1
|
Li H, Sun J, Wu Y, Yang Y, Zhang W, Tian Y. Honokiol relieves hippocampal neuronal damage in Alzheimer's disease by activating the SIRT3-mediated mitochondrial autophagy. CNS Neurosci Ther 2024; 30:e14878. [PMID: 39097923 PMCID: PMC11298204 DOI: 10.1111/cns.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This work elucidated the effect of honokiol (HKL) on hippocampal neuronal mitochondrial function in Alzheimer's disease (AD). METHODS APP/PS1 mice were used as AD mice models and exposed to HKL and 3-TYP. Morris water maze experiment was performed to appraise cognitive performance of mice. Hippocampal Aβ+ plaque deposition and neuronal survival was evaluated by immunohistochemistry and Nissl staining. Hippocampal neurons were dissociated from C57BL/6 mouse embryos. Hippocampal neuronal AD model was constructed by Aβ oligomers induction and treated with HKL, CsA and 3-TYP. Neuronal viability and apoptosis were detected by cell counting kit-8 assay and TUNEL staining. mRFP-eGFP-LC3 assay, MitoSOX Red, dichlorodihydrofluorescein diacetate, and JC-1 staining were performed to monitor neuronal autophagosomes, mitochondrial reactive oxygen species (ROS), neuronal ROS, and mitochondrial membrane potential. Autophagy-related proteins were detected by Western blot. RESULTS In AD mice, HKL improved cognitive function, relieved hippocampal Aβ1-42 plaque deposition, promoted hippocampal neuron survival, and activated hippocampal SIRT3 expression and mitochondrial autophagy. These effects of HKL on AD mice were abolished by 3-TYP treatment. In hippocampal neuronal AD model, HKL increased neuronal activity, attenuated neuronal apoptosis and Aβ aggregation, activated SIRT3 and mitochondrial autophagy, reduced mitochondrial and neuronal ROS, and elevated mitochondrial membrane potential. CsA treatment and 3-TYP treatment abrogated the protection of HKL on hippocampal neuronal AD model. The promotion of mitochondrial autophagy by HKL in hippocampal neuronal AD model was counteracted by 3-TYP. CONCLUSIONS HKL activates SIRT3-mediated mitochondrial autophagy to mitigate hippocampal neuronal damage in AD. HKL may be effective in treating AD.
Collapse
Affiliation(s)
- Haitao Li
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yishu Yang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuanruhua Tian
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
2
|
Su X, Xue H, Lou Y, Lv X, Mi X, Lu J, Chen X. Investigation of the Potential Mechanism of Compound Dragon's Blood Capsule against Myocardial Ischemia Based on Network Pharmacology. Comb Chem High Throughput Screen 2024; 27:2940-2950. [PMID: 38231051 DOI: 10.2174/0113862073264485240102064653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Dragon's blood is widely consumed in China, Vietnam and Laos to promote blood circulation. A Compound Dragon's blood capsule (CDC) is a patented medicine composed of dragon's blood, notoginseng, and borneol. This combination is purported to stabilize coronary heart disease and myocardial ischemia. However, the possible mechanisms and the characterization of its drug targets' relevance at the systemic level remain unclear. AIM The present study aims to reveal the potential mechanisms of CDC's anti-myocardial ischemia effect. MATERIALS AND METHODS The potential mechanisms were investigated by network pharmacology and qRT-PCR was used to verify the expression levels of key genes of PI3k-Akt pathway. RESULTS S1PR2 and AGTR1 were the common targets, which involved 6 biological processes annotated by KEGG and GO analysis. The qRT-PCR results showed a remarkable increase in the expression of Pi3k, Pdk1, Akt, Mdm2, Bcl2, and mTOR. Results also showed a decline in the expression of P53 and Casp3 after CDC intervention. CONCLUSION CDC has a significant anti-myocardial ischemia effect through the PI3k/Akt pathway, which demonstrates that CDC is a suitable adjuvant to treat CHD and provides a theoretical basis for its further clinical application.
