1
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Tamayo-Trujillo R, Cabrera-Andrade A, Zambrano AK. Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy. Int J Mol Sci 2024; 25:10255. [PMID: 39408584 PMCID: PMC11476909 DOI: 10.3390/ijms251910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Hematologic malignancies (HMs), including leukemia, lymphoma, and multiple myeloma, involve the uncontrolled proliferation of abnormal blood cells, posing significant clinical challenges due to their heterogeneity and varied treatment responses. Despite recent advancements in therapies that have improved survival rates, particularly in chronic lymphocytic leukemia and acute lymphoblastic leukemia, treatments like chemotherapy and stem cell transplantation often disrupt gut microbiota, which can negatively impact treatment outcomes and increase infection risks. This review explores the complex, bidirectional interactions between gut microbiota and cancer treatments in patients with HMs. Gut microbiota can influence drug metabolism through mechanisms such as the production of enzymes like bacterial β-glucuronidases, which can alter drug efficacy and toxicity. Moreover, microbial metabolites like short-chain fatty acids can modulate the host immune response, enhancing treatment effectiveness. However, therapy often reduces the diversity of beneficial bacteria, such as Bifidobacterium and Faecalibacterium, while increasing pathogenic bacteria like Enterococcus and Escherichia coli. These findings highlight the critical need to preserve microbiota diversity during treatment. Future research should focus on personalized microbiome-based therapies, including probiotics, prebiotics, and fecal microbiota transplantation, to improve outcomes and quality of life for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170124, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170124, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
2
|
Singh S, Singh M, Gaur S. Probiotics as multifaceted oral vaccines against colon cancer: A review. Front Immunol 2022; 13:1002674. [PMID: 36263037 PMCID: PMC9573965 DOI: 10.3389/fimmu.2022.1002674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms that, upon adequate administration, elicit a health beneficial response inside the host. The probiotics are known as immunomodulators and exhibit anti-tumor properties. Advanced research has explored the potential use of probiotics as the oral vaccines without the latent risks of pathogenicity. Probiotic-based oral vaccines are known to induce mucosal immunity that prevents the host from several enteric infections. Probiotic bacteria have the ability to produce metabolites in the form of anti-inflammatory cytokines, which play an important role in the prevention of carcinogenesis and in the activation of the phagocytes that eliminate the preliminary stage cancer cells. This review discusses the advantages and disadvantages of using the oral probiotic vaccines as well as the mechanism of action of probiotics in colon cancer therapy. This review also employs the use of “PROBIO” database for selecting certain probiotics with immunomodulatory properties. Furthermore, the use of several probiotic bacteria as anti-colon cancer adjuvants has also been discussed in detail. Because the current studies and trials are more focused on using the attenuated pathogens instead of using the probiotic-based vaccines, future studies must involve the advanced research in exploiting the potential of several probiotic strains as adjuvants in cancer therapies.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Smriti Gaur,
| |
Collapse
|
3
|
Abd Ellatif SA, Bouqellah NA, Abu-Serie MM, Razik ESA, Al-Surhanee AA, Askary AE, Daigham GE, Mahfouz AY. Assessment of probiotic efficacy and anticancer activities of Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1) isolated from dairy products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39684-39701. [PMID: 35112259 DOI: 10.1007/s11356-022-18537-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Resistance to antibiotics is on the rise, and its indiscriminate usage has resulted in human and animal management constraints. In the research for an innovative treatment to diminish antimicrobial resistance, lactic acid bacteria (LAB) throw light on diminishing this problem in public health. As a result, this paper looked at the efficacy of LAB isolates and their active metabolites to combat pathogens, reduce antibiotic use in clinical settings, and explore the anticancer potential of 8 strains of LAB isolated from dairy products. Antifungal and antibacterial potential of LAB isolates against selected crop pathogenic fungi and food pathogenic bacteria had been estimated. Results revealed that all isolates exert antioxidant efficacy relating to DPPH, NO scavenging ability, reducing power, superoxide anion, hydroxyl radical, and anti-lipid peroxidation potential. Additionally, 12B isolate exert the highest anticancer upshot with IC50 values of 43.98 ± 0.4; 36.7 ± 0.6, 43.1 ± 0.8, and 35.1 ± 0.3 μg/ml, versus Caco-2, MCF-7, HepG-2, and PC3 cell lines respectively, whereas 13B isolate significantly had the highest selectivity index between peripheral blood mononuclear cells (PBMCs) and the tested human cancer cell lines compared to 5-fluorouracil. 13B was the most apoptosis-dependent death inducer for all human cancer cell lines besides exerting the lowest percentage of apoptosis against PBMCs suggesting its safety against PBMCs. The most promising strains 12B and 13B were identified by 16S rRNA sequencing as Lactiplantibacillus plantarum ESSG1 (MZ683194.1) and Lactiplantibacillus pentosus ESSG2 (MZ683195.1). LAB and their extracts are superb substitutive, safe, and efficient antimicrobial, antioxidant, and antitumor curative agents.
