level was examined by quantitative real-time PCR. The direct binding of Nkx-2.5 to the USP of MDR1 was evaluated by promoter enzyme immunoassays and chromatin immunoprecipitation assays. RESULTS Nkx-2.5 significantly stimulates the transactivation of MDR1 USP and increases MDR1 mRNA expression in MCF7 breast cancer cells. Reporter gene assays with deleted MDR1 USPs showed that the Nkx-2.5-binding site is located between positions -71 and +12. Mutation of the Nkx-2.5-binding site at nucleotide +4 to +10 markedly reduced the Nkx-2.5-mediated activation of MDR1 USP activity. A promoter binding immunoassay and a chromatin immunoprecipitation assay revealed that Nkx-2.5 binds directly to the region +4/+10 of human MDR1 USP. CONCLUSION The results in the present study show Nkx-2.5 is a positive regulator for the transactivation of MDR1 USP in MCF7 breast cancer cells. Our findings will help elucidate the regulatory mechanism responsible for the multidrug resistant cancer phenotype.
Collapse
Affiliation(s)
- Jung-Suk Lim
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| | - Gyu Yeon Jung
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| |
Collapse
|
11
|
The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance. Biochem J 2018; 475:2305-2328. [PMID: 30064989 DOI: 10.1042/bcj20170712] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/11/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022]
Abstract
Intercellular communications play a major role in tissue homeostasis. In pathologies such as cancer, cellular interactions within the tumor microenvironment (TME) contribute to tumor progression and resistance to therapy. Tunneling nanotubes (TNTs) are newly discovered long-range intercellular connections that allow the exchange between cells of various cargos, ranging from ions to whole organelles such as mitochondria. TNT-transferred mitochondria were shown to change the metabolism and functional properties of recipient cells as reported for both normal and cancer cells. Metabolic plasticity is now considered a hallmark of cancer as it notably plays a pivotal role in drug resistance. The acquisition of cancer drug resistance was also associated to TNT-mediated mitochondria transfer, a finding that relates to the role of mitochondria as a hub for many metabolic pathways. In this review, we first give a brief overview of the various mechanisms of drug resistance and of the cellular communication means at play in the TME, with a special focus on the recently discovered TNTs. We further describe recent studies highlighting the role of the TNT-transferred mitochondria in acquired cancer cell drug resistance. We also present how changes in metabolic pathways, including glycolysis, pentose phosphate and lipid metabolism, are linked to cancer cell resistance to therapy. Finally, we provide examples of novel therapeutic strategies targeting mitochondria and cell metabolism as a way to circumvent cancer cell drug resistance.
Collapse
|
12
|
Sodium butyrate increases P-gp expression in lung cancer by upregulation of STAT3 and mRNA stabilization of ABCB1. Anticancer Drugs 2018; 29:227-233. [PMID: 29293118 DOI: 10.1097/cad.0000000000000588] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As a new type of anticancer drug, the effect of histone deacetylase inhibitors (HDACIs) in cancer clinical therapy is disappointing owing to drug resistance. P-glycoprotein (P-gp) is clearly recognized as a multidrug resistance protein. However, the relationship between P-gp and sodium butyrate (SB), a kind of HDACIs, has not been investigated. In this study, we found that SB increased mRNA and protein expression of P-gp in lung cancer cells and the underlying mechanisms were elucidated. We found that SB treatment enhanced the mRNA and protein expression of STAT3 rather than that of β-catenin, Foxo3a, PXR, or CAR, which were reported to directly regulate the transcription of ABCB1, a P-gp-encoding gene. Interestingly, inhibition of STAT3 expression obviously attenuated SB-increased P-gp expression in lung cancer cells, indicating that STAT3 played an important role in SB-mediated P-gp upregulation. Furthermore, we found that SB increased the mRNA stability of ABCB1. In summary, this study showed that SB increased P-gp expression by facilitating transcriptional activation and improving ABCB1 mRNA stability. This study indicated that we should pay more attention to HDACIs during cancer clinical therapy.
Collapse
|
13
|
Mou JJ, Peng J, Shi YY, Li N, Wang Y, Ke Y, Zhou YF, Zhou FX. Mitochondrial DNA content reduction induces aerobic glycolysis and reversible resistance to drug-induced apoptosis in SW480 colorectal cancer cells. Biomed Pharmacother 2018; 103:729-737. [PMID: 29684851 DOI: 10.1016/j.biopha.2018.04.099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 01/15/2023] Open
Abstract
Mutations and reductions in mitochondrial DNA (mtDNA), which are frequent in human tumors, may contribute to enhancing their malignant phenotypes. However, the effects of mtDNA abnormalities in colorectal cancer remain largely unknown. In this study, mtDNA-reduced cell model was established by partial depletion of mtDNA in SW480 cells and the effects of mtDNA reduction in colorectal cancer cells were investigated. We found that mtDNA-reduced cells had enhanced glucose uptake and generated markedly higher level of lactate. These changes were accompanied by only a slight reduction in ATP production compared with the parent cells. Furthermore, the activity of the glycolytic enzymes, hexokinase (HK) and phosphofructokinase (PFK), was increased in mtDNA-reduced cells. These results suggested a switch to aerobic glycolysis in mtDNA-reduced cells, which helped the cells to gain a survival advantage. Notably, when mtDNA content was restored, metabolism returned to normal. In addition, the mtDNA-reduced cells were highly resistant to 5-fluorouracil- and oxaliplatin-induced apoptosis and this drug resistance was reversible following recovery of the mtDNA content. We also found that the Akt/mTOR pathway was activated in the mtDNA-reduced cells. This pathway might play a significant role in drug resistance in the mtDNA-reduced cells as drug susceptibility was restored when this pathway was inhibited. Taken together, our results supported the notion that mtDNA reduction induced aerobic glycolysis and a reversible apoptosis-resistant phenotype in SW480 cells, and that the Akt/mTOR pathway might be involved in the drugs-induced apoptosis resistance.