Collapse
Affiliation(s)
- Xin Su
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong, 666100, China
| | - Hongwei Xue
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Yang Lou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Xinkai Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Xiao Mi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100094, China
| |
Collapse
|
3
|
Liu Y, Ji X, Zhou Z, Zhang J, Zhang J. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc Res 2023:104565. [PMID: 37307911 DOI: 10.1016/j.mvr.2023.104565] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in developed countries. Among cardiovascular disorders, myocardial infarction remains a life-threatening problem predisposing to the development and progression of ischemic heart failure. Ischemia/reperfusion (I/R) injury is a critical cause of myocardial injury. In recent decades, many efforts have been made to find the molecular and cellular mechanisms underlying the development of myocardial I/R injury and post-ischemic remodeling. Some of these mechanisms are mitochondrial dysfunction, metabolic alterations, inflammation, high production of ROS, and autophagy deregulation. Despite continuous efforts, myocardial I/R injury remains a major challenge in medical treatments of thrombolytic therapy, heart disease, primary percutaneous coronary intervention, and coronary arterial bypass grafting. The development of effective therapeutic strategies to reduce or prevent myocardial I/R injury is of great clinical significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiang Ji
- Department of Integrative, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jingwen Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
4
|
Wang J, Liu YM, Hu J, Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed Pharmacother 2023; 162:114464. [PMID: 37060657 DOI: 10.1016/j.biopha.2023.114464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
Over the past few decades, clinical trials conducted worldwide have demonstrated the efficacy of arsenic trioxide (ATO) in the treatment of relapsed acute promyelocytic leukemia (APL). Currently, ATO has become the frontline treatments for patients with APL. However, its therapeutic applicability is severely constrained by ATO-induced cardiac side effects. Any cardioprotective agents that can ameliorate the cardiac side effects and allow exploiting the full therapeutic potential of ATO, undoubtedly gain significant attention. The knowledge and use of natural products for evidence-based therapy have grown rapidly in recent years. Here we discussed the potential mechanism of ATO-induced cardiac side effects and reviewed the studies on cardiac side effects as well as the research history of ATO in the treatment of APL. Then, We summarized the protective effects and underlying mechanisms of natural products in the treatment of ATO-induced cardiac side effects. Based on the efficacy and safety of the natural product, it has a promising future in the development of cardioprotective agents against ATO-induced cardiac side effects.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
5
|
Rather IA, Khan N, Kushwah AS, Surampalli G, Kumar M. Nephroprotective effects of honokiol in a high-fat diet-streptozotocin rat model of diabetic nephropathy. Life Sci 2023; 320:121543. [PMID: 36871934 DOI: 10.1016/j.lfs.2023.121543] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
AIMS Diabetic nephropathy (DN) is the foremost basis of end-stage kidney failure implicating endoplasmic reticulum (ER) stress and dysregulation of Rho kinase/Rock pathway. Magnolia plants are used in traditional medicine systems in Southeast Asia owing to bioactive phytoconstituents. Earlier, honokiol (Hon) exhibited therapeutic potential in experimental models of metabolic, renal, and brain disorders. In the present study, we evaluated potential of Hon against DN and possible molecular mechanisms. MAIN METHODS In the existing experiments, high-fat diet (HFD) (17 weeks) and streptozotocin (STZ) (40 mg/kg once) induced DN rats were orally treated with Hon (25, 50, 100 mg/kg) or metformin (150 mg/kg) for 8 weeks. KEY FINDINGS Hon attenuated albuminuria, blood biomarkers (e.g., urea nitrogen, glucose, C-reactive protein, and creatinine) and ameliorated lipid profile, electrolytes levels (Na+/K+), and creatinine clearance against DN. Hon significantly decreased renal oxidative stress and inflammatory biomarkers against DN. Histomorphometry and microscopic analysis revealed nephroprotective effects of Hon marked by a decrease in leukocyte infiltration, renal tissue damage, and urine sediments. RT-qPCR showed that Hon treatment attenuated mRNA expression of transforming growth factor-β1 (TGF-β1), endothelin-1 (ET-1), ER stress markers (GRP78, CHOP, ATF4, and TRB3), and Rock 1/2 in DN rats. Data from ELISA supported a decrease in levels of TGF-β1, ET-1, ER stress markers, and Rock1/2 by Hon. SIGNIFICANCE Hon attenuated hyperglycemia, redox imbalance, and inflammation and improved renal functions in rats. Hon alleviates DN pathogenesis possibly by attenuating ER stress and Rock pathway.