Collapse
Affiliation(s)
- Sawsan A Abd Ellatif
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Nahla Alsayed Bouqellah
- Science College, Biology Department, Taibah University, 42317- 8599, Al-Madinah Al-Munawara, Kingdom of Saudi Arabia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), the City of Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Ameena A Al-Surhanee
- Biology Department, College of Science, Jouf University, Sakaka, 2014, Kingdom of Saudi Arabia
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghadir E Daigham
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Amira Y Mahfouz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt.
| |
Collapse
|
4
|
Huang R, Wu F, Zhou Q, Wei W, Yue J, Xiao B, Luo Z. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022; 260:127019. [DOI: 10.1016/j.micres.2022.127019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
5
|
Davoodvandi A, Fallahi F, Tamtaji OR, Tajiknia V, Banikazemi Z, Fathizadeh H, Abbasi-Kolli M, Aschner M, Ghandali M, Sahebkar A, Taghizadeh M, Mirzaei H. An Update on the Effects of Probiotics on Gastrointestinal Cancers. Front Pharmacol 2021; 12:680400. [PMID: 34992527 PMCID: PMC8724544 DOI: 10.3389/fphar.2021.680400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Because of their increasing prevalence, gastrointestinal (GI) cancers are regarded as an important global health challenge. Microorganisms residing in the human GI tract, termed gut microbiota, encompass a large number of living organisms. The role of the gut in the regulation of the gut-mediated immune responses, metabolism, absorption of micro- and macro-nutrients and essential vitamins, and short-chain fatty acid production, and resistance to pathogens has been extensively investigated. In the past few decades, it has been shown that microbiota imbalance is associated with the susceptibility to various chronic disorders, such as obesity, irritable bowel syndrome, inflammatory bowel disease, asthma, rheumatoid arthritis, psychiatric disorders, and various types of cancer. Emerging evidence has shown that oral administration of various strains of probiotics can protect against cancer development. Furthermore, clinical investigations suggest that probiotic administration in cancer patients decreases the incidence of postoperative inflammation. The present review addresses the efficacy and underlying mechanisms of action of probiotics against GI cancers. The safety of the most commercial probiotic strains has been confirmed, and therefore these strains can be used as adjuvant or neo-adjuvant treatments for cancer prevention and improving the efficacy of therapeutic strategies. Nevertheless, well-designed clinical studies are still needed for a better understanding of the properties and mechanisms of action of probiotic strains in mitigating GI cancer development.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Fallahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Omid Reza Tamtaji
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zarrin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Department of Laboratory Sciences, Sirjan Faculty of Medicine Sciences, Sirjan, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Lactobacillus fermentum and Lactobacillus crispatus Do Not Have Cytotoxic Effects on HN5 Oral Squamous Cell Carcinoma Cell Line. Int J Dent 2021; 2021:3034068. [PMID: 34621315 PMCID: PMC8492272 DOI: 10.1155/2021/3034068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022] Open
Abstract
Background The oral environment has a very complex normal flora and a wide variety of bacteria including lactobacilli. Studies have shown oral microbial flora has important influence in the development of oral cancer. Squamous cell carcinomas account for more than 90% of cancers in oral cavity. Lactobacilli are known as one of the newest methods for the prevention and treatment of cancers. Previous studies on the effects of probiotics on oral cancer cells are very limited, and only two species of Lactobacillus which are not present in the normal oral microflora have been studied. Due to the unknown effects of lactobacilli on oral cancer, this study aimed to investigate the effect of two species of lactobacilli of oral cavity on oral cancer cells. Methods and Materials The effects of the supernatant of two lactobacilli, namely, fermentum and crispatus were studied on HN5-cancer cells. The MTT method was used to study the effects of lactobacilli on inhibition of cancer cell growth. Results The results showed that these lactobacilli do not prevent the progression of oral cancer cells. Moreover, the results showed that the acidic medium had the most effect on reducing the growth of oral cancer cells. Conclusion Due to the different effects of lactobacilli on various cancer types, the effects of two Lactobacillus crispatus and Lactobacillus fermentum on other oral cancer cell lines may be different from what has been reported in this study.
Collapse
|
7
|
Benito I, Encío IJ, Milagro FI, Alfaro M, Martínez-Peñuela A, Barajas M, Marzo F. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in Combination with Quercetin Inhibit Colorectal Cancer Development in Apc Min/+ Mice. Int J Mol Sci 2021; 22:4906. [PMID: 34063173 PMCID: PMC8124226 DOI: 10.3390/ijms22094906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that flavonoids such as quercetin and probiotics such as Bifidobacterium bifidum (Bf) and Lactobacillus gasseri (Lg) could play a relevant role in inhibiting colon cancer cell growth. Our study investigated the role of dietary supplementation with microencapsulated probiotics (Bf and Lg) along with quercetin in the development of mouse colorectal cancer (CRC). Methods: Adenomatous polyposis coli/multiple intestinal neoplasia (ApcMin/+) mice were fed a standard diet or the same diet supplemented with microencapsulated probiotics (Bf and Lg strains, 107 CFU/100 g food) or both probiotics strains plus microencapsulated quercetin (15 mg/100 g food) for 73 days. Changes in body and organ weights, energy metabolism, intestinal microbiota, and colon tissue were determined. The expression of genes related to the Wnt pathway was also analyzed in colon samples. Results: Dietary supplementation with microencapsulated probiotics or microencapsulated probiotics plus quercetin reduced body weight loss and intestinal bleeding in ApcMin/+ mice. An improvement in energy expenditure was observed after 8 weeks but not after 10 weeks of treatment. A supplemented diet with microencapsulated Bf and Lg reduced the number of aberrant crypt foci (ACF) and adenomas by 45% and 60%, respectively, whereas the supplementation with Bf, Lg and quercetin decreased the number of ACF and adenomas by 57% and 80%, respectively. Microencapsulated Bf and Lg in combination with quercetin could exert inhibition of the canonical Wnt/β-catenin signaling pathway in the colon of ApcMin/+ mice Conclusions: The administration of microencapsulated Bf and Lg, individually or in combination with quercetin, inhibits the CRC development in ApcMin/+ mice.