Collapse
Affiliation(s)
- Jing-Jing Mou
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Ying-Ying Shi
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Na Li
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - You Wang
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Yuan Ke
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, PR China; Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Yun-Feng Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China
| | - Fu-Xiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, PR China; Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuchang, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
14
|
Wang H, Huang C, Zhao L, Zhang H, Yang JM, Luo P, Zhan BX, Pan Q, Li J, Wang BL. Histone deacetylase inhibitors regulate P-gp expression in colorectal cancer via transcriptional activation and mRNA stabilization. Oncotarget 2018; 7:49848-49858. [PMID: 27409663 PMCID: PMC5226552 DOI: 10.18632/oncotarget.10488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/12/2016] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase inhibitors (HDACIs) are emerging as a novel class of anti-tumor drugs. But the effect of HDACIs in tumors treatment has been disappointing, which mainly due to the acquisition of resistance to HDACIs. However, the underlying mechanisms have not been clearly understood. In this study, it was found that HDACIs SAHA and TSA increased P-gp expression in CRC cells, which has been well known to contribute to drug resistant. The mechanisms underlying these effects were investigated. We showed that HDACIs enhanced transcriptional activity of P-gp protein encoding gene ABCB1. HDACIs treatment also increased the protein and mRNA expression of STAT3, but not PXR, CAR, Foxo3a or β-catenin, which are known to be involved in ABCB transcription regulation. Interestingly, knockdown of STAT3 significantly attenuated HDACIs-induced P-gp up-regulation in colorectal cancer cells, suggesting that STAT3 plays a crucial role in HDACIs-up-regulated P-gp. Furthermore, this study revealed for the first time that HDACIs enhanced the stability of ABCB1 at post-transcriptional level. Taken together, these results proved that HDACIs induced P-gp expression by two distinct ways, transcriptional activation and mRNA stabilization. Our results suggested that more attention should be paid to the cancer treatment using HDACIs since they will induce multidrug resistance in cancer cells.
Collapse
Affiliation(s)
- Hao Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Liang Zhao
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Huan Zhang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Jing Mo Yang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, West Branch of Anhui Provincial Hospital, Hefei, China
| | - Peng Luo
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Bing-Xiang Zhan
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Qing Pan
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bao-Long Wang
- Department of Clinical Laboratory, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Masuike Y, Tanaka K, Makino T, Yamasaki M, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Mori M, Doki Y. Esophageal squamous cell carcinoma with low mitochondrial copy number has mesenchymal and stem-like characteristics, and contributes to poor prognosis. PLoS One 2018; 13:e0193159. [PMID: 29447301 PMCID: PMC5814088 DOI: 10.1371/journal.pone.0193159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022] Open
Abstract
Alterations in mitochondrial DNA (mtDNA) copy numbers in various human cancers have been studied, but any such changes in esophageal squamous cell carcinoma (ESCC) are not established. In the present study, we investigated the correlation of mtDNA copy number with clinicopathologic features, prognosis, and malignant potential of ESCC. MtDNA copy numbers of resected specimens from 80 patients treated with radical esophagectomy were measured by quantitative real-time PCR analyses. Human ESCC cells, TE8 and TE11, were cultured, and depletion of mtDNA content was induced by knockdown of mitochondrial transcription factor A expression or treatment with ethidium bromide. The mRNA and protein expression, proliferation, invasion, and cell cycle were investigated. The results showed that the mtDNA copy number of cancerous portions was 56.0 (37.4-234.5) percent that of non-cancerous parts and significantly lower (p<0.01). Low mtDNA copy number in resected cancerous tissues was significantly correlated with pathological depth of tumor invasion (p = 0.045) and pathological stage (p = 0.025). Patients with lower mtDNA copy number had significantly poorer 5-year overall survival compared to patients with higher levels (p<0.01). The mtDNA-depleted TE8 and TE11 cells had morphological changes and proliferated more slowly than control cells under normoxia but proliferated at almost the same rate under hypoxic conditions. In mtDNA-depleted cells, E-cadherin mRNA expression was decreased, and N-cadherin, vimentin, zeb-1, and cd44 mRNA expression was increased. Immunoblotting and flow cytometry analysis also showed downregulated E-cadherin and upregulated N-cadherin and CD44 protein in mtDNA-depleted cells. Moreover, mtDNA-depleted cells had enhanced invasion, migration, and sphere formation abilities, and the cell cycle arrest at G0/G1 phase was induced in these cells. These results suggested that mtDNA-depleted ESCC cells had mesenchymal characteristics, cancer stemness, and tolerance to hypoxia, which played important role in cancer progression. In conclusion, a low copy number of mtDNA is associated with tumor progression in ESCC.
Collapse
Affiliation(s)
- Yasunori Masuike
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Makoto Yamasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuhiro Miyazaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Guerra F, Arbini AA, Moro L. Mitochondria and cancer chemoresistance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:686-699. [DOI: 10.1016/j.bbabio.2017.01.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/07/2023]
|
17
|
Hsu CC, Tseng LM, Lee HC. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood) 2016; 241:1281-95. [PMID: 27022139 DOI: 10.1177/1535370216641787] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Deregulated cellular energetics was one of the cancer hallmarks. Several underlying mechanisms of deregulated cellular energetics are associated with mitochondrial dysfunction caused by mitochondrial DNA mutations, mitochondrial enzyme defects, or altered oncogenes/tumor suppressors. In this review, we summarize the current understanding about the role of mitochondrial dysfunction in cancer progression. Point mutations and copy number changes are the two most common mitochondrial DNA alterations in cancers, and mitochondrial dysfunction induced by chemical depletion of mitochondrial DNA or impairment of mitochondrial respiratory chain in cancer cells promotes cancer progression to a chemoresistance or invasive phenotype. Moreover, defects in mitochondrial enzymes, such as succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase, are associated with both familial and sporadic forms of cancer. Deregulated mitochondrial deacetylase sirtuin 3 might modulate cancer progression by regulating cellular metabolism and oxidative stress. These mitochondrial defects during oncogenesis and tumor progression activate cytosolic signaling pathways that ultimately alter nuclear gene expression, a process called retrograde signaling. Changes in the intracellular level of reactive oxygen species, Ca(2+), or oncometabolites are important in the mitochondrial retrograde signaling for neoplastic transformation and cancer progression. In addition, altered oncogenes/tumor suppressors including hypoxia-inducible factor 1 and tumor suppressor p53 regulate mitochondrial respiration and cellular metabolism by modulating the expression of their target genes. We thus suggest that mitochondrial dysfunction plays a critical role in cancer progression and that targeting mitochondrial alterations and mitochondrial retrograde signaling might be a promising strategy for the development of selective anticancer therapy.