Collapse
Affiliation(s)
- Ishfaq Ahmad Rather
- Department of Pharmacology, Swift School of Pharmacy, Rajpura, Patiala, Punjab, India.
| | - Nadeem Khan
- Department of Pharmacology, Swift School of Pharmacy, Rajpura, Patiala, Punjab, India.
| | - Ajay Singh Kushwah
- Department of Pharmacology, Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Ropar, Punjab, India.
| | | | - Manish Kumar
- Department of Pharmacology, Swift School of Pharmacy, Rajpura, Patiala, Punjab, India; Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
6
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
7
|
Huang A, Yang F, Cheng P, Liao D, Zhou L, Ji X, Peng D, Zhang L, Cheng T, Ma L, Xia X. Honokiol attenuate the arsenic trioxide-induced cardiotoxicity by reducing the myocardial apoptosis. Pharmacol Res Perspect 2022; 10:e00914. [PMID: 35171536 PMCID: PMC8848632 DOI: 10.1002/prp2.914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Despite advantages of arsenic trioxide (ATO) in oncological practice, its clinical applications have been hampered by severe cardiotoxicity. The general mechanism of ATO-induced cardiotoxicity has been attributed to its damage to mitochondria, resulting in cardiac remodeling. Honokiol (HKL) is a naturally occurring compound derived from Magnolia bark. Previous studies have demonstrated that HKL exerts cardio-protective effects on ischemia/reperfusion (I/R) or chemical-induced cardiotoxicity by counteracting the toxic effects on mitochondria. The present study was conducted to investigate whether HKL pretreatment protects against ATO-induced cardiac oxidative damage and cell death. For the in vitro study, we evaluated the effects of ATO and/or Honokiol on reactive oxygen species (ROS) production and apoptosis induction in primary cultured cardiomyocytes; for the in vivo study, BALB/c mice were administrated with ATO and/or HKL for a period of 4 weeks, myocardial apoptosis, cardiac function, and cardiac remodeling (cardiac hypertrophy and cardiac fibrosis) were assessed at the end of administration. Our results demonstrated Honokiol pretreatment alleviated the ATO-induced boost in ROS concentration and the following apoptosis induction in primary cultured cardiomyocytes. In the mouse model, Honokiol pretreatment ameliorated ATO-induced myocardial apoptosis, cardiac dysfunction, and cardiac remodeling. Collectively, these results indicated that Honokiol provide a protection against ATO-induced cardiotoxicity by reducing mitochondrial damage. In addition, given that Honokiol has shown considerable suppressive effects on leukemia cells, our data also imply that ATO and Honokiol combination may possibly be a superior avenue in leukemia therapy.
