1
|
Chen K, Li Q, Li Y, Jiang D, Chen L, Jiang J, Li S, Zhang C. Tetraspanins in digestive‑system cancers: Expression, function and therapeutic potential (Review). Mol Med Rep 2024; 30:200. [PMID: 39239742 PMCID: PMC11411235 DOI: 10.3892/mmr.2024.13324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
The tetraspanin family of membrane proteins is essential for controlling different biological processes such as cell migration, penetration, adhesion, growth, apoptosis, angiogenesis and metastasis. The present review summarized the current knowledge regarding the expression and roles of tetraspanins in different types of cancer of the digestive system, including gastric, liver, colorectal, pancreatic, esophageal and oral cancer. Depending on the type and context of cancer, tetraspanins can act as either tumor promoters or suppressors. In the present review, the importance of tetraspanins in serving as biomarkers and targets for different types of digestive system‑related cancer was emphasized. Additionally, the molecular mechanisms underlying the involvement of tetraspanins in cancer progression and metastasis were explored. Furthermore, the current challenges are addressed and future research directions for advancing investigations related to tetraspanins in the context of digestive system malignancies are proposed.
Collapse
Affiliation(s)
- Kexin Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yangyi Li
- Department of Medical Imaging, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxiang Zhang
- Department of Cardiology, Institute of Cardiovascular Research, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Yang J, Zhang Z, Lam JSW, Fan H, Fu NY. Molecular Regulation and Oncogenic Functions of TSPAN8. Cells 2024; 13:193. [PMID: 38275818 PMCID: PMC10814125 DOI: 10.3390/cells13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Tetraspanins, a superfamily of small integral membrane proteins, are characterized by four transmembrane domains and conserved protein motifs that are configured into a unique molecular topology and structure in the plasma membrane. They act as key organizers of the plasma membrane, orchestrating the formation of specialized microdomains called "tetraspanin-enriched microdomains (TEMs)" or "tetraspanin nanodomains" that are essential for mediating diverse biological processes. TSPAN8 is one of the earliest identified tetraspanin members. It is known to interact with a wide range of molecular partners in different cellular contexts and regulate diverse molecular and cellular events at the plasma membrane, including cell adhesion, migration, invasion, signal transduction, and exosome biogenesis. The functions of cell-surface TSPAN8 are governed by ER targeting, modifications at the Golgi apparatus and dynamic trafficking. Intriguingly, limited evidence shows that TSPAN8 can translocate to the nucleus to act as a transcriptional regulator. The transcription of TSPAN8 is tightly regulated and restricted to defined cell lineages, where it can serve as a molecular marker of stem/progenitor cells in certain normal tissues as well as tumors. Importantly, the oncogenic roles of TSPAN8 in tumor development and cancer metastasis have gained prominence in recent decades. Here, we comprehensively review the current knowledge on the molecular characteristics and regulatory mechanisms defining TSPAN8 functions, and discuss the potential and significance of TSPAN8 as a biomarker and therapeutic target across various epithelial cancers.
Collapse
Affiliation(s)
- Jicheng Yang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ziyan Zhang
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanne Shi Woon Lam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
3
|
Deng Y, Cai S, Shen J, Peng H. Tetraspanins: Novel Molecular Regulators of Gastric Cancer. Front Oncol 2021; 11:702510. [PMID: 34222025 PMCID: PMC8250138 DOI: 10.3389/fonc.2021.702510] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is the fourth and fifth most common cancer worldwide in men and women, respectively. However, patients with an advanced stage of gastric cancer still have a poor prognosis and low overall survival rate. The tetraspanins belong to a protein superfamily with four hydrophobic transmembrane domains and 33 mammalian tetraspanins are ubiquitously distributed in various cells and tissues. They interact with other membrane proteins to form tetraspanin-enriched microdomains and serve a variety of functions including cell adhesion, invasion, motility, cell fusion, virus infection, and signal transduction. In this review, we summarize multiple utilities of tetraspanins in the progression of gastric cancer and the underlying molecular mechanisms. In general, the expression of TSPAN8, CD151, TSPAN1, and TSPAN4 is increased in gastric cancer tissues and enhance the proliferation and invasion of gastric cancer cells, while CD81, CD82, TSPAN5, TSPAN9, and TSPAN21 are downregulated and suppress gastric cancer cell growth. In terms of cell motility regulation, CD9, CD63 and CD82 are metastasis suppressors and the expression level is inversely associated with lymph node metastasis. We also review the clinicopathological significance of tetraspanins in gastric cancer including therapeutic targets, the development of drug resistance and prognosis prediction. Finally, we discuss the potential clinical value and current limitations of tetraspanins in gastric cancer treatments, and provide some guidance for future research.