Collapse
Affiliation(s)
- Iván Benito
- Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain; (I.B.); (M.A.)
| | - Ignacio J. Encío
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain;
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Alfaro
- Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain; (I.B.); (M.A.)
| | | | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain;
| | - Florencio Marzo
- Laboratory of Animal Physiology and Nutrition, School of Agronomy, Public University of Navarre, Campus Arrosadia, 31006 Pamplona, Spain; (I.B.); (M.A.)
| |
Collapse
|
8
|
Kumara SS, Gayathri D, Hariprasad P, Venkateswaran G, Swamy CT. In vivo AFB 1 detoxification by Lactobacillus fermentum LC5/a with chlorophyll and immunopotentiating activity in albino mice. Toxicon 2020; 187:214-222. [PMID: 32941932 DOI: 10.1016/j.toxicon.2020.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/25/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022]
Abstract
The potential Aflatoxin B1 (AFB1) binding Lactobacillus fermentum (LC5/a) was used for in vivo AFB1 binding and detoxification in presence of chlorophyll (CL) in male Swiss albino mice. Mice were randomly divided into seven groups. The control groups (CL, AFB1 and LC5/a) received chlorophyll (250 μg/kg b.w), AFB1 (100 μg/kg b.w) and LC5/a (1 × 108 CFU) for 21 days. The treatment group (AFB1+LC5/a) received 100 μl of lyophilized bacterial suspension (1 × 108 CFU) 2 h before the AFB1 dosage (100μg/kg b.w). The chlorophyll mice group (CL + AFB1) was given single oral dose of CL (250 μg/kg b.w) before AFB1 dosage and last mice group received the combination of CL + LC5/a before the AFB1 dosage over a period of 21 days. Ballooning of cytoplasm and necrosis in liver was evident in histopathological examination of AFB1 mice group, while, marked improvement and nearly normal histology were seen in LC5/a and CL treated mice group. The levels of AST, ALT, GST, and SOD were increased in AFB1 mice group compared to LC5/a and CL treated mice group. Elevated levels of pro-inflammatory cytokines, TNF-α, IL-12, IL-6 (324, 506, 117.25 pg/ml) were observed in AFB1 treated mice serum compared to LC5/a and CL treated mice (249.54, 322.01 and 82.35 pg/ml). Thus, Lactobacillus fermentum LC5/a has certainly sequestered AFB1 from gastrointestinal tract besides regulating the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- S Sunil Kumara
- Department of Microbiology, Davangere University, Davangere, 577002, Karnataka, India
| | - Devaraja Gayathri
- Department of Microbiology, Davangere University, Davangere, 577002, Karnataka, India.
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - G Venkateswaran
- Central Food Technological Research Institute, CSIR, Mysore, 570 020, Karnataka, India
| | | |
Collapse
|
9
|
Kumara SS, Bashisht A, Venkateswaran G, Hariprasad P, Gayathri D. Characterization of Novel Lactobacillus fermentum from Curd Samples of Indigenous Cows from Malnad Region, Karnataka, for their Aflatoxin B 1 Binding and Probiotic Properties. Probiotics Antimicrob Proteins 2020; 11:1100-1109. [PMID: 30368716 DOI: 10.1007/s12602-018-9479-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thirty-four isolates of Lactobacillus spp. (LAB) from 34 curd samples were evaluated for their aflatoxin B1 (AFB1) binding and probiotic properties. Upon characterization, four LAB isolates (LC3/a, LC4/c, LC/5a, and LM13/b) were found to be effective in removing AFB1 from culture media with a capacity of above 75%. Staining reaction, biochemical tests, pattern of sugar utilization, and 16s rRNA gene sequence analysis revealed the identity of all the four isolates as L. fermentum. All of them could tolerate acidic pH, salt, and bile, which promise the use of these probiotic bacterial isolates for human applications. These isolates showed poor hydrophobicity and higher auto-aggregation properties. All L. fermentum isolates were found susceptible to gentamycin, chloramphenicol, cefoperazone, ampicillin, and resistant to ciprofloxacin and vancomycin. Results of hemolytic and DNase activity indicated their nonpathogenic nature. Though all L. fermentum isolates found inhibiting the growth of Salmonella ebony, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, maximum inhibition was obtained with isolate LC5/a. Kinetic studies revealed that all four bacteria required a minimum of 2 h to reach stationary phase of AFB1 binding. AFB1 binding ability varied from 66 to 85.2% among these four isolates. Bile (0.4%) was significant (P ≤ 0.05) in reducing the AFB1 binding property of isolates LC3/a, LC4/c, and LM13/b, while increased AFB1 binding ability was recorded at acidic pH (2.0). AFB1 binding properties of isolate LC5/a were found least affected by acidic pH and bile. The findings of our study revealed the higher efficiency of L. fermentum isolate LC5/a in reducing the bioavailability of AFB1 in gut, and additionally, it improves the consumers' health by its various probiotic characters. These beneficial characters, L. fermentum isolates, promise them to use as probiotic formulations alone or in combinations with other beneficial probiotic-bacterial isolates.