Collapse
Affiliation(s)
- Chia-Chi Hsu
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ling-Ming Tseng
- Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan Department of Surgery, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan Taipei-Veterans General Hospital Comprehensive Breast Health Center, Taipei 112, Taiwan
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
18
|
Sfrp2 is a transcriptional target of SREBP-1 in mouse chondrogenic cells. Mol Cell Biochem 2015; 406:163-71. [DOI: 10.1007/s11010-015-2434-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
|
19
|
Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol 2014; 92:62-72. [DOI: 10.1016/j.bcp.2014.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022]
|
20
|
Gonzalez-Sanchez E, Marin JJG, Perez MJ. The expression of genes involved in hepatocellular carcinoma chemoresistance is affected by mitochondrial genome depletion. Mol Pharm 2014; 11:1856-68. [PMID: 24824514 DOI: 10.1021/mp400732p] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca , Salamanca, Spain
| | | | | |
Collapse
|
21
|
Cui H, Huang P, Wang Z, Zhang Y, Zhang Z, Xu W, Wang X, Han Y, Guo X. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer 2013; 13:110. [PMID: 23497023 PMCID: PMC3606376 DOI: 10.1186/1471-2407-13-110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 02/21/2013] [Indexed: 11/13/2022] Open
Abstract
Background Experimental data suggest that mitochondria is involved in tumorigenesis. However, little is known about the qualitative and quantitative changes of mtDNA in colorectal cancer tissues. We therefore conducted possible correlations of the mitochondrial DNA (mtDNA) copy number in colorectal cancer (CRC) with clinical and pathological findings and CRC prognosis. Methods mtDNA copy numbers in CRC cancer tissue and adjacent non-cancerous tissue samples were measured using quantitative real-time polymerase chain reaction analyses from 60 patients admitted to our hospital. We examined the correlation of mtDNA copy numbers and clinicopathologic parameters of CRC patients. The correlation between mtDNA copy number and three-year survival was analyzed. Results The mtDNA copy number was lower in CRC tissue compared with the corresponding non-cancerous colorectal tissue (mean: 108.60 ± 20.11 vs. 153.68 ± 25.72) and was significantly correlated with lymph-node metastasis. Patients with a lower mtDNA copy number tended to have lower 3-year survival than patients with a higher mtDNA copy number assessed by Kaplan–Meier curves, but the correlation was not significant (overall survival, 63.0 vs 83%). Conclusions These results suggest that a reduced copy number of mtDNA is correlated with malignant potential in CRC.
Collapse
Affiliation(s)
- HaiHong Cui
- Department of Gastroenterology, 305 Hospital of PLA, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Identification of macrophage genes responsive to extracellular acidification. Inflamm Res 2013; 62:399-406. [PMID: 23417272 DOI: 10.1007/s00011-013-0591-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/06/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE A low pH microenvironment is a characteristic feature of inflammation loci and affects the functions of immune cells. In this study, we investigated the effect of extracellular acidification on macrophage gene expression. METHODS RAW264.7 macrophages were incubated in neutral (pH 7.4) or acidic (pH 6.8) medium for 4 h. Global mRNA expression levels were determined using Affymetrix genechips. RESULTS The mRNA expressions of 353 macrophage genes were significantly modified after incubation in acidic medium; 193 were up-regulated and 160 down-regulated. Differentially regulated genes were grouped into 13 classes based on the functions of the corresponding protein products. Pathway analysis revealed that differentially expressed genes are enriched in pathways related to inflammation and immune responses. Quantitative real-time PCR analysis confirmed that the expressions of CXCL10, CXCL14, IL-18, IL-4RA, ABCA1, CCL4, IL-7R, CXCR4, TLR7, and CCL3 mRNAs were regulated by extracellular acidification. CONCLUSION The results of this study provide insights into the effects of acidic extracellular environments on macrophage gene expression.
Collapse
|
23
|
Mitochondrial DNA depletion promotes impaired oxidative status and adaptive resistance to apoptosis in T47D breast cancer cells. Eur J Cancer Prev 2013; 18:445-57. [PMID: 19609211 DOI: 10.1097/cej.0b013e32832f9bd6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mutation and reduction of mitochondrial DNA (mtDNA) have been extensively detected in human cancers. The effects of mitochondrial dysfunction are particularly important in breast cancer, because estrogen-mediated metabolites generate large quantities of local reactive oxygen species in the breast, which directly bind to mtDNA and facilitate neoplastic transformation. To further elucidate the molecular roles of mtDNA in breast cancer, we determined the oxidative status of a breast tumor cell line lacking mtDNA (T47D ρ⁰) and analyzed its susceptibility after exposure to various anticancer drugs as well as different proapoptotic signals. Our data showed that T47D ρ⁰ cells generated significantly increased levels of lactate with concomitantly reduced oxygen consumption and ATP production compared with the wild-type (WT). The amount of reactive oxygen species generation in ρ cells was lowered to approximately 12% that of parental cells, as evidenced by the oxidation of redox-sensitive probes. Although mtDNA depletion did not affect the expression of superoxide dismutase or its activity, the activities of antioxidant enzymes, catalase and glutathione peroxidase, were significantly higher in ρ⁰ cells compared with WT cells. In addition, mtDNA-depleted cells displayed a decreased sensitivity and accumulation of chemotherapeutic drugs (doxorubicin, vincristine, and paclitaxel), potentially because of the upregulated expression of multidrug resistance 1 (MDR1) gene and its product P-glycoprotein. When compared with their WT counterparts, T47D ρ⁰ cells were also more resistant to apoptosis induced by varying concentrations of staurosporine and anti-Fas antibody. Altogether, our results indicate the importance of intact mtDNA for maintaining the proper intracellular oxidative status. These data provide evidence for a possible role of mtDNA content reduction in acquiring an apoptosis-resistant phenotype during breast tumor progression and might contribute to effective therapeutic strategies for this common malignancy.