Collapse
Affiliation(s)
- Yue Deng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sicheng Cai
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Shen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiming Peng
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Yang J, Syed F, Xia Y, Sanyal A, Shah V, Chalasani N, Zheng X, Yu Q, Lou Y, Li W. Blood Biomarkers of Intestinal Epithelium Damage Regenerating Islet-derived Protein 3α and Trefoil Factor 3 Are Persistently Elevated in Patients with Alcoholic Hepatitis. Alcohol Clin Exp Res 2021; 45:720-731. [PMID: 33587293 PMCID: PMC8076084 DOI: 10.1111/acer.14579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/11/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Heavy alcohol consumption disrupts gut epithelial integrity, leading to increased permeability of the gastrointestinal tract and subsequent translocation of microbes. Regenerating islet-derived protein 3α (REG3α) and Trefoil factor 3 (TFF3) are mainly secreted to the gut lumen by Paneth and Goblet cells, respectively, and are functionally linked to gut barrier integrity. Circulating levels of REG3α and TFF3 have been identified as biomarkers for gut damage in several human diseases. We examined whether plasma levels of REG3α and TFF3 were dysregulated and correlated with conventional markers of microbial translocation (MT) and pro-inflammatory mediators in heavy drinkers with and without alcoholic hepatitis (AH). METHODS Cross-sectional and longitudinal studies were performed to monitor plasma levels of REG3α and TFF3 in 79 AH patients, 66 heavy drinkers without liver disease (HDC), and 46 healthy controls (HC) at enrollment and at 6- and 12-month follow-ups. Spearman correlation was used to measure the relationships of REG3α and TFF3 levels with MT, disease severity, inflammation, and effects of abstinence from alcohol. RESULTS At enrollment, AH patients had significantly higher levels of REG3α and TFF3 than HDC and HC. The elevated REG3α levels were positively correlated with the 30-day fatality rate. Plasma levels of REG3α and TFF3 in AH patients differentially correlated with conventional MT markers (sCD14, sCD163, and LBP) and several highly up-regulated inflammatory cytokines/chemokines/growth factors. At follow-ups, although REG3α and TFF3 levels were decreased in AH patients with alcohol abstinence, they did not fully return to baseline levels. CONCLUSIONS Circulating levels of REG3α and TFF3 were highly elevated in AH patients and differentially correlated with AH disease severity, MT, and inflammation, thereby serving as potential biomarkers of MT and gut epithelial damage in AH patients.
Collapse
Affiliation(s)
- Jing Yang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fahim Syed
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ying Xia
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Vijay Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202-5175
| | - Xiaoqun Zheng
- Department of Clinical Laboratory, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yongliang Lou
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
5
|
Naruse M, Ochiai M, Sekine S, Taniguchi H, Yoshida T, Ichikawa H, Sakamoto H, Kubo T, Matsumoto K, Ochiai A, Imai T. Re-expression of REG family and DUOXs genes in CRC organoids by co-culturing with CAFs. Sci Rep 2021; 11:2077. [PMID: 33483567 PMCID: PMC7822883 DOI: 10.1038/s41598-021-81475-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from epithelial tumors have recently been utilized as a preclinical model in basic and translational studies. This model is considered to represent the original tumor in terms of 3D structure, genetic and cellular heterogeneity, but not tumor microenvironment. In this study, we established organoids and paired cancer-associated fibroblasts (CAFs) from surgical specimens of colorectal carcinomas (CRCs), and evaluated gene expression profiles in organoids with and without co-culture with CAFs to assess interactions between tumor cells and CAFs in tumor tissues. We found that the expression levels of several genes, which are highly expressed in original CRC tissues, were downregulated in organoids but re-expressed in organoids by co-culturing with CAFs. They comprised immune response- and external stimulus-related genes, e.g., REG family and dual oxidases (DUOXs), which are known to have malignant functions, leading tumor cells to proliferative and/or anti-apoptotic states and drug resistant phenotypes. In addition, the degree of differential induction of REG1 and DUOX2 in the co-culture system varied depending on CAFs from each CRC case. In conclusion, the co-culture system of CRC organoids with paired CAFs was able to partially reproduce the tumor microenvironment.
Collapse
Affiliation(s)
- Mie Naruse
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masako Ochiai
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Taniguchi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiromi Sakamoto
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kubo
- Department of Clinical Genomics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Atsushi Ochiai
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Toshio Imai
- Central Animal Division, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
6
|
Du P, Wang X, Yin T, Zhang X, Zhang Z, Yu W, Wang M, Luo C, Yu L. Anti-tumor effect of single-chain antibody to Reg3a in colorectal cancer. Exp Cell Res 2020; 396:112278. [PMID: 32918897 DOI: 10.1016/j.yexcr.2020.112278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Regenerating protein 3a (Reg3a) is a trophic factor that functions as a stimulus in cell proliferation and neogenesis. Previous studies showed that Reg3a is ectopically upregulated in a majority of colorectal cancers (CRC) and detectable in the serum. METHODS Single-chain variable fragment targeting Reg3a (scFv-Reg3a) was screened from a phage library. The bioactivity of recombinant Reg3a (rReg3a) and scFv-Reg3a were tested in LoVo and RKO cell lines using MTT, flow cytometry, wound healing and transwell analyses. Whether scFv-Reg3a inhibits tumor growth and enhances 5-fluorouracil (5-FU)-caused cell death were further examined in LoVo cell-transplanted nude BALB/c mice. RESULTS A scFv-Reg3a from clone C2 was obtained and its binding affinity (KD) to rReg3a was determined to be 4.44 × 10-10. In cultured LoVo and RKO cells, rReg3a promoted but scFv-Reg3a inhibited cell proliferation, survival, migration and invasion. In LoVo cell-xenografted nude mice, administration of rReg3a accelerated tumor growth while scFv-Reg3a suppressed cell proliferation and reinforced 5-FU-induced cell death. CONCLUSION The newly developed scFv-Reg3a is an anti-cancer agent which is potent to suppress CRC cell proliferation and survival. The use of scFv-Reg3a could enhance the effectiveness of 5-FU-based chemotherapy in the cancerous treatment.