Collapse
Affiliation(s)
- S Sunil Kumara
- Department of Studies in Microbiology, Davangere University, Davanagere, 577002, India
| | - Ambika Bashisht
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - G Venkateswaran
- Central Food Technological Research Institute, CSIR, Mysore, Karnataka, 570 020, India
| | - P Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Devaraja Gayathri
- Department of Studies in Microbiology, Davangere University, Davanagere, 577002, India.
| |
Collapse
|
10
|
Cheung MK, Yue GGL, Chiu PWY, Lau CBS. A Review of the Effects of Natural Compounds, Medicinal Plants, and Mushrooms on the Gut Microbiota in Colitis and Cancer. Front Pharmacol 2020; 11:744. [PMID: 32499711 PMCID: PMC7243258 DOI: 10.3389/fphar.2020.00744] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
The human gastrointestinal tract harbors a diverse array of microorganisms that play fundamental roles in health and disease. Imbalance in the gut microbiota, namely dysbiosis, can lead to various diseases, including cancer and gastrointestinal tract disorders. Approaches to improve gut dysbiosis, such as dietary intervention, intake of probiotics, and fecal microbiota transplantation are emerging strategies to treat these diseases. Various medicinal botanicals have reported anti-cancer and/or anti-inflammatory properties. Preclinical studies have illustrated that some of these natural products are also capable to modulate the gut microbiota, suggesting their use as possible alternative approach to improve gut dysbiosis and thereby assist diseases treatment. In this review article, we have summarized the current knowledge on the effects of natural compounds, medicinal plants, and mushrooms on the gut microbiota in various cancers and colitis in preclinical animal models. Challenges towards the clinical use of these medicinal botanicals as modulators of the gut microbiota in cancer and colitis treatment are also discussed.
Collapse
Affiliation(s)
- Man Kit Cheung
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Philip Wai Yan Chiu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
11
|
A novel kefir product (PFT) inhibits Ehrlich ascites carcinoma in mice via induction of apoptosis and immunomodulation. BMC Complement Med Ther 2020; 20:127. [PMID: 32345289 PMCID: PMC7189677 DOI: 10.1186/s12906-020-02901-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The popularity of fermented foods such as kefir, kuniss, and tofu has been greatly increasing over the past several decades, and the ability of probiotic bacteria to exert anticancer effects has recently become the focus of research. While we have recently demonstrated the ability of the novel kefir product PFT (Probiotics Fermentation Technology) to exert anticancer effects in vitro, here we demonstrate its ability to inhibit Ehrlich ascites carcinoma (EAC) in mice. METHODS Mice were inoculated intramuscularly with EAC cells to develop solid tumors. PFT was administered orally (2 g/kg/day) to mice 6 days/week, either 2 days before tumor cell inoculation or 9 days after inoculation to mice bearing solid tumors. Tumor growth, blood lymphocyte levels, cell cycle progression, apoptosis, apoptotic regulator expression, TNF-α expression, changes in mitochondrial membrane potential (MMP), PCNA, and CD4+ and CD8+ T cells in tumor cells were quantitatively evaluated by flow cytometry or RT-PCR. Further studies in vitro were carried out where EAC cells along with several other human cancer cell lines were cultured in the presence of PFT (0-5 mg/mL). Percent cell viability and IC50 was estimated by MTT assay. RESULTS Our data shows that PFT exerts the following: 1) inhibition of tumor incidence and tumor growth; 2) inhibition of cellular proliferation via a marked decrease in the expression of tumor marker PCNA; 3) arrest of the tumor cell cycle in the sub-G0/G1 phase, signifying apoptosis; 4) induction of apoptosis in cancer cells via a mitochondrial-dependent pathway as indicated by the up-regulation of p53 expression, increased Bax/Bcl-2 ratio, decrease in the polarization of MMP, and caspase-3 activation; and 5) immunomodulation with an increase in the number of infiltrating CD4+ and CD8+ T cells and an enhancement of TNF-α expression within the tumor. CONCLUSIONS PFT reduces tumor incidence and tumor growth in mice with EAC by inducing apoptosis in EAC cells via the mitochondrial-dependent pathway, suppressing cancer cell proliferation, and stimulating the immune system. PFT may be a useful agent for cancer prevention.
Collapse
|
12
|
Chou YC, Ho PY, Chen WJ, Wu SH, Pan MH. Lactobacillus fermentum V3 ameliorates colitis-associated tumorigenesis by modulating the gut microbiome. Am J Cancer Res 2020; 10:1170-1181. [PMID: 32368393 PMCID: PMC7191089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023] Open
Abstract
Lactobacillus spp., a common probiotic used as a dietary supplement, is good for the digestive system. However, its anti-cancer activity still remains unclear. In this study, we aim to examine the effect of Lactobacillus fermentum, Lactobacillus acidophilus and Lactobacillus rhamnosus on azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colitis-associated cancer. Male ICR mice were injected with 10 mg/kg AOM and 2.5% DSS via drinking water, and then fed with different Lactobacillus (1 × 108 CFU/day) for 14 weeks. The colonic tissues were collected for biomedical analysis, and gut microbiota profiling was detected by next generation high-throughput sequencing comparing to the 16S rRNA gene. We found that pretreatment with Lactobacillus fermentum (Lac.ferm) significantly inhibits colonic tumor formation (P < 0.05) and markedly decreases pro-inflammatory cytokines in AOM/DSS-induced mice. Furthermore, 16S rRNA sequencing data showed that Lac.ferm altered the composition of gut microbiota by reducing the percentage of Bacteroides. Moreover, linear discriminant analysis scores revealed that Lactobacillus fermentum within phylum Firmicutes was the prominent species existing in the Lac.ferm-treated group. Overall, the above findings suggest that dietary Lac.ferm could modulate the gut microbial community, which might be beneficial to alleviating colon cancer progression.