Collapse
|
24
|
Park SY, Yun Y, Kim IS. CD36 is required for myoblast fusion during myogenic differentiation. Biochem Biophys Res Commun 2012; 427:705-10. [PMID: 23036201 DOI: 10.1016/j.bbrc.2012.09.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.
Collapse
Affiliation(s)
- Seung-Yoon Park
- Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714, Republic of Korea
| | | | | |
Collapse
|
25
|
Kim MJ, Lee W, Park EJ, Park SY. Depletion of mitochondrial DNA stabilizes C1qTNF-related protein 6 mRNA in muscle cells. J Korean Med Sci 2012; 27:465-70. [PMID: 22563208 PMCID: PMC3342534 DOI: 10.3346/jkms.2012.27.5.465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/26/2012] [Indexed: 12/27/2022] Open
Abstract
Mutation and reduction of mitochondrial DNA (mtDNA) have been suggested as factors in the pathogenesis of several metabolic diseases. Recently, we demonstrated that C1qTNF-related protein-6 (CTRP6) is involved in fatty acid metabolism in muscle cells. In this study, we showed that expression of CTRP6 was up-regulated in mtDNA-depleted C2C12 cells, which displayed a marked decrease in cellular mtDNA and ATP content. Replacement of mtDNA normalized the expression level of CTRP6 similar to that in normal C2C12 cells, indicating that CTRP6 expression was up-regulated by mtDNA depletion. However, CTRP6 promoter activity remained unchanged in mtDNA-depleted cells. We also found that mtDNA depletion inhibited decay of CTRP6 mRNA. Taken together, mtDNA depletion induces an increase in CTRP6 expression by increasing mRNA stability.
Collapse
Affiliation(s)
- Mi-Jin Kim
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Eun-Ju Park
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, Dongguk University School of Medicine, Gyeongju, Korea
| |
Collapse
|
26
|
Abstract
Mitochondria are ubiquitous organelles in eukaryotic cells principally responsible for regulating cellular energy metabolism, free radical production, and the execution of apoptotic pathways. Abnormal oxidative phosphorylation (OXPHOS) and aerobic metabolism as a result of mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. In the past decades, numerous somatic mutations in both the coding and control regions of mitochondrial DNA (mtDNA) have been extensively examined in a broad range of primary human cancers, underscoring that accumulation of mtDNA alterations may be a critical factor in eliciting persistent mitochondrial defects and consequently contributing to cancer initiation and progression. However, the roles of these mtDNA mutations in the carcinogenic process remain largely unknown. This review outlines a wide variety of somatic mtDNA mutations identified in common human malignancies and highlights recent advances in understanding the causal roles of mtDNA variations in neoplastic transformation and tumor progression. In addition, it briefly illustrates how mtDNA alterations activate mitochondria-to-nucleus retrograde signaling so as to modulate the expression of relevant nuclear genes or induce epigenetic changes and promote malignant phenotypes in cancer cells. The present state of our knowledge regarding how mutational changes in the mitochondrial genome could be used as a diagnostic biomarker for early detection of cancer and as a potential target in the development of new therapeutic approaches is also discussed. These findings strongly indicate that mtDNA mutations exert a crucial role in the pathogenic mechanisms of tumor development, but continued investigations are definitely required to further elucidate the functional significance of specific mtDNA mutations in the etiology of human cancers.
Collapse
|
27
|
Kim DN, Song YJ, Lee SK. The role of promoter methylation in Epstein-Barr virus (EBV) microRNA expression in EBV-infected B cell lines. Exp Mol Med 2011; 43:401-10. [PMID: 21628990 DOI: 10.3858/emm.2011.43.7.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epstein-Barr virus (EBV) microRNAs (miRNAs) are expressed in EBV-associated tumors and cell lines, but the regulation mechanism of their expression is unclear yet. We investigated whether the expression of EBV miRNAs is epigenetically regulated in EBV-infected B cell lines. The expression of BART miRNAs was inversely related with the methylation level of the BART promoter at both steady-state and following 5-aza-2'-deoxycytidine treatment of the cells. The expression of BHRF1 miRNAs also became detectable with the demethylation of Cp/Wp in latency I EBV-infected cell lines. Furthermore, in vitro methylation of the BART and Cp promoters reduced the promoter-driven transactivation. In contrast, tricostatin A had little effect on the expression of EBV miRNA expression as well as on the BART and Cp/Wp promoters. Our results suggest that promoter methylation, but not histone acetylation, plays a role in regulation of the EBV miRNA expression in EBV-infected B cell lines.