Collapse
Affiliation(s)
- Pei Du
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaonan Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Tianqi Yin
- UConn Health, University of Connecticut, Hartford, USA
| | - Xueqing Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhiyuan Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Weihong Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China.
| | - Luting Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
7
|
Zhang MY, Wang J, Guo J. Role of Regenerating Islet-Derived Protein 3A in Gastrointestinal Cancer. Front Oncol 2019; 9:1449. [PMID: 31921694 PMCID: PMC6928188 DOI: 10.3389/fonc.2019.01449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Regenerating islet-derived protein 3A (Reg3A), a protein mainly expressed in the digestive system, has been found over-expressed in many kinds of gastrointestinal cancer, including hepatocellular carcinoma, pancreatic cancer, gastric cancer, and colorectal cancer, therefore has been considered as a promising tumor marker. In recent years, considerable attention has been focused on the tumorigenesis effects of Reg3A, which were mainly manifested as cell proliferation promotion, cell apoptosis inhibition, the regulation of cancer cell migration and invasion. In particular, based on the significant up-regulation of Reg3A during pancreatic inflammation as well as its tumorigenic potential, Reg3A has been considered to play a key role in inflammation-linked pancreatic carcinogenesis. In addition, we here systematically generalized the reported Reg3A-related signaling molecules, which included JAK2-STAT3- NF-κB, SOCS3, EXTL3-PI3K-Akt, GSK3β, Wnt/β-catenin as well as some invasion and migration-related genes (Snail, MMP-2, MMP-9, E-cadherin, RhoC, and MTA1). And gp130, EGFR, EXTL3, and Fibronectin 1 might act as potential receptors for Reg3A.
Collapse
Affiliation(s)
- Meng-Ya Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.,Department of Pharmacy, New Medicine Innovation and Development Institute, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Wang S, Ran L, Zhang W, Leng X, Wang K, Liu G, Song J, Wang Y, Zhang X, Wang Y, Zhang L, Ma Y, Liu K, Li H, Zhang W, Qin G, Song F. FOXS1 is regulated by GLI1 and miR-125a-5p and promotes cell proliferation and EMT in gastric cancer. Sci Rep 2019; 9:5281. [PMID: 30918291 PMCID: PMC6437149 DOI: 10.1038/s41598-019-41717-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common malignant neoplasm and the second leading cause of cancer death. Identification of key molecular signaling pathways involved in gastric carcinogenesis and progression facilitates early GC diagnosis and the development of targeted therapies for advanced GC patients. Emerging evidence has revealed a close correlation between forkhead box (FOX) proteins and cancer development. However, the prognostic significance of forkhead box S1 (FOXS1) in patients with GC and the function of FOXS1 in GC progression remain undefined. In this study, we found that upregulation of FOXS1 was frequently detected in GC tissues and strongly correlated with an aggressive phenotype and poor prognosis. Functional assays confirmed that FOXS1 knockdown suppressed cell proliferation and colony numbers, with induction of cell arrest in the G0/G1 phase of the cell cycle, whereas forced expression of FOXS1 had the opposite effect. Additionally, forced expression of FOXS1 accelerated tumor growth in vivo and increased cell migration and invasion through promoting epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, the core promoter region of FOXS1 was identified at nucleotides −660~ +1, and NFKB1 indirectly bind the motif on FOXS1 promoters and inhibit FOXS1 expression. Gene set enrichment analysis revealed that the FOXS1 gene was most abundantly enriched in the hedgehog signaling pathway and that GLI1 expression was significantly correlated with FOXS1 expression in GC. GLI1 directly bound to the promoter motif of FOXS1 and significantly decreased FOXS1 expression. Finally, we found that miR-125a-5p repressed FOXS1 expression at the translational level by binding to the 3′ untranslated region (UTR) of FOXS1. Together, these results suggest that FOXS1 can promote GC development and could be exploited as a diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Sen Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Longke Ran
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Wanfeng Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Leng
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Wang
- Department of Radiology, Affiliated Hospital of Southwest Medical University, Sichuan Province, 646000, China
| | - Geli Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.,Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yujing Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Xianqin Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yitao Wang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Lian Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Ma
- Information Technology Office of Chongqing Medical University, Chongqing, 400016, China
| | - Kun Liu
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China