Collapse
Affiliation(s)
- Ya-Chun Chou
- Institute of Food Science and Technology, National Taiwan UniversityTaipei 10617, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan UniversityTaipei 10617, Taiwan
| | - Wei-Jen Chen
- Syngen Biotech Co., Ltd.Building A, No. 154, Kaiyuan Road, Sinying, Tainan 73055, Taiwan
| | - Shiuan-Huei Wu
- Syngen Biotech Co., Ltd.Building A, No. 154, Kaiyuan Road, Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan UniversityTaipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia UniversityTaichung 41354, Taiwan
| |
Collapse
|
13
|
Clouston SA, Acker J, Rubin MS, Chae DH, Link BG. Fundamental social causes of inequalities in colorectal cancer mortality: A study of behavioral and medical mechanisms. Heliyon 2020; 6:e03484. [PMID: 32190753 PMCID: PMC7068626 DOI: 10.1016/j.heliyon.2020.e03484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/14/2019] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fundamental cause theory posits that social conditions strongly influence the risk of health risks. This study identifies risk mechanisms that social conditions associated with socioeconomic status (SES) and race/ethnicity shape in the production of colorectal cancer (CRC) mortality. METHODS Two large datasets in the United States examining behavioral and medical preventive factors (N = 4.63-million people) were merged with population-level mortality data observing 761,100 CRC deaths among 3.31-billion person-years of observation to examine trends in CRC mortality from 1999-2012. Analyses examined the changing role of medical preventions and health behaviors in catalyzing SES and racial/ethnic inequalities in CRC mortality. RESULTS Lower SES as well as Black, Hispanic, Asian/Pacific Islander, and Native American race/ethnicity were associated with decreased access to age-appropriate screening and/or increased prevalence of behavioral risk factors. Analyses further revealed that SES and racial/ethnic inequalities were partially determined by differences in engagement in two preventive factors: use of colonoscopy, and participation in physical activity. DISCUSSION Social inequalities were not completely determined by behavioral risk factors. Nevertheless, a more equitable distribution of preventive medicines has the potential to reduce both the risk of, and social inequalities in, CRC mortality.
Collapse
Affiliation(s)
- Sean A.P. Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Julia Acker
- Family Community Medicine, University of California, San Francisco, CA, USA
| | - Marcie S. Rubin
- Section of Social and Behavioral Sciences, College of Dental Medicine, Columbia University, New York, NY, USA
| | - David H. Chae
- Center for Health Ecology and Equity Research, College of Human Sciences, Auburn University, Auburn, AL, USA
| | - Bruce G. Link
- Department of Sociology and School of Public Policy, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
14
|
Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum: a bacterial species with potential for food preservation and biomedical applications. Crit Rev Food Sci Nutr 2019; 60:3387-3399. [PMID: 31729242 DOI: 10.1080/10408398.2019.1688250] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lactic acid-producing bacteria are the most commonly used probiotics that play an important role in protecting the host against harmful microorganisms, strengthening the host immune system, improving feed digestibility, and reducing metabolic disorders. Lactobacillus fermentum (Lb. fermentum) is a Gram-positive bacterium belonging to Lactobacillus genus, and many reportedly to enhance the immunologic response as well as prevent community-acquired gastrointestinal and upper respiratory infections. Additionally, Lb. fermentum strains produce diverse and potent antimicrobial peptides, which can be applied as food preservative agents or as alternatives to antibiotics. Further functions attributed to probiotic Lb. fermentum strains are their abilities to decrease the level of blood stream cholesterol (as cholesterol-lowering agents) and to potentially help prevent alcoholic liver disease and colorectal cancer among humans. Finally, Lb. fermentum is a key microorganism in sourdough technology, contributing to flavor, texture, or health-promoting dough ingredients, and has recently been used to develop new foods stuffs such as fortified and functional foods with beneficial attributes for human health. Development of such new foodstuffs are currently taking important proportions of the food industry market. Furthermore, an increasing awareness of the consumers prompts the food-makers to implement alternative environmental friendly solutions in the production processes and/or suitable biological alternative to limit the use of antibiotics in feed and food. Here, we give an account on the application of Lb. fermentum strains in the biomedical and food preservation fields, with a focus on probiotic features such as bacteriocin production. We also summarize the use of Lb. fermentum as cell factories with the aim to improve the efficacy and health value of functional food.
Collapse
Affiliation(s)
- Karim Naghmouchi
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Al Baha University, Saudi Arabia.,Faculté des Sciences de Tunis, Université de Tunis El Manar, LR01ES05 Biochimie et Biotechnologie, Tunis, Tunisie
| | - Yanath Belguesmia
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Giuseppe Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Foggia, Italy
| | - Bruce S Seal
- Biology Program, Oregon State University Cascades, Bend, Oregon, USA
| | - Djamel Drider
- Université Lille, INRA, ISA, Université d'Artois, Université Littoral Côte d'Opale, EA 7394-ICV Institut Charles Viollette, Lille, France
| |
Collapse
|
15
|
Genaro SC, Lima de Souza Reis LS, Reis SK, Rabelo Socca EA, Fávaro WJ. Probiotic supplementation attenuates the aggressiveness of chemically induced colorectal tumor in rats. Life Sci 2019; 237:116895. [PMID: 31610204 DOI: 10.1016/j.lfs.2019.116895] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
To evaluate the effect of a probiotic on the aggressiveness of a chemically induced colorectal tumor in rats. Twenty-five male Fisher 344 rats, 250 g, provided with feed and water ad libitum, were randomly divided into 5 groups (5 rats/group): GControl, no treatment; GTumor, tumor induction; GTumor+5FU, tumor induction, 5-Fluorouracil applied; GTumor+Prob, induction of the tumor, supplemented with probiotic; GTumor+5-FU+Prob, tumor induction, 5-Fluorouracil applied, supplemented with probiotic. For tumor induction 20 mg/kg of 1,2-dimethylhydrazine was applied intraperitoneally over 4 weeks, followed by an interval of 15 days, and then repeated for a further 4 weeks. Five weeks after the final dose of the carcinogen, treatment was initiated with 5-Fluorouracil (15 mg/kg, intraperitoneally/week) and a commercial probiotic (1 × 109 CFU, daily/gavage). Data were analyzed by One Way Variance Analysis and means compared by Dunnett's test. GraphPad Prism statistical software was used. The histopathological analyzes were evaluated by the chi-square test. A 5% type-I error was considered statistically significant. Compared with the GTumor, the GTumor+Prob (p < 0.0373) and GTumor+5-FU+Prob (p < 0.0003) demonstrated an attenuated effect on the aggressiveness of the colorectal tumor, with a reduction in the count of Aberrant Crypt foci; and a lower percentage of malignant neoplastic lesions in the GTumor+Prob (40% low grade tubular adenoma, 40% carcinoma in situ, 20% low grade adenocarcinoma) and GTumor+5-FU+Prob (40% low grade tubular adenoma and 60% carcinoma in situ). Probiotic supplementation has the potential to decrease the formation of aberrant crypts and ameliorate tumor malignancy, enhancing the antitumor effect of 5-Fluorouracil chemotherapy in colic segments.