Collapse
Affiliation(s)
- An‐Liang Huang
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Fan Yang
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Ping Cheng
- State Key Lab of BiotherapyWest China HospitalSichuan UniversityChengduSichuanPeople’s Republic of China
| | - Dian‐ying Liao
- Department of PathologyWest China HospitalChengduSichuanPeople’s Republic of China
| | - Li Zhou
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Xing‐Li Ji
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Dou‐Dou Peng
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Li Zhang
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Ting‐Ting Cheng
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Li Ma
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| | - Xian‐Gen Xia
- Department of PathologyChengdu Fifth People’s HospitalChengduSichuanPeople’s Republic of China
- Department of PathologyThe Fifth Affiliated People's Hospital of Chengdu University of Traditional Chinese MedicineChengduSichuanPeople’s Republic of China
| |
Collapse
|
8
|
Honokiol Provides Cardioprotection from Myocardial Ischemia/Reperfusion Injury (MI/RI) by Inhibiting Mitochondrial Apoptosis via the PI3K/AKT Signaling Pathway. Cardiovasc Ther 2022; 2022:1001692. [PMID: 35414825 PMCID: PMC8977331 DOI: 10.1155/2022/1001692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Myocardial injury refers to a major complication that occurs in myocardial ischemia/reperfusion injury (MI/RI). Honokiol is a well-recognized active compound extracted from the traditional Chinese herb known as Magnolia officinalis and is utilized in treating different vascular diseases. This research is aimed at examining whether Honokiol might alleviate myocardial injury in an MI/RI model. Methods Seventy-eight male C57BL/6 mice were categorized randomly into three cohorts including the Sham operation (Sham) cohort, the MI/RI cohort (Con), and the Honokiol cohort (n = 26 for each cohort). The mice in the Honokiol cohort were treated with Honokiol before MI/RI surgery (0.2 mg/kg/day for 14 days, intraperitoneal), while the mice in the Con cohort were given an intraperitoneal injection with an equivalent volume of vehicle (DMSO) daily in 14 days prior to exposure to MI/RI. After the surgery, creatine kinase- (CK-) MB and cardiac troponin T (cTnT) levels, as well as the infarct area, were measured to assess the degree of myocardial damage. Apoptotic levels were detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. Electron microscopy was utilized to identify mitochondrial damage. Lastly, the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), cleaved caspase-9, cytochrome C (Cyt-C), B cell lymphoma/leukemia-2 (Bcl-2), B cell lymphoma/leukemia-2 associated X (Bax), AKT, p-AKT, PI3K, and p-PI3K were analyzed utilizing western blotting. Results Honokiol can reduce the MI/RI-induced cTnT and CK-MB levels, apoptosis index, and mitochondrial swelling in cardiomyocytes via activating the PI3K/AKT signaling pathway. Conclusion Honokiol provides cardiac protection from MI/RI by suppressing mitochondrial apoptosis through the PI3K/AKT signaling pathway.
Collapse
|
9
|
Sahu M, Sharma AK, Sharma G, Kumar A, Nandave M, Babu V. Facile synthesis of bromelain copper nanoparticles to improve the primordial therapeutic potential of copper against acute myocardial infarction in diabetic rats. Can J Physiol Pharmacol 2022; 100:210-219. [PMID: 34910610 DOI: 10.1139/cjpp-2021-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our current investigation comprises the synthesis and pharmacological impact of bromelain copper nanoparticles (BrCuNP) against diabetes mellitus (DM) and associated ischemia/reperfusion (I/R) - induced myocardial infarction. Bromelain is a proteolytic enzyme obtained from Ananas comosus L. Merr., which has blood platelet aggregation inhibiting and arterial thrombolytic potential. Moreover, copper is well-known to facilitate glucose metabolism and strengthen cardiac muscle and antioxidant activity; although, chronic or long-term exposure to high doses of copper may lead to copperiedus. To restrict these potential hazards, we synthesized herbal nano-formulation which convincingly indicated the improved primordial therapeutic potential of copper by reformulating the treatment carrier with bromelain, resulting in facile synthesis of BrCuNP. DM was induced by administration of double cycle repetitive dose of low dose streptozotocin (20 mg/kg, i.p.) in high-fat diet- fed animals. DM and associated myocardial I/R injury were estimated by increased serum levels of total cholesterol, low-density lipoprotein, very low-density lipoprotein, lactate dehydrogenase, creatine kinase myocardial band, cardiac troponin, thiobarbituric acid reactive substances, tumor necrosis factor α, interleukin 6, and reduced serum level of high-density lipoprotein and nitrite/nitrate concentration. However, treatment with BrCuNP ameliorates various serum biomarkers by approving cardioprotective potential against DM- and I/R-associated injury. Furthermore, upturn of histopathological changes were observed in cardiac tissue of BrCuNP-treated rats in comparison to disease models.