| | - Haiyu Li
- Chongqing Public Health Medical Center, Chongqing Medical University, Chongqing, 400016, China
| | - Wei Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guijun Qin
- Department of Endocrinology of the Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Fangzhou Song
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China. .,Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Histamine receptor 1 inhibition enhances antitumor therapeutic responses through extracellular signal-regulated kinase (ERK) activation in breast cancer. Cancer Lett 2018; 424:70-83. [DOI: 10.1016/j.canlet.2018.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/06/2023]
|
10
|
Shi J, Cheng C, Ma J, Liew CC, Geng X. Gene expression signature for detection of gastric cancer in peripheral blood. Oncol Lett 2018; 15:9802-9810. [PMID: 29928354 PMCID: PMC6004726 DOI: 10.3892/ol.2018.8577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (stomach cancer) is the fifth most common malignancy and the third leading cause of cancer-associated mortality worldwide. Identifying gastric cancer patients at an early and curable stage of the disease is essential if mortality rates for this disease are to decrease. A non-invasive blood-based test that is an indicator of gastric cancer risk would likely be of benefit in identifying gastric cancer patients at an early stage, and such a test may enhance clinical decision making. This study identified a four-gene expression signature in peripheral blood samples associated with gastric cancer. A total of 216 blood samples were collected, including those from 36 gastric cancer patients, 55 healthy controls and 125 patients with other carcinomas, and gene expression profiles were examined using an Affymetrix Gene Profiling microarray. Blood gene expression profiles were compared between patients with stomach cancer, healthy controls and patients affected with other malignancies. A four-gene panel was identified comprising purine-rich element binding protein B, structural maintenance of chromosomes 1A, DENN/MADD domain containing 1B and programmed cell death 4. The four-gene panel discriminated gastric cancer with an area under the receiver-operating-characteristic curve of 0.99, an accuracy of 95%, sensitivity of 92% and specificity of 96%. The non-invasive nature of the blood test, together with the relatively high accuracy of the four-gene panel may assist physicians in gastric cancer screening decision making.
Collapse
Affiliation(s)
- Jianing Shi
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Changming Cheng
- Sentinel Center, Shanghai Biomedical Laboratory, Shanghai 200436, P.R. China.,National Engineering Center for Biochip at Shanghai, Shanghai Biochip Co., Ltd., Shanghai 201203, P.R. China
| | - Jun Ma
- Department of Research, Golden Health Diagnostics Inc., Yancheng, Jiangsu 224000, P.R. China
| | - Choong-Chin Liew
- Sentinel Center, Shanghai Biomedical Laboratory, Shanghai 200436, P.R. China.,Department of Research, Golden Health Diagnostics Inc., Yancheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, Ontario, ON M5S 1A8, Canada.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaoping Geng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
11
|
LGALS4, CEACAM6, TSPAN8, and COL1A2: Blood Markers for Colorectal Cancer-Validation in a Cohort of Subjects With Positive Fecal Immunochemical Test Result. Clin Colorectal Cancer 2017; 17:e217-e228. [PMID: 29352642 DOI: 10.1016/j.clcc.2017.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND A noninvasive blood test for the early detection of colorectal cancer (CRC) is highly required. We evaluated a panel of 4 mRNAs as putative markers of CRC. MATERIALS AND METHODS We tested LGALS4, CEACAM6, TSPAN8, and COL1A2, referred to as the CELTiC panel, using quantitative reverse transcription polymerase chain reaction, on subjects with positive fecal immunochemical test (FIT) results and undergoing colonoscopy. Using a nonparametric test and multinomial logistic model, FIT-positive subjects were compared with CRC patients and healthy individuals. RESULTS All the genes of the CELTiC panel displayed statistically significant differences between the healthy subjects (n = 67), both low-risk (n = 36) and high-risk/CRC (n = 92) subjects, and those in the negative-colonoscopy, FIT-positive group (n = 36). The multinomial logistic model revealed LGALS4 was the most powerful marker discriminating the 4 groups. When assessing the diagnostic values by analysis of the areas under the receiver operating characteristic curves (AUCs), the CELTiC panel reached an AUC of 0.91 (sensitivity, 79%; specificity, 94%) comparing normal subjects to low-risk subjects, and 0.88 (sensitivity, 75%; specificity, 87%) comparing normal and high-risk/CRC subjects. The comparison between the normal subjects and the negative-colonoscopy, FIT-positive group revealed an AUC of 0.93 (sensitivity, 82%; specificity, 97%). CONCLUSION The CELTiC panel could represent a useful tool for discriminating subjects with positive FIT findings and for the early detection of precancerous adenomatous lesions and CRC.