Collapse
Affiliation(s)
- Do Nyun Kim
- Research Institute of Immunobiology Department of Medical Lifescience College of Medicine The Catholic University of Korea Seoul
| | | | | |
Collapse
|
28
|
Marquez B, Ameye G, Vallet CM, Tulkens PM, Poirel HA, Van Bambeke F. Characterization of Abcc4 gene amplification in stepwise-selected mouse J774 macrophages resistant to the topoisomerase II inhibitor ciprofloxacin. PLoS One 2011; 6:e28368. [PMID: 22162766 PMCID: PMC3230599 DOI: 10.1371/journal.pone.0028368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Exposure of J774 mouse macrophages to stepwise increasing concentrations of ciprofloxacin, an antibiotic inhibiting bacterial topoisomerases, selects for resistant cells that overexpress the efflux transporter Abcc4 (Marquez et al. [2009] Antimicrob. Agents Chemother. 53: 2410-2416), encoded by the Abcc4 gene located on Chromosome 14qE4. In this study, we report the genomic alterations occurring along the selection process. Abcc4 expression progressively increased upon selection rounds, with exponential changes observed between cells exposed to 150 and 200 µM of ciprofloxacin, accompanied by a commensurate decrease in ciprofloxacin accumulation. Molecular cytogenetics experiments showed that this overexpression is linked to Abcc4 gene overrepresentation, grading from a partial trisomy of Chr 14 at the first step of selection (cells exposed to 100 µM ciprofloxacin), to low-level amplifications (around three copies) of Abcc4 locus on 1 or 2 Chr 14 (cells exposed to 150 µM ciprofloxacin), followed by high-level amplification of Abcc4 as homogeneous staining region (hsr), inserted on 3 different derivative Chromosomes (cells exposed to 200 µM ciprofloxacin). In revertant cells obtained after more than 60 passages of culture without drug, the Abcc4 hsr amplification was lost in approx. 70% of the population. These data suggest that exposing cells to sufficient concentrations of an antibiotic with low affinity for eukaryotic topoisomerases can cause major genomic alterations that may lead to the overexpression of the transporter responsible for its efflux. Gene amplification appears therefore as a mechanism of resistance that can be triggered by non-anticancer agents but contribute to cross-resistance, and is partially and slowly reversible.
Collapse
Affiliation(s)
- Béatrice Marquez
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Geneviève Ameye
- Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium
| | - Coralie M. Vallet
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Paul M. Tulkens
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
| | - Hélène A. Poirel
- Université catholique de Louvain, Cliniques universitaires Saint-Luc, Centre de Génétique humaine, Brussels, Belgium
| | - Françoise Van Bambeke
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie cellulaire et moléculaire, Brussels, Belgium
- * E-mail:
| |
Collapse
|
29
|
Park HS, Kim GY, Nam TJ, Deuk Kim N, Hyun Choi Y. Antiproliferative activity of fucoidan was associated with the induction of apoptosis and autophagy in AGS human gastric cancer cells. J Food Sci 2011; 76:T77-83. [PMID: 21535865 DOI: 10.1111/j.1750-3841.2011.02099.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fucoidan, a sulfated polysaccharide purified from brown algae, possesses a variety of pharmacologic effects, including antiinflammatory, antioxidant, and anticancer properties; however, the underlying action mechanisms are not completely understood. This study investigated the possible mechanisms through which fucoidan exerts its antiproliferative action in cultured AGS human gastric adenocarcinoma cells. We found that fucoidan effectively inhibits the growth of AGS cells by inducing autophagy, as well as apoptosis. Apoptosis by fucoidan treatment was associated with the downregulation of antiapoptotic Bcl-2 and Bcl-xL expression, loss of mitochondrial membrane potential, activation of caspases, and concomitant degradation of poly-(ADP-ribose) polymerase protein. In addition, the morphological study indicated a characteristic finding of autophagy, such as the formation of autophagosomes in fucoidan-treated AGS cells. Furthermore, markers of autophagy, namely, the conversion of microtubule-associated protein light chain 3 (LC3)-I to LC3-II and increased beclin-1 accumulation, were observed. Overall, the present data suggest that fucoidan induces apoptotic and autophagic cell death, and both apoptotic and autophagic mechanisms contribute to the fucoidan-induced AGS cell death.
Collapse
Affiliation(s)
- Hyun Soo Park
- Department of Pharmacy, Pusan National University, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Perez MJ, Gonzalez-Sanchez E, Gonzalez-Loyola A, Gonzalez-Buitrago JM, Marin JJG. Mitochondrial genome depletion dysregulates bile acid- and paracetamol-induced expression of the transporters Mdr1, Mrp1 and Mrp4 in liver cells. Br J Pharmacol 2011; 162:1686-99. [PMID: 21175587 DOI: 10.1111/j.1476-5381.2010.01174.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitochondria are involved in the toxicity of several compounds, retro-control of gene expression and apoptosis activation. The effect of mitochondrial genome (mtDNA) depletion on changes in ABC transporter protein expression in response to bile acids and paracetamol was investigated. EXPERIMENTAL APPROACH Hepa 1-6 mouse hepatoma cells with 70% decrease in 16S/18S rRNA ratio (Rho cells) were obtained by long-term treatment with ethidium bromide. KEY RESULTS Spontaneous apoptosis and reactive oxygen species (ROS) generation were decreased in Rho cells. Following glycochenodeoxycholic acid (GCDCA) or paracetamol, Rho cells generated less ROS and were more resistant to cell death. Apoptosis induced by GCDCA and Fas was also reduced. The basal expression of Mdr1 was significantly enhanced, but this was not further stimulated by GCDCA or paracetamol, as observed in wild-type (WT) cells. Basal expression of Mrp1 and Mrp4 was similar in WT and Rho cells, whereas they were up-regulated only in WT cells after GCDCA or paracetamol, along with the transcription factors Shp and Nrf2, but not Fxr or Pxr. Increased expression of Nrf2 was accompanied by its enhanced nuclear translocation. Glycoursodeoxycholic acid failed to cause any of the effects observed for GCDCA or paracetamol. CONCLUSIONS AND IMPLICATIONS The Nrf2-mediated pathway is partly independent of ROS production. Nuclear translocation of Nrf2 is insufficient to up-regulate Mdr1, Mrp1 and Mrp4, which requires the participation of other regulatory element(s) whose activation in response to GCDCA and paracetamol is impaired in Rho cells and hence probably sensitive to ROS.