Collapse
Affiliation(s)
- Megha Sahu
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida-201313, UP, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Arun K Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Gunjan Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Ashish Kumar
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Haryana, Gurugram - 122412, Haryana, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Varsha Babu
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida-201313, UP, India
| |
Collapse
|
10
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Li M, Ning J, Huang H, Jiang S, Zhuo D. Allicin protects against renal ischemia-reperfusion injury by attenuating oxidative stress and apoptosis. Int Urol Nephrol 2021; 54:1761-1768. [PMID: 34825305 PMCID: PMC9184421 DOI: 10.1007/s11255-021-03014-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/04/2021] [Indexed: 11/24/2022]
Abstract
Background Studies have demonstrated that allicin may play critical roles in the procession of ischemia–reperfusion(I/R) injury. The purpose of this study was to investigate the protective effects of allicin on renal I/R injury by attenuating oxidative stress and apoptosis. Methods To establish a model of renal I/R, the right kidney underwent 12 h reperfusion after 45 min ischemia, allicin was administered intraperitoneally at concentrations of 40, 50 or 60 mg/kg. NRK-52E cells were treated with allicin at concentrations of 1, 3 or 5 μM in 24 h hypoxia/ 6 h reoxygenation(H/R) treatments. Indicators of HE, oxidative stress, apoptosis were measured to evaluate the effect of aliicin on renal I/R injury. Results Allicin protected renal I/R injury by ameliorating histological injury and decreasing the oxidative stress in renal tissues. Meanwhile, allicin significantly downregulated the expression of Bax and caspase-3, upregulated the expression of Bcl-2 in I/R renal tissues and H/R treated NRK-52E cells. Conclusions Allicin may exert anti-apoptotic and antioxidative effects to promote renal function recovery in I/R renal tissues and H/R treated NRK-52E cells. Taken together, allicin may be a potential novel therapy option for future renal injury protection.
Collapse
Affiliation(s)
- Maolin Li
- Department of Urology, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Houbao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Shuchuan Jiang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China
| | - Dong Zhuo
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, 241002, People's Republic of China.
| |
Collapse
|
12
|
Rauf A, Olatunde A, Imran M, Alhumaydhi FA, Aljohani ASM, Khan SA, Uddin MS, Mitra S, Emran TB, Khayrullin M, Rebezov M, Kamal MA, Shariati MA. Honokiol: A review of its pharmacological potential and therapeutic insights. PHYTOMEDICINE 2021; 90:153647. [PMID: 34362632 DOI: 10.1016/j.phymed.2021.153647] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Honokiol is a pleiotropic compound which been isolated from Magnolia species such as Magnolia grandiflora and Magnolia dealbata. Magnolia species Magnolia grandiflora is used in traditional medicine for the treatment of various diseases. PURPOSE The objective of this review is to summarize the pharmacological potential and therapeutic insights of honokiol. STUDY DESIGN Honokiol has been specified as a novel alternative to treat various disorders such as liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties and others. Therefore, this study designed to represent the in-depth therapeutic potential of honokiol. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using the keywords 'Honokiol', 'Health Benefits' and 'Therapeutic Insights' as the keywords for primary searches and secondary search terms were used as follows: 'Anticancer', 'Oxidative Stress', 'Neuroprotective', 'Antimicrobial', 'Cardioprotection', 'Hepatoprotective', 'Anti-inflammatory', 'Arthritis', 'Reproductive Disorders'. RESULTS This promising bioactive compound presented an wide range of therapeutic and biological activities which include liver cancer, neuroprotective, anti-spasmodic, antidepressant, anti-tumorigenic, antithrombotic, antimicrobial, analgesic properties, and others. Its pharmacokinetics has