Collapse
|
12
|
Chen ZF, Huang ZM, Xue HB, Lin XQ, Chen RP, Chen MJ, Jin RF. REG3A promotes the proliferation, migration, and invasion of gastric cancer cells. Onco Targets Ther 2017; 10:2017-2023. [PMID: 28435292 PMCID: PMC5388263 DOI: 10.2147/ott.s131443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanism underlying the metastasis of gastric cancer (GC) cells remains elusive. REG3A is considered an oncogene in various cancers, but in GC its role is unclear. Here, we report that the expression of REG3A was significantly increased in the tumor tissues of patients with GC compared with the matched normal tissues. Knockdown of REG3A induced by specific small interfering RNA (siRNA) significantly repressed the proliferation of GC cells for 24 h or 48 h. Moreover, knockdown of REG3A significantly suppressed the migration, invasion, and adhesion of GC cells in vitro. Furthermore, knockdown of REG3A reduced the phosphorylation of JAK2 and STAT3, and altered the messenger RNA (mRNA) and protein expression levels of E-cadherin, Snail, RhoC, MTA1, MMP-2, and MMP-9. Taken together, REG3A is overexpressed in GC and promotes the proliferation, migration, invasion, and adhesion of GC cells by regulating the JAK2/STAT3 signal pathway. REG3A may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Zhou-Feng Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhi-Ming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hai-Bo Xue
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiu-Qing Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ren-Ping Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Meng-Jun Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Rui-Fang Jin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
13
|
Fernández-Nogueira P, Bragado P, Almendro V, Ametller E, Rios J, Choudhury S, Mancino M, Gascón P. Differential expression of neurogenes among breast cancer subtypes identifies high risk patients. Oncotarget 2017; 7:5313-26. [PMID: 26673618 PMCID: PMC4868688 DOI: 10.18632/oncotarget.6543] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/22/2015] [Indexed: 12/12/2022] Open
Abstract
The nervous system is now recognized to be a relevant component of the tumor microenvironment. Receptors for neuropeptides and neurotransmitters have been identified in breast cancer. However, very little is known about the role of neurogenes in regulating breast cancer progression. Our purpose was to identify neurogenes associated with breast cancer tumorigenesis with a potential to be used as biomarker and/or targets for treatment. We used three databases of human genes: GeneGo, GeneCards and Eugenes to generate a list of 1266 relevant neurogenes. Then we used bioinformatics tools to interrogate two published breast cancer databases SAGE and MicMa (n=96) and generated a list of 7 neurogenes that are differentially express among breast cancer subtypes. The clinical potential was further investigated using the GOBO database (n=1881). We identified 6 neurogenes that are differentially expressed among breast cancer subtypes and whose expression correlates with prognosis. Histamine receptor1 (HRH1), neuropilin2 (NRP2), ephrin-B1 (EFNB1), neural growth factor receptor (NGFR) and amyloid precursor protein (APP) were differentially overexpressed in basal and HER2-enriched tumor samples and syntaxin 1A (STX1A) was overexpressed in HER2-enriched and luminal B tumors. Analysis of HRH1, NRP2, and STX1A expression using the GOBO database showed that their expression significantly correlated with a shorter overall survival (p < 0.0001) and distant metastasis-free survival (p < 0.0001). In contrast, elevated co-expression of NGFR, EFNB1 and APP was associated with longer overall (p < 0.0001) and metastasis-free survival (p < 0.0001). We propose that HRH1, NRP2, and STX1A can be used as prognostic biomarkers and therapeutic targets for basal and HER2-enriched breast cancer subtypes.
Collapse
Affiliation(s)
- Patricia Fernández-Nogueira
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Paloma Bragado
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain
| | - Vanessa Almendro
- Division of Medical Oncology, Department of Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Elisabet Ametller
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer Barcelona, Barcelona, Spain
| | - Jose Rios
- Medical Statistics Core Facility, IDIBAPS, (Hospital Clinic) Barcelona, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sibgat Choudhury
- Division of Medical Oncology, Department of Medicine, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, MA, USA
| | - Mario Mancino
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer Barcelona, Barcelona, Spain
| | - Pedro Gascón
- Department of Medical Oncology, Hospital Clínic, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer Barcelona, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Anami K, Oue N, Noguchi T, Sakamoto N, Sentani K, Hayashi T, Naito Y, Oo HZ, Yasui W. TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer 2016; 19:370-380. [PMID: 25711980 DOI: 10.1007/s10120-015-0478-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/06/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common human cancers. Genes expressed only in cancer tissue, especially on the cell membrane, will be useful biomarkers for cancer diagnosis and therapeutics. METHODS To identify novel genes encoding transmembrane protein specifically expressed in GC, we generated an Escherichia coli ampicillin secretion trap (CAST) library from diffuse-type GC cell line MKN-45. CAST is a survival-based signal sequence trap method that exploits the ability of mammalian signal sequences to confer ampicillin resistance to a mutant β-lactamase lacking the endogenous signal sequence. RESULTS By sequencing 1,536 colonies, we identified 23 genes encoding the transmembrane protein present in GC. Among these genes, TSPAN8 (also known as CO-029 and TM4SF3) gene, which encodes transmembrane protein tetraspanin 8, was emphasized as a candidate. Immunohistochemical analysis of tetraspanin 8 in human GC tissues revealed that 72 (34 %) of 210 GC cases were positive for tetraspanin 8, and microvessel density was significantly higher in tetraspanin 8-positive GC than in tetraspanin 8-negative GC. Furthermore, univariate and multivariate analyses revealed that tetraspanin 8 expression is an independent prognostic classifier of patients with GC. TSPAN8 knockdown by siRNA reduced the invasion of GC cell line. The reduction of invasiveness was retrieved by the tetraspanin 8-containing exosome. CONCLUSION These results suggest that tetraspanin 8 is involved in tumor progression and is an independent prognostic classifier in patients with GC.