Collapse
Affiliation(s)
- Sandra Cristina Genaro
- Postgraduate Program in Animal Science, University of West Paulist, Presidente Prudente, SP, Brazil; Faculty of Nutrition, University of West São Paulo, Presidente Prudente, SP, Brazil.
| | - Luis Souza Lima de Souza Reis
- Postgraduate Program in Animal Science, University of West Paulist, Presidente Prudente, SP, Brazil; Faculty of Veterinary Medicine, University of West São Paulo, Presidente Prudente, SP, Brazil.
| | - Sabrina Karen Reis
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, State University of Campinas, UNICAMP, Campinas-SP, Brazil.
| | - Eduardo Augusto Rabelo Socca
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, State University of Campinas, UNICAMP, Campinas-SP, Brazil.
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, State University of Campinas, UNICAMP, Campinas-SP, Brazil.
| |
Collapse
|
16
|
Nozari S, Faridvand Y, Etesami A, Ahmad Khan Beiki M, Miresmaeili Mazrakhondi SA, Abdolalizadeh J. Potential anticancer effects of cell wall protein fractions from Lactobacillus paracasei on human intestinal Caco-2 cell line. Lett Appl Microbiol 2019; 69:148-154. [PMID: 31278768 DOI: 10.1111/lam.13198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
Abstract
Consumption of probiotics has an important role in colorectal cancer prevention. In this study, we aimed to explore that the cell wall protein fractions from Lactobacillus paracasei could induce apoptosis on Caco-2 cell line. The cell wall proteins from L. paracasei were fractionated by gel filtration chromatography (F1, F2 and F3) and characterized by polyacrylamide gel electrophoresis (SDS-PAGE). The anticancer properties were evaluated using MTT assay and Annexin V-FITC/PI staining. Administration of L. paracasei increased a significant concentration- and time-dependent anti-proliferative effect on Caco-2 cell line, determined by cell viability assays. However, a dramatic decrease in cell viability of Caco-2 cells was observed at the concentration of 100 µg ml-1 of F1 L. paracasei for 72 h (58% cell viability, P < 0·05) The results showed that F1 L. paracasei could induce apoptosis in Caco-2 cancer cell line by increased in annexin V and propidium iodide staining for 72 h (up to 90·6%, P < 0·001). These results indicated the importance of the anticancer effects of cell wall protein fractions of L. paracasei in human colon carcinoma Caco-2 cell line. Thus, cell wall protein fractions of L. paracasei can be a potential chemotherapeutic agent against Caco-2 cell lines. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: Our findings revealed that the newly identified cell wall protein fractions from probiotic Lactobacillus paracasei inhibit the cell growth of human colon carcinoma cell line (Caco-2), and the results indicated that the cell wall proteins from L. paracasei can be a potential chemotherapeutic agent against Caco-2 cell lines.
Collapse
Affiliation(s)
- S Nozari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Y Faridvand
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Etesami
- Department of Microbiology, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - M Ahmad Khan Beiki
- MD school of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - J Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A. Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol 2019; 234:17127-17143. [DOI: 10.1002/jcp.28473] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences Semnan Iran
| | - Bahman Yousefi
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences Semnan Iran
- Immune and Gene Therapy Lab, Cancer Centre Karolinska, Karolinska University Hospital Stockholm Sweden
| | - Maral Hemati
- Department of Immunology Semnan University of Medical Sciences Semnan Iran
| | | | - Vahid Arabkari
- Discipline of Pathology, Lambe Institute for Translational Research, Clinical Science Institute, School of Medicine, National University of Ireland Galway Ireland
| | - Afshin Namdar
- Department of Dentistry Faculty of Medicine and Dentistry, University of Alberta Edmonton Alberta Canada
| |
Collapse
|
18
|
Ding C, Tang W, Fan X, Wu G. Intestinal microbiota: a novel perspective in colorectal cancer biotherapeutics. Onco Targets Ther 2018; 11:4797-4810. [PMID: 30147331 PMCID: PMC6097518 DOI: 10.2147/ott.s170626] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is believed that genetic factors, immune system dysfunction, chronic inflammation, and intestinal microbiota (IM) dysbiosis contribute to the pathogenesis of colorectal cancer (CRC). The beneficial role played by the direct regulation of IM in inflammatory bowel disease treatment is identified by the decreased growth of harmful bacteria and the increased production of anti-inflammatory factors. Interestingly, gut microbiota has been proven to inhibit tumor formation and progression in inflammation/carcinogen-induced CRC mouse models. Recently, evidence has indicated that IM is involved in the negative regulation of tumor immune response in tumor microenvironment, which then abolishes or accelerates anticancer immunotherapy in several tumor animals. In clinical trials, a benefit of IM-based CRC therapies in improving the intestinal immunity balance, epithelial barrier function, and quality of life has been reported. Meanwhile, specific microbiota signature can modulate host's sensitivity to chemo-/radiotherapy and the prognosis of CRC patients. In this review, we aim to 1) summarize the potential methods of IM-based therapeutics according to the recent results; 2) explore its roles and underlying mechanisms in combination with other therapies, especially in biotherapeutics; 3) discuss its safety, deficiency, and future perspectives.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Wendong Tang
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu Province, People's Republic of China,
| |
Collapse
|
19
|
Raj R, Das S. Development and application of anticancer fluorescent CdS nanoparticles enriched Lactobacillus bacteria as therapeutic microbots for human breast carcinoma. Appl Microbiol Biotechnol 2017; 101:5439-5451. [PMID: 28455616 DOI: 10.1007/s00253-017-8298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 01/21/2023]