been established in experimental animals, while in humans, this is still speculative. Some of its mechanism for exhibiting its pharmacological effects includes apoptosis of diseased cells, reduction in the expression of defective proteins like P-glycoproteins, inhibition of oxidative stress, suppression of pro-inflammatory cytokines (TNF-α, IL-10 and IL-6), amelioration of impaired hepatic enzymes and reversal of morphological alterations, among others. CONCLUSION All these actions displayed by this novel compound could make it serve as a lead in the formulation of drugs with higher efficacy and negligible side effects utilized in the treatment of several human diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Ahmed Olatunde
- Department of Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, University of Lahore, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Shahid Ali Khan
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan
| | - Md Sahab Uddin
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong-4381, Bangladesh
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation
| | - Maksim Rebezov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation; V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109029, Moscow, Russian Federation.; Ural State Agrarian University, 620075 Yekaterinburg, Russian Federation
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow, Russian Federation
| |
Collapse
|
13
|
Li A, Zhang X, Luo Q. Neohesperidin alleviated pathological damage and immunological imbalance in rat myocardial ischemia-reperfusion injury via inactivation of JNK and NF-κB p65. Biosci Biotechnol Biochem 2021; 85:251-261. [PMID: 33604646 DOI: 10.1093/bbb/zbaa064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Neohesperidin (NEO) exerts antiviral, antioxidant, anti-inflammation, and antitumor effects in some diseases. The purpose of this study was to investigate the effect and mechanism of NEO on myocardial ischemia-reperfusion (I/R) injury. Results indicated that NEO suppressed the levels of serum inflammatory cytokines, myocardial damage markers, and oxidative stress markers, and increased the levels of antioxidant in myocardial I/R rats. NEO also inhibited cell apoptosis. Besides, NEO also inhibited the phosphorylation of c-Jun N-terminal kinases (JNK) and nuclear factor kappa B (NF-κB) p65. Furthermore, the protective effects of NEO on myocardial tissue damage, inflammatory cytokines, myocardial injury markers, oxidative stress markers, cell apoptosis, spleen, thymus and liver indices, and phagocytic indices were reversed by JNK activator and NF-κB activator, respectively. In conclusion, NEO alleviates myocardial damage, oxidative stress, cell apoptosis, and immunological imbalance in I/R injury via the inactivation of JNK and NF-κB, making NEO a potential agent for myocardial I/R therapy.
Collapse
Affiliation(s)
- Aihua Li
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Zhang
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qiuping Luo
- Internal Medicine-Cardiovascular Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
14
|
Yang Y, Li X, Chen S, Xiao M, Liu Z, Li J, Cheng Y. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl) 2021; 238:1401-1415. [PMID: 33594503 DOI: 10.1007/s00213-021-05784-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Depression resulted as an important factor associated with the myocardial infarction (MI) prognosis. Patients with MI also have a higher risk for developing depression. Although the issue of depression after MI has become a matter of clinical concern, the molecular mechanism underlying depression after MI remains unclear, whereby several strategies suggested have not got ideal effects, such as selective serotonin reuptake inhibitors. In this review, we summarized and discussed the occurrence mechanism of depression after MI, such as 5-hydroxytryptamine (5-HT) dysfunction, altered hypothalamus-pituitary-adrenal (HPA) axis function, gut microbiota imbalance, exosomal signal transduction, and inflammation. In addition, we offered a succinct overview of treatment, as well as some promising molecules especially from natural products for the treatment of depression after MI.