Collapse
Affiliation(s)
- M J Perez
- Research Unit, University Hospital, Salamanca, 37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
31
|
Yu M. Generation, function and diagnostic value of mitochondrial DNA copy number alterations in human cancers. Life Sci 2011; 89:65-71. [PMID: 21683715 DOI: 10.1016/j.lfs.2011.05.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/14/2011] [Accepted: 05/23/2011] [Indexed: 12/16/2022]
Abstract
Mitochondria are key organelles in eukaryotic cells principally responsible for multiple cellular functions. In addition to a plethora of somatic mutations as well as polymorphic sequence variations in mitochondrial DNA (mtDNA), the identification of increased or reduced mtDNA copy number has been increasingly reported in a broad range of primary human cancers, underscoring that accumulation of mtDNA content alterations may be a pivotal factor in eliciting persistent mitochondrial deficient activities and eventually contributing to cancer pathogenesis and progression. However, the detailed roles of altered mtDNA amount in driving the tumorigenic process remain largely unknown. This review outlines mtDNA content changes present in various types of common human malignancies and briefly describes the possible causes and their potential connections to the carcinogenic process. The present state of our knowledge regarding how altered mtDNA quantitative levels could be utilized as a diagnostic biomarker for identifying genetically predisposed population that should undergo intensive screening and early surveillance program is also discussed. Taken together, these findings strongly indicate that mtDNA copy number alterations may exert a crucial role in the pathogenic mechanisms of tumor development. Continued insights into the functional significance of altered mtDNA quantities in the etiology of human cancers will hopefully help in establishing novel potential targets for anti-tumor drugs and intervention therapies.
Collapse
Affiliation(s)
- Man Yu
- Division of Applied Molecular Oncology, Princess Margaret Hospital/Ontario Cancer Institute, University of Toronto, Canada.
| |
Collapse
|
32
|
Jin CY, Park C, Hwang HJ, Kim GY, Choi BT, Kim WJ, Choi YH. Naringenin up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer A549 cells. Mol Nutr Food Res 2011; 55:300-9. [DOI: 10.1002/mnfr.201000024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Lee HC, Chang CM, Chi CW. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev 2010; 9 Suppl 1:S47-58. [PMID: 20816876 DOI: 10.1016/j.arr.2010.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondria are intracellular organelles responsible for generating ATP through respiration and oxidative phosphorylation (OXPHOS), producing reactive oxygen species, and initiating and executing apoptosis. Mitochondrial dysfunction has been observed to be an important hallmark of aging and cancer. Because mitochondrial DNA (mtDNA) is important in maintaining functionally competent organelles, accumulation of mtDNA mutations can affect energy production, oxidative stress, and cell survival, which may contribute to aging and/or carcinogenesis. This review outlines a variety of somatic mtDNA mutations identified in aging tissues and human cancers, as well as recent advances in understanding the causal role of mtDNA mutations in the aging process and cancer progression. Mitochondrial dysfunction elicited by somatic mutations in mtDNA could induce apoptosis in aging cells and some cancer cells with severe mtDNA mutations. In addition, it could activate mitochondria-to-nucleus retrograde signaling to modulate the expression of nuclear genes involved in a metabolic shift from OXPHOS to glycolysis, facilitate cells to adapt to altered environments and develop resistance to chemotherapeutic agents, or promote metastatic properties of cancer cells. These findings suggest that accumulation of somatic mtDNA mutations is not only an important contributor to human aging but also plays a critical role in cancer progression.
Collapse
|
34
|
Molecular determinants of transient and reversible induced up-regulation of CaCDR1 in azole susceptible clinical isolates of Candida albicans. Biosci Rep 2010; 31:31-43. [DOI: 10.1042/bsr20100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study examines the molecular mechanism underlying in vitro-induced resistance to FLC (fluconazole), KTC (ketaonazole), MCZ (miconazole) and CHX (cycloheximide) in AS (azole-susceptible) strains of Candida albicans when exposed to CaCDR1/CaCDR2 inducers like FPZ (fluphenazine) and steroids [PRG (progesterone) and β-EST (β-oestradiol)]. By employing spot and checkerboard titre assays, we provide evidence of an in vitro-induced antagonism between tested drugs and inducers, which was accompanied with a concomitant increase in CaCDR1 and CaCDR2 transcript levels. Notably, unlike AS isolates, parental WT (wild-type) and Δcdr2 null strains, Δcdr1 as well as Δcdr1/Δcdr2 nulls, when challenged with the inducers could not display antagonism. Our results validated by Northern blotting, reporter gene transcription and TRO (transcription run on) assays show that in vitro-induced antagonism between tested drugs and inducer in AS isolates was mainly due to a transient and reversible transcriptional activation of CaCDR1. Notwithstanding our earlier observation that consistent high transcript levels of CaCDR1 in clinical AR (azole-resistant) isolates were maintained due to the combination of its transcriptional activation and enhanced mRNA stability via elongated poly(A) tails, this study shows that transient and reversible transcriptional activation of CaCDR1 was the major determinant of induced antagonism in AS isolates. The distinct strategies between sustained (in AR isolates) and transiently induced resistance mechanisms (in AS isolates) adopted by Candida should become useful in improving therapeutic approaches.