Abstract
Applications of probiotic bacteria and nanoparticles (NPs) as therapeutic agents have great importance. This study demonstrates a combinatorial approach of both the probiotic Lactobacillus spp. (Lactobacillus fermentum and Lactobacillus plantarum) with fluorescent cadmium sulfide (CdS) NPs as therapeutic agents to target MCF-7 cancer cells (human breast cancer cells). In this study, facultative anaerobic Lactobacillus was successfully used as a vehicle to transport NPs into MCF-7 cancer cells. The cell viability assay and invasion study along with confocal and field emission scanning electron microscopy (FESEM) confirmed the release of payload (CdS NPs) into cytoplasm without any external stimuli. The biosynthesized CdS NPs of ∼22 nm were characterized by FESEM, transmission electron microscopy (TEM), atomic force microscopy (AFM), and fluorescence spectroscopy. The bacteria-NPs (microbots) interaction was investigated by growth curve studies, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), FESEM, energy dispersive X-ray spectroscopy (EDX), and fluorescence and confocal microscopy. This alternative approach showed an approved and inexpensive delivering mode of specific functional cargos or therapeutic agents into the cancer cells.
Collapse
Affiliation(s)
- Ritu Raj
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Surajit Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
20
|
Yu AQ, Li L. The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutr Cancer 2016; 68:535-44. [PMID: 27144297 DOI: 10.1080/01635581.2016.1158300] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human gut microbiota has a significant effect on many aspects of human physiology such as metabolism, nutrient absorption, and immune function. Imbalance of the microbiota has been implicated in many disorders including inflammatory bowel disease, obesity, asthma, psychiatric illnesses, and cancers. As a kind of functional foods, probiotics have been shown to play a protective role against cancer development in animal models. Clinical application of probiotics indicated that some probiotic strains could diminish the incidence of postoperative inflammation in cancer patients. Chemotherapy or radiotherapy-related diarrhea was relieved in patients who were administered oral probiotics. The present review summarizes the up-to-date studies on probiotic effects and the underlying mechanisms related to cancer. At present, it is commonly accepted that most commercial probiotic products are generally safe and can improve the health of the host. By modulating intestinal microbiota and immune response, some strains of probiotics can be used as an adjuvant for cancer prevention or/and treatment.
Collapse
Affiliation(s)
- Ai-Qun Yu
- a Institute of Psychology, Chinese Academy of Sciences , Beijing , China.,b Graduate School of Chinese Academy of Sciences , Beijing , China.,c Shanghai Lida Polytechnic Institute , Shanghai , China
| | - Lianqin Li
- d Department of Obstetrics and Gynecology , Yantai Affiliated Hospital of Binzhou Medical University , Yantai , China
| |
Collapse
|
21
|
Abstract
In nutraceutical science, the ingestible live microbes 'probiotics' are regarded for their ability to confer multiplicity of health benefits on the consumers. Wide spectrum impact of these friendly microbes on the host health has been proved very frequently. They have been confirmed to boost immunity, aid in digestion, eliminate pathogens, curb inflammatory bowel diseases, moderate side effects of antibiotic therapy, lower cholesterol and blood glycemic index and produce vitamins. This review, however, focuses on the incipient, but promising area of probiotic diet-based prevention and remedy of cancer. Researchers are in universal agreement with the critical role of probiotics in getting rid of mutagens, delaying the onset of tumors, alleviating the side effects, pepping up chemotherapy, easing the postoperative complications, foiling remission and lifting the spirit of survivors. The key findings in the emerging roles of probiotics in onco-care have been summarized; the biological pathways discussed and anticipated developments in coming times are presented.
Collapse
|
22
|
Booupathy LK, Venkatachalam S, Natarajan N, Thamaraiselvan R, Arumugam M, Maruthaiveeran Periyasamy B. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar Rats. J Food Drug Anal 2016; 24:206-213. [PMID: 28911405 PMCID: PMC9345433 DOI: 10.1016/j.jfda.2015.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/05/2015] [Accepted: 07/16/2015] [Indexed: 01/04/2023] Open
Abstract
Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF). Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.
Collapse
|
23
|
Abstract
BACKGROUND Intestinal microbiota influences the progression of colitis-associated colorectal cancer. With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of colitis-associated colorectal cancer. Curcumin is the most active constituent of the ground rhizome of the Curcuma longa plant, which has been demonstrated to have anti-inflammatory, antioxidative, and antiproliferative properties. METHODS Il10 mice on 129/SvEv background were used as a model of colitis-associated colorectal cancer. Starting at 10 weeks of age, wild-type or Il10 mice received 6 weekly intraperitoneal injections of azoxymethane (AOM) or phosphate-buffered saline (PBS) and were started on either a control or a curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were killed at 30 weeks of age. RESULTS Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and, at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10 mice and limited effects were seen in AOM/Il10 mice. In wild-type and in Il10 mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10 mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. CONCLUSIONS In AOM/Il10 model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology.