Collapse
Affiliation(s)
- Ying Yang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xuping Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Sixuan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Mingzhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yuanyuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
15
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
16
|
Yuan Y, Zhou X, Wang Y, Wang Y, Teng X, Wang S. Cardiovascular Modulating Effects of Magnolol and Honokiol, Two Polyphenolic Compounds from Traditional Chinese Medicine-Magnolia Officinalis. Curr Drug Targets 2020; 21:559-572. [PMID: 31749425 DOI: 10.2174/1389450120666191024175727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
Honokiol and its isomer magnolol are poly-phenolic compounds isolated from the Magnolia officinalis that exert cardiovascular modulating effects via a variety of mechanisms. They are used as blood-quickening and stasis-dispelling agents in Traditional Chinese Medicine and confirmed to have therapeutic potential in atherosclerosis, thrombosis, hypertension, and cardiac hypertrophy. This comprehensive review summarizes the current data regarding the cardioprotective mechanisms of those compounds and identifies areas for further research.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaocui Zhou
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yuanyuan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Xiangyan Teng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Long L, Han X, Ma X, Li K, Liu L, Dong J, Qin B, Zhang K, Yang K, Yan H. Protective effects of fisetin against myocardial ischemia/reperfusion injury. Exp Ther Med 2020; 19:3177-3188. [PMID: 32266013 PMCID: PMC7132235 DOI: 10.3892/etm.2020.8576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The underlying mechanism of the myocardial protective effect of fisetin was studied in a rat ischemia/reperfusion injury model. Sprague-Dawley rats were randomly assigned to seven groups and pretreated with different solutions by gavage administration. A rat model of cardiac ischemia/reperfusion injury was established. Plasma levels of Von Willebrand factor (vWF) were determined by ELISA, flow cytometry was used to determine the level of cardiomyocyte apoptosis and 2,3,5-triphenyltetrazolium staining was used to determine the size of myocardial infarcts. Hematoxylin and eosin-stained sections of myocardial tissues were examined for pathological changes. Expressions of nuclear factor (NF)-κB and matrix metallopeptidase 9 (MMP-9) were measured by immunohistochemistry. Compared with the model group, rats pretreated with fisetin, quercetin and aspirin showed significant prolongation of clotting time, prothrombin time, thrombin time and activated partial thromboplastin time. Fisetin treatment better maintained the integrity of myocardial fibers and nuclear integrity, reduced the percentage of apoptotic myocardial cells, inhibited expression of NF-κB, decreased the loss of MMP-9 and reduced nuclear translocation of NF-kB. Rats pretreated with fisetin also demonstrated a significant decrease in plasma levels of vWF. In addition, the protective effect of fisetin on myocardial cells was found to be dose dependent.
Collapse
Affiliation(s)
- Lihui Long
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Xuliang Han
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Xingming Ma
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Kai Li
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Linjie Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Juanni Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Bei Qin
- Department of Pharmacology, College of Pharmacy of Xi'an Medical University, Xi'an, Shaanxi 710061, P.R. China
| | - Kelin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| | - Kuan Yang
- Department of Pharmacology, College of Pharmacy of Xi'an Medical University, Xi'an, Shaanxi 710061, P.R. China
| | - Honglin Yan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, P.R. China
| |
Collapse
|
18
|
Xia S, Lin H, Liu H, Lu Z, Wang H, Fan S, Li N. Honokiol Attenuates Sepsis-Associated Acute Kidney Injury via the Inhibition of Oxidative Stress and Inflammation. Inflammation 2019; 42:826-834. [PMID: 30680694 DOI: 10.1007/s10753-018-0937-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acute kidney injury (AKI) is one of the most common complications of sepsis, which largely contributes to the high mortality rate of sepsis. Honokiol, a natural polyphenol from the traditional Chinese herb Magnolia officinalis, is known to possess anti-inflammatory and antioxidant activity. Here, the underlying mechanism of honokiol-induced amelioration of sepsis-associated AKI was analyzed. The expression patterns of oxidative stress moleculars and TLRs-mediated inflammation pathway were examined to identify the response of NRK-52E cells incubated with septic rats' serum to honokiol. The levels of iNOS, NO, and myeloperoxidase in NRK-52E cells were increased during sepsis, which could be reversed by honokiol. The production of GSH and SOD as in vivo antioxidant was increased after honokiol treatment. The administration of honokiol significantly inhibited TLR2/4/MyD88 signaling pathway in AKI-induced NRK-52E cells. Furthermore, ZnPPIX, the HO-1 inhibitor, weakened honokiol-mediated morphological amelioration, and the reduced level of TNF-α, IL-1β, and IL-6 in kidneys of rats subjected to CLP. Finally, Honokiol was shown to connect with the Nrf2-Keap1 dimensionally. These findings suggest that honokiol plays its protective role on sepsis-associated AKI against oxidative stress and inflammatory signals.