Collapse
|
35
|
Oliva CR, Nozell SE, Diers A, McClugage SG, Sarkaria JN, Markert JM, Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A, Griguer CE. Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 2010; 285:39759-67. [PMID: 20870728 DOI: 10.1074/jbc.m110.147504] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Temozolomide (TMZ) is an oral alkylating agent used for the treatment of high-grade gliomas. Acquired chemoresistance is a severe limitation to this therapy with more than 90% of recurrent gliomas showing no response to a second cycle of chemotherapy. Efforts to better understand the underlying mechanisms of acquired chemoresistance to TMZ and potential strategies to overcome chemoresistance are, therefore, critically needed. TMZ methylates nuclear DNA and induces cell death; however, the impact on mitochondria DNA (mtDNA) and mitochondrial bioenergetics is not known. Herein, we tested the hypothesis that TMZ-mediated alterations in mtDNA and respiratory function contribute to TMZ-dependent acquired chemoresistance. Using an in vitro model of TMZ-mediated acquired chemoresistance, we report 1) a decrease in mtDNA copy number and the presence of large heteroplasmic mtDNA deletions in TMZ-resistant glioma cells, 2) remodeling of the entire electron transport chain with significant decreases of complexes I and V and increases of complexes II/III and IV, and 3) pharmacologic and genetic manipulation of cytochrome c oxidase, which restores sensitivity to TMZ-dependent apoptosis in resistant glioma cells. Importantly, human primary and recurrent pairs of glioblastoma multiforme (GBM) biopsies as well as primary and TMZ-resistant GBM xenograft lines exhibit similar remodeling of the ETC. Overall these results suggest that TMZ-dependent acquired chemoresistance may be due to a mitochondrial adaptive response to TMZ genotoxic stress with a major contribution from cytochrome c oxidase. Thus, abrogation of this adaptive response may reverse chemoresistance and restore sensitivity to TMZ, providing a strategy for improved therapeutic outcomes in GBM patients.
Collapse
Affiliation(s)
- Claudia R Oliva
- Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Alabama 35294-0006, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kim MJ, Lee W, Park EJ, Park SY. C1qTNF-related protein-6 increases the expression of interleukin-10 in macrophages. Mol Cells 2010; 30:59-64. [PMID: 20652496 DOI: 10.1007/s10059-010-0088-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/15/2022] Open
Abstract
C1qTNF-Related proteins (CTRPs), a new highly conserved family of adiponectin paralogs, were recently identified as being involved in diverse processes including metabolism, host defense, apoptosis, cell differentiation, and organogenesis. However, the functional role of CTRP6 remains poorly identified. Here we provide evidence that CTRP6 induces the expression of interleukin-10 (IL-10) in macrophages. Conditioned medium from CTRP6-expressing HEK293 cells increased IL-10 expression in Raw264.7 cells. The globular domain of CTRP6 (gCTRP6) also dose-dependently increased both IL-10 mRNA and protein expression levels, with transcript levels increasing within 2 h. Furthermore, the globular domain of CTRP6 rapidly induced phosphorylation of ERK1/2 in Raw264.7 cells. Treatment with U0126, a selective inhibitor, abolished CTRP6-stimulated IL-10 induction. Taken together, there results demonstrate that CTRP6 induces expression of IL-10 via ERK1/2 activation. Considering that IL-10 is a potent anti-inflammatory cytokine that modulates inflammatory signaling pathways, CTRP6 may be a novel target for pharmacological drugs in inflammatory diseases.
Collapse
Affiliation(s)
- Mi-Jin Kim
- Department of Biochemistry, School of Medicine, Dongguk University, Kyungju 780-714, Korea
| | | | | | | |
Collapse
|
37
|
Kim MS, Huang Y, Lee J, Zhong X, Jiang WW, Ratovitski EA, Sidransky D. Cellular transformation by cigarette smoke extract involves alteration of glycolysis and mitochondrial function in esophageal epithelial cells. Int J Cancer 2010; 127:269-81. [PMID: 19937795 DOI: 10.1002/ijc.25057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cigarette-smoking increases the risk of developing various types of human cancers including esophageal cancers. To test the effects of chronic cigarette smoke exposure directly on esophageal epithelium, cellular resistance to mainstream extract (MSE), or sidestream smoke extract (SSE) was developed in chronically exposed nonmalignant Het-1A cells. Anchorage-independent growth, in vitro invasion capacity and proliferation of the resistant cells increased compared with the unexposed, sensitive cells. An epithelial marker E-cadherin was down-regulated and mesenchymal markers N-cadherin and vimentin were up-regulated in the resistant cells. Het-1A cells resistant to MSE or SSE consumed more glucose, and produced more lactate than the sensitive cells. The increased anchorage-independent cell growth of the resistant cells was suppressed by a glycolysis inhibitor, 2-deoxy-D-glucose, indicating that these cells are highly dependent on the glycolytic pathway for survival. Decreased mitochondrial membrane potential and ATP production in the resistant cells indicate the presence of mitochondrial dysfunction induced by chronic exposure of cigarette smoke extract. Increased expression of nuclear genes in the glycolytic pathway and decreased levels of mitochondrial genes in the resistant cells support the notion that cigarette smoking significantly contributes to the transformation of nonmalignant esophageal epithelial cells into a tumorigenic phenotype.
Collapse
Affiliation(s)
- Myoung Sook Kim
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular-regulated kinase signaling. Toxicol In Vitro 2010; 24:486-94. [DOI: 10.1016/j.tiv.2009.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/08/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
|
39
|
Park SE, Yoo HS, Jin CY, Hong SH, Lee YW, Kim BW, Lee SH, Kim WJ, Cho CK, Choi YH. Induction of apoptosis and inhibition of telomerase activity in human lung carcinoma cells by the water extract of Cordyceps militaris. Food Chem Toxicol 2009; 47:1667-75. [PMID: 19393284 DOI: 10.1016/j.fct.2009.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/27/2009] [Accepted: 04/15/2009] [Indexed: 01/01/2023]
Abstract
Cordyceps militaris is well known as a traditional medicinal mushroom and is a potentially interesting candidate for use in cancer treatment. In this study, the potential of the water extract of C. militaris (WECM) to induce apoptosis in human lung carcinoma A549 cells and its effects on telomerase activity were investigated. The growth inhibition and apoptosis induction by WECM treatment in A549 cells was associated with the induction of Fas, catalytic activation of caspase-8, and Bid cleavage. Activation of caspases, downregulation of anti-apoptotic Bcl-2 expression, and upregulation of pro-apoptotic Bax protein were also observed in WECM-treated cells. However, the cytotoxic effects and apoptotic characteristics induced by WECM were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, which demonstrates the important role that caspase-3 plays in the process. In addition, WECM exerted a dose-dependent inhibition of telomerase activity via downregulation of human telomerase reverse transcriptase (hTERT), c-myc and Sp1 expression. Taken together, the data from this study indicate that WECM induces the apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic and mitochondria-mediated intrinsic caspase pathways. It was also conclude that apoptotic events due to WECM were mediated with diminished telomerase activity through the inhibition of hTERT transcriptional activity.