Collapse
Affiliation(s)
- Katsuhiro Anami
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Tsuyoshi Noguchi
- Department of Gastrointestinal Surgery, Oita University Faculty of Medicine, 1-1 Hasamamachiidaigaoka, Yufu, 879-5503, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Tetsutaro Hayashi
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Yutaka Naito
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Htoo Zarni Oo
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-0037, Japan.
| |
Collapse
|
15
|
Yu LT, Yang MQ, Liu JL, Alfred MO, Li X, Zhang XQ, Zhang J, Wu MY, Wang M, Luo C. Recombinant Reg3α protein protects against experimental acute pancreatitis in mice. Mol Cell Endocrinol 2016; 422:150-159. [PMID: 26683606 DOI: 10.1016/j.mce.2015.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022]
Abstract
Regenerating gene 3α (Reg3α) protein is a trophic factor that stimulates cell and tissue proliferation, neogenesis and also acts against apoptosis and necrosis. In order to explore the potential roles of recombinant Reg3α (rReg3α), we produced a mature rReg3α polypeptide for direct administration in l-arginine (L-Arg) induced acute pancreatitis (AP) in mice. Our results showed that rReg3α stimulated cell proliferation through Erk1/2 and p38 phosphorylation and also cyclin D1 upregulation mediated by Akt/ATF-2 signaling. Moreover, rReg3α administration significantly reduced the pancreatic damage caused by L-Arg injection, as shown in histological examination and serum amylase, lipase and C-reactive protein (CRP) assays. Not only acinar cell necrosis but also apoptosis found in the pancreas of AP mice were alleviated by rReg3α. Finally, upregulated Bcl-2 and Bcl-xL and suppressed poly (ADP-ribose) synthetase/polymerase (PARP) levels were detected as being relevant to the mechanism of rReg3α protection. We therefore conclude that rReg3α acts as a protective polypeptide against AP in mice by enhancing Bcl-2 and Bcl-xL expressions and suppressing PARP level.
Collapse
MESH Headings
- Acinar Cells/drug effects
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/pharmacology
- Apoptosis/drug effects
- Arginine/adverse effects
- Biomarkers, Tumor/administration & dosage
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/pharmacology
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Female
- Gene Expression Regulation/drug effects
- Humans
- Lectins, C-Type/administration & dosage
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Mice
- Pancreatitis/chemically induced
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Pancreatitis-Associated Proteins
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Lu-Ting Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Meng-Qi Yang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Jun-Li Liu
- Fraser Laboratories for Diabetes Research, Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Martin O Alfred
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xiang Li
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Xue-Qing Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Juan Zhang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China
| | - Ming-Yuan Wu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Min Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China.
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
16
|
Kubisch I, de Albuquerque A, Schuppan D, Kaul S, Schaich M, Stölzel U. Prognostic Role of a Multimarker Analysis of Circulating Tumor Cells in Advanced Gastric and Gastroesophageal Adenocarcinomas. Oncology 2015; 89:294-303. [PMID: 26315108 DOI: 10.1159/000437373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/02/2015] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We aimed to assess the prognostic value of circulating tumor cells (CTC) in patients with advanced gastric and gastroesophageal adenocarcinomas. METHODS The presence of CTC was evaluated in 62 patients with advanced gastric and gastroesophageal adenocarcinomas before systemic therapy and at follow-up through immunomagnetic enrichment for mucin 1- and epithelial cell adhesion molecule (EpCAM)-positive cells, followed by real-time RT-PCR of the tumor-associated genes KRT19, MUC1, EPCAM, CEACAM5 and BIRC5. RESULTS The patients were stratified into groups according to CTC detection (CTC negative: with all marker genes negative; CTC positive: with at least 1 of the marker genes positive). Patients who were CTC positive at baseline had a significantly shorter median progression-free survival (PFS; 3.5 months, 95% CI: 2.9-4.2) and overall survival (OS; 5.8 months, 95% CI: 4.5-7.0) than patients lacking CTC (PFS 10.7 months, 95% CI: 6.9-14.4, p<0.001; OS 13.3 months, 95% CI: 8.0-18.6, p=0.003). Alterations in the marker profile during the course of chemotherapy were not predictive of clinical outcome or response to therapy. Yet, a favorable clinical response depended significantly on CTC negativity (p=0.03). CONCLUSION Our data suggest that the presence of CTC is a major predictor of outcome in patients with gastric and gastroesophageal malignancies.