Collapse
|
24
|
Cancer preventive effects of a specific probiotic fermented milk containing Lactobacillus acidophilus CL1285, L. casei LBC80R and L. rhamnosus CLR2 on male F344 rats treated with 1,2-dimethylhydrazine. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
25
|
Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY. Assessment of probiotic potential and anticancer activity of newly isolated vaginal bacterium Lactobacillus plantarum 5BL. Microbiol Immunol 2015; 58:492-502. [PMID: 25039934 DOI: 10.1111/1348-0421.12175] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/17/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
Abstract
Numerous bacteria in and on its external parts protect the human body from harmful threats. This study aimed to investigate the potential beneficial effects of the vaginal ecosystem microbiota. A type of bacteria was isolated from vaginal secretions of adolescent and young adult women, cultured on an appropriate specific culture medium, and then molecularly identified through 16S rDNA gene sequencing. Results of 16S rDNA sequencing revealed that the isolate belongs to the Lactobacillus plantarum species. The isolated strain exhibited probiotic properties such as low pH and high bile salt concentration tolerance, antibiotic susceptibility and antimicrobial activity against some pathogenic bacteria. The anticancer effects of the strain on human cancer cell lines (cervical, HeLa; gastric, AGS; colon, HT-29; breast, MCF-7) and on a human normal cell line (human umbilical vein endothelial cells [HUVEC]) were investigated. Toxic side effects were assessed by studying apoptosis in the treated cells. The strain exhibited desirable probiotic properties and remarkable anticancer activity against the tested human cancer cell lines (P ≤ 0.05) with no significant cytotoxic effects on HUVEC normal cells (P ≤ 0.05). Overall, the isolated strain showed favorable potential as a bioactive therapeutic agent. Therefore, this strain should be subjected to the other required tests to prove its suitability for clinical therapeutic application.
Collapse
|
26
|
Song S, Oh S, Lim KT. The proteins (12 and 15 kDa) isolated from heat-killedLactobacillus plantarumL67 induces apoptosis in HT-29 cells. Cell Biochem Funct 2015; 33:89-96. [DOI: 10.1002/cbf.3094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/16/2023]
Affiliation(s)
- S. Song
- Division of Animal Science; Chonnam National University; Gwangju Korea
| | - S. Oh
- Division of Animal Science; Chonnam National University; Gwangju Korea
| | - K. T. Lim
- Division of Animal Science; Chonnam National University; Gwangju Korea
| |
Collapse
|
27
|
Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:815-9. [PMID: 25729553 PMCID: PMC4340992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 09/11/2014] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Several beneficial effects have been attributed to the probiotic lactic acid bacteria. It was determined that lactobacilli can exert antiproliferative effects on the various cancer cell lines including colon cancer. Effects of lactic acid bacteria on colon cancer may vary from strain to strain and there is a need to find the new probiotic strains with tumor suppressing properties through in vitro studies. MATERIALS AND METHODS Anti-proliferative activities of heat-killed cells and cell-free supernatants of a native strain of Lactobacillus plantarum A7 and a commercial strain of lactobacillus rhamnosus GG were assessed on human colon cancer cell lines (Caco-2 and HT-29) and normal cells (L-929), using MTT assay. Cells were seeded at 2×10(4) cells/mlin 96 well plates and incubated for 24 hr. Then heat-killed cells (OD620: 0.025, 0.0.05, 0.1) and cell-free supernatants of bacteria were added at concentration of 2.5, 5 and 10 mg/ml. After 48 hr incubation MTT (5 mg/ml) was added and the absorbance was measured at 540 nm using ELISA plate reader. RESULTS Results showed that heat-killed cells and cell-free supernatants of both probiotic strains reduced the growth rate of cancer and normal cells. These results suggested that anti-proliferative effect may not be an exclusive characteris ticwhich is dedicated to officially approved probiotics. CONCLUSION L. plantarum A7 could be considered as colon cancer biological product, most likely due to its advantages in significant organic acid production.
Collapse
Affiliation(s)
- Hojjat Sadeghi-Aliabadi
- Department of Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Hojjat Sadeghi-Aliabadi.Department of Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran. Tel: +98-311-7922564; Fax: +98-311-6680011;
| | - Fatemeh Mohammadi
- Department of Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossain Fazeli
- Department of Microbiology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mirlohi
- Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Wan Y, Xin Y, Zhang C, Wu D, Ding D, Tang L, Owusu L, Bai J, Li W. Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol Lett 2014; 7:1738-1742. [PMID: 24765211 PMCID: PMC3997687 DOI: 10.3892/ol.2014.1959] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/18/2014] [Indexed: 11/06/2022] Open
Abstract
Probiotic bacteria are known to exert a wide range of beneficial effects on their animal hosts. Therefore, the present study explored the effect of the supernatants obtained from Lactobacillus delbrueckii fermentation (LBF) on colon cancer. The results indicated that the proliferation of LBF solution-treated colon cancer SW620 cells was arrested and accumulated in the G1 phase in a concentration-dependent manner. The LBF solution efficiently induced apoptosis through the intrinsic caspase 3-depedent pathway, with a corresponding decreased expression of Bcl-2. The activity of matrix metalloproteinase 9, which is associated with the invasion of colon cancer cells, was also decreased in the LBF-treated cells. In conclusion, the results demonstrate the antitumor effect of LBF in vitro and may contribute to the development of novel therapies for the treatment of colon cancer.
Collapse
Affiliation(s)
- Ying Wan
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yi Xin
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Cuili Zhang
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Dachang Wu
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Dapeng Ding
- Clinical Laboratory Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li Tang
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Lawrence Owusu
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jing Bai
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Weiling Li
- Department of Biotechnology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|