Collapse
Affiliation(s)
- Sang Eun Park
- Department of East-West Cancer Center, College of Oriental Medicine, Daejeon University, Daejeon 301-724, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genistein enhances TRAIL-induced apoptosis through inhibition of p38 MAPK signaling in human hepatocellular carcinoma Hep3B cells. Chem Biol Interact 2009; 180:143-50. [PMID: 19497411 DOI: 10.1016/j.cbi.2009.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 03/24/2009] [Accepted: 03/27/2009] [Indexed: 11/23/2022]
Abstract
The cytotoxic effect of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is limited in some carcinoma cancer cells. However, it was found that treatment with TRAIL in combination with nontoxic concentrations of genistein sensitized TRAIL-resistant human hepatocellular carcinoma Hep3B cells to TRAIL-mediated apoptosis. Combined treatment with genistein and TRAIL-induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly(ADP-ribose) polymerase (PARP). Both cell viability and the cleavage of PARP induced by combined treatment were significantly inhibited by caspase-3, -8 and -9 inhibitors, which demonstrates the important roles of caspases in the observed cytotoxic effects. Genistein treatment also triggered the inhibition of p38-beta mitogen-activated protein kinase (MAPK) activation. Pretreatment with SB203580 resulted in significantly increased sub-G1 population and loss of mitochondrial membrane potential (MMP) in TRAIL-induced apoptosis. By contrast, overexpression of p38 MAPK protected apoptosis by co-treatment with genistein and TRAIL, suggesting that the p38 MAPK act as key regulators of apoptosis in response to treatment with a combination of genistein and TRAIL in human hepatocellular carcinoma Hep3B cells.
Collapse
|
41
|
Lee HC, Wei YH. Mitochondrial DNA instability and metabolic shift in human cancers. Int J Mol Sci 2009; 10:674-701. [PMID: 19333428 PMCID: PMC2660656 DOI: 10.3390/ijms10020674] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/20/2009] [Accepted: 02/23/2009] [Indexed: 12/16/2022] Open
Abstract
A shift in glucose metabolism from oxidative phosphorylation to glycolysis is one of the biochemical hallmarks of tumor cells. Mitochondrial defects have been proposed to play an important role in the initiation and/or progression of various types of cancer. In the past decade, a wide spectrum of mutations and depletion of mtDNA have been identified in human cancers. Moreover, it has been demonstrated that activation of oncogenes or mutation of tumor suppressor genes, such as p53, can lead to the upregulation of glycolytic enzymes or inhibition of the biogenesis or assembly of respiratory enzyme complexes such as cytochrome c oxidase. These findings may explain, at least in part, the well documented phenomena of elevated glucose uptake and mitochondrial defects in cancers. In this article, we review the somatic mtDNA alterations with clinicopathological correlations in human cancers, and their potential roles in tumorigenesis, cancer progression, and metastasis. The signaling pathways involved in the shift from aerobic metabolism to glycolysis in human cancers are also discussed.
Collapse
Affiliation(s)
- Hsin-Chen Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan 112; E-Mail:
| | - Yau-Huei Wei
- Department of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan 112
- Author to whom correspondence should be addressed; E-mail:
; Tel. 02-2826-7118; Fax: 02-28264843
| |
Collapse
|
42
|
Choi YH, Choi WY, Hong SH, Kim SO, Kim GY, Lee WH, Yoo YH. Anti-invasive activity of sanguinarine through modulation of tight junctions and matrix metalloproteinase activities in MDA-MB-231 human breast carcinoma cells. Chem Biol Interact 2008; 179:185-91. [PMID: 19063874 DOI: 10.1016/j.cbi.2008.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/08/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
Abstract
Tight junctions (TJs) are critical structures for the maintenance of cellular polarity, acting as paracellular permeability barriers and playing an essential role in regulation of the diffusion of fluid, electrolytes and macromolecules through the paracellular pathway. Matrix metalloproteinases (MMPs) have been implicated as possible mediators of invasiveness and metastasis in some cancers. In this study, it was investigated the effect of sanguinarine, a benzophenanthridine alkaloid, on the correlation between the tightening of TJs and the anti-invasive activity in human breast carcinoma MDA-MB-231 cells. The inhibitory effects of sanguinarine on cell proliferation, motility and invasiveness were found to be associated with the increased tightness of the TJ, which was demonstrated by an increase in transepithelial electrical resistance (TER). Additionally, immunoblotting results indicated that sanguinarine repressed the levels of the claudin proteins, major components of TJs that play a key role in the control and selectivity of paracellular transport. Furthermore, the activities of MMP-2 and -9 in MDA-MB-231 cells were dose-dependently inhibited by treatment with sanguinarine, and this was also correlated with a decrease in the expression of their mRNA and proteins.
Collapse
Affiliation(s)
- Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, South Korea.
| | | | | | | | | | | | | |
Collapse
|
43
|
Park SY, Kwak W, Tapha N, Jung MY, Nam JO, So IS, Kim SY, Yoo J, Lee J, Kim IS. Combination Therapy and Noninvasive Imaging with a Dual Therapeutic Vector Expressing MDR1 Short Hairpin RNA and a Sodium Iodide Symporter. J Nucl Med 2008; 49:1480-8. [DOI: 10.2967/jnumed.108.050963] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|