Collapse
Affiliation(s)
- Ilja Kubisch
- Department of Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, Metabolic Disorders, Oncology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Wei L, Li Y, Suo Z. TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. Int J Clin Exp Med 2015; 8:8599-8607. [PMID: 26309511 PMCID: PMC4537951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
AIMS This study was designed to investigate the effects of Tetraspanin 8 (TSPAN8) overexpression and TSPAN8 suppression on gastric cancer cell proliferation and invasion. Furthermore, whether extracellular-signal regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway was involved in TSPAN8's function on gastric cancer cells was examined. METHODS The expression of TSPAN8 in human gastric cancer tissues and gastric cancer cell lines was detected using real-time PCR and western blot analysis. TSPAN8-pcDNA3.1 plasmid or TSPAN8 siRNA was transfected into the gastric cancer cell lines to overexpress or suppress TSPAN8. Cells were treated with U0126 to inhibit ERK MAPK pathway. Cell proliferation and invasion were assessed by MTT and transwell-matrigel assay. RESULTS TSPAN8 was overexpressed in human gastric cancer tissues and gastric cancer cell lines compared with the normal. TSPAN8 overexpression promoted cell proliferation and invasion, while TSPAN8 suppression inhibited cell proliferation and invasion. TSPAN8 could activate the ERK MAPK pathway in gastric cancer cells, and MEK-ERK inhibition reversed the effects of TSPAN8 overexpression on cell proliferation and invasion. CONCLUSION This study firstly demonstrated that TSPAN8 promotes gastric cancer cell growth and metastasis at least partially through the activation of ERK MAPK pathway. These findings provided a novel molecular basis for the understanding and treatment of gastric cancer.
Collapse
Affiliation(s)
- Lunshou Wei
- Department of Gastroenterology, Huaihe Hospital of Henan University Kaifeng 475000, Henan, China
| | - Yan Li
- Department of Gastroenterology, Huaihe Hospital of Henan University Kaifeng 475000, Henan, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University Kaifeng 475000, Henan, China
| |
Collapse
|
18
|
Zhu H, Wu Y, Zheng W, Lu S. CO-029 is overexpressed in gastric cancer and mediates the effects of EGF on gastric cancer cell proliferation and invasion. Int J Mol Med 2015; 35:798-802. [PMID: 25592989 DOI: 10.3892/ijmm.2015.2069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022] Open
Abstract
Tetraspanins are cell-surface glycoproteins and have received attention recently as both suppressors and promoters of metastasis. CO-029 is a member of the tetraspanin family and is implicated to be a metastasis-promoting tetraspanin in some cancers. However, the role of CO-029 in gastric cancer remains unexplored. The present study aimed to investigate the expression of CO-029 in gastric cancer tissues and to determine whether CO-029 is involved in the effects of epidermal growth factor (EGF) on gastric cancer cell proliferation and invasion. We collected clinical samples and found that the expression of CO-029 was increased both at the mRNA level and protein level in gastric cancer tissues in comparison to normal and tumor-adjacent tissues, as demonstrated by RT-qPCR and western blot analysis, respectively. Furthermore, we performed an in vitro experiment using AGS cells and observed that EGF promoted AGS cell proliferation and enhanced the invasion ability of the AGS cells, as shown by MTT assay and cell invasion assay, respectively. To the best of our knowledge, our results reveal for the first time, that CO-029 expression was affected by EGF in a concentration- time-dependent manner. The knockdown of CO-029 attenuated the effects of EGF on gastric cancer cell proliferation and invasion. These findings suggest that CO-029 is an oncogene in human gastric cancer and that CO-029 at least partially mediates the effects of EGF on gastric cancer cell proliferation and invasion. Our data may provide a novel target for therapeutic intervention in human gastric cancer.
Collapse
Affiliation(s)
- Hongyu Zhu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Yulian Wu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Wen Zheng
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| | - Shiliu Lu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
19
|
Zang S, Guo R, Xing R, Zhang L, Li W, Zhao M, Fang J, Hu F, Kang B, Ren Y, Zhuang Y, Liu S, Wang R, Li X, Yu Y, Cheng J, Lu Y. Identification of differentially-expressed genes in intestinal gastric cancer by microarray analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:276-83. [PMID: 25500430 PMCID: PMC4411479 DOI: 10.1016/j.gpb.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is one of the most frequent malignant tumors. In order to systematically characterize the cellular and molecular mechanisms of intestinal GC development, in this study, we used 22K oligonucleotide microarrays and bioinformatics analysis to evaluate the gene expression profiles of GC in 45 tissue samples, including 20 intestinal GC tissue samples, 20 normal appearing tissues (NATs) adjacent to tumors and 5 noncancerous gastric mucosa tissue samples. These profiles allowed us to explore the transcriptional characteristics of GC and determine the change patterns in gene expression that may be of clinical significance. 1519 and 1255 differentially-expressed genes (DEGs) were identified in intestinal GC tissues and NATs, respectively, as determined by Bayesian analysis (P<0.001). These genes were associated with diverse functions such as mucosa secretion, metabolism, proliferation, signaling and development, which occur at different stages of GC development.
Collapse
Affiliation(s)
- Shizhu Zang
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ruifang Guo
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rui Xing
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Liang Zhang
- National Engineering Research Center for Beijing Biochip Technology and Tsinghua University School of Medicine, Beijing 102206, China
| | - Wenmei Li
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Min Zhao
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jingyuan Fang
- Department of Gastroenterology, Renji Hospital of Shanghai Second Medical University, Shanghai 200001, China
| | - Fulian Hu
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Bin Kang
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yonghong Ren
- National Engineering Research Center for Beijing Biochip Technology and Tsinghua University School of Medicine, Beijing 102206, China
| | - Yonglong Zhuang
- National Engineering Research Center for Beijing Biochip Technology and Tsinghua University School of Medicine, Beijing 102206, China
| | - Siqi Liu
- Beijing Institutes of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Xianghong Li
- Department of Pathology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yingyan Yu
- Shanghai Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jing Cheng
- National Engineering Research Center for Beijing Biochip Technology and Tsinghua University School of Medicine, Beijing 102206, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, MOE Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
20
|
He N, Kim N, Song M, Park C, Kim S, Park EY, Yim HY, Kim K, Park JH, Kim KI, Zhang F, Mills GB, Yoon S. Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol Cancer Ther 2014; 13:2463-73. [PMID: 25122068 DOI: 10.1158/1535-7163.mct-14-0297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The recent proliferation of data on large collections of well-characterized cancer cell lines linked to therapeutic drug responses has made it possible to identify lineage- and mutation-specific transcriptional markers that can help optimize implementation of anticancer agents. Here, we leverage these resources to systematically investigate the presence of mutation-specific transcription markers in a wide variety of cancer lineages and genotypes. Sensitivity and specificity of potential transcriptional biomarkers were simultaneously analyzed in 19 cell lineages grouped into 228 categories based on the mutational genotypes of 12 cancer-related genes. Among a total of 1,455 category-specific expression patterns, the expression of cAMP phosphodiesterase-4D (PDE4D) with 11 isoforms, one of the PDE4(A-D) subfamilies, was predicted to be regulated by a mutant form of serine/threonine kinase 11 (STK11)/liver kinase B1 (LKB1) present in lung cancer. STK11/LKB1 is the primary upstream kinase of adenine monophosphate-activated protein kinase (AMPK). Subsequently, we found that the knockdown of PDE4D gene expression inhibited proliferation of STK11-mutated lung cancer lines. Furthermore, challenge with a panel of PDE4-specific inhibitors was shown to selectively reduce the growth of STK11-mutated lung cancer lines. Thus, we show that multidimensional analysis of a well-characterized large-scale panel of cancer cell lines provides unprecedented opportunities for the identification of unexpected oncogenic mechanisms and mutation-specific drug targets.
Collapse
Affiliation(s)
- Ningning He
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea. Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Nayoung Kim
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea. Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Mee Song
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea
| | - Choa Park
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea
| | - Somin Kim
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea
| | - Eun Young Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Hwa Young Yim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kyunga Kim
- Department of Statistics, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Fan Zhang
- Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sukjoon Yoon
- Center for Advanced Bioinformatics and Systems Medicine, Sookmyung Women's University, Seoul, Republic of Korea. Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Oh S, Song S, Dasgupta N, Grabowski G. The analytical landscape of static and temporal dynamics in transcriptome data. Front Genet 2014; 5:35. [PMID: 24600473 PMCID: PMC3929947 DOI: 10.3389/fgene.2014.00035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/30/2014] [Indexed: 12/16/2022] Open
Abstract
Interpreting gene expression profiles often involves statistical analysis of large numbers of differentially expressed genes, isoforms, and alternative splicing events at either static or dynamic spectrums. Reduced sequencing costs have made feasible dense time-series analysis of gene expression using RNA-seq; however, statistical methods in the context of temporal RNA-seq data are poorly developed. Here we will review current methods for identifying temporal changes in gene expression using RNA-seq, which are limited to static pairwise comparisons of time points and which fail to account for temporal dependencies in gene expression patterns. We also review recently developed very few number of temporal dynamic RNA-seq specific methods. Application and development of RNA-specific temporal dynamic methods have been continuously under the development, yet, it is still in infancy. We fully cover microarray specific temporal methods and transcriptome studies in initial digital technology (e.g., SAGE) between traditional microarray and new RNA-seq.
Collapse
Affiliation(s)
- Sunghee Oh
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Seongho Song
- Department of Mathematical Sciences, McMicken College of Arts and Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Nupur Dasgupta
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Gregory Grabowski
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| |
Collapse
|
22
|
KIAA0101 mRNA overexpression in peripheral blood mononuclear cells acts as predictive marker for hepatic cancer. Tumour Biol 2013; 35:2681-6. [DOI: 10.1007/s13277-013-1353-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/23/2013] [Indexed: 12/22/2022] Open
|