Collapse
Affiliation(s)
- Shilin Xia
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Zhidan Lu
- Intensive Care Unit, the First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Hui Wang
- Intensive Care Unit, the First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Songtao Fan
- Department of Ophthalmology, the First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Nan Li
- Intensive Care Unit, the First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
19
|
Tan Z, Liu H, Song X, Ling Y, He S, Yan Y, Yan J, Wang S, Wang X, Chen A. Honokiol post-treatment ameliorates myocardial ischemia/reperfusion injury by enhancing autophagic flux and reducing intracellular ROS production. Chem Biol Interact 2019; 307:82-90. [DOI: 10.1016/j.cbi.2019.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 11/29/2022]
|
20
|
Temporal dynamics of pre and post myocardial infarcted tissue with concomitant preconditioning of aerobic exercise in chronic diabetic rats. Life Sci 2019; 225:79-87. [PMID: 30946838 DOI: 10.1016/j.lfs.2019.03.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/12/2022]
Abstract
The different ailments of heart including myocardial infarction (MI) and ischemic heart diseases are the foremost trigger of high mortality across the world which is instigated by sedentary life style, chronic hyperglycaemia and atherosclerosis. Albeit strenuous exercise itself induces temporary hypoxia which causes myocardial damage and this vitiosus circulus is poorly understood and has been assumed difficult to break. Present investigation targets temporal dynamics of aerobic exercise treatment induced preconditioning against diabetes associated pre- and post- myocardial injury. The persisting high blood sugar level leads to several biochemical alterations at pre- and post-MI phase. Here, we present the assessment of temporal expression of cardiac biomarkers (CKMB, LDH, cTnI and serum nitrite/nitrate), oxidative stress (myocardial TBARS and reduced NBT), inflammatory cytokines (IL-6, TNF-α and IL-10), renal biomarkers (BUN, serum creatinine and microproteinuria) and structural alterations of cardio-renal tissue. Aerobic exercise preconditioning significantly downregulate the pathological events or biomarkers and upsurge the physiological biomarkers at both pre- and post-MI phase. The attenuation or returning of pathological makers to lowest level at different time points endorses the therapeutic management of aerobic exercise against diabetic MI. Furthermore, the temporal expression of various cardio-renal biomarkers pattern elucidates that aerobic exercise preconditioning boost the strength and consolidate the cardiac muscles to work under stress. Despite the presence of traditional knowledge about health benefits of aerobic exercise, it is yet to be brought into the clinical arena. In spite of few impending challenges subjected to additional investigations, aerobic exercise preconditioning shows a high degree of promise.
Collapse
|
21
|
Du Y, Liu XH, Zhu HC, Wang L, Wang ZS, Ning JZ, Xiao CC. Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:99-105. [PMID: 30944715 PMCID: PMC6437467 DOI: 10.22038/ijbms.2018.29706.7170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs). MATERIALS AND METHODS Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by reperfusion for 6 hr. One group of rats underwent I/R without treatment, one group was administered 150 μmol/l sodium hydrosulfide (NaHS) prior to I/R, one group was injected with 100 mg/kg quercetin (an HSP inhibitor) intraperitoneally prior to I/R, and another group received quercetin prior to I/R and treatment with NaHS following I/R. Two other groups underwent a sham operation and one of them received 150 μmol/l NaHS following the sham operation whereas the other received no treatment. Renal function and histological changes were compared and relevant indices of oxidative stress, apoptosis, and inflammation were examined. RESULTS IRI increased serum creatinine and blood urea nitrogen concentrations, promoted lipid peroxidation by elevating malondialdehyde levels, suppressed superoxide dismutase activity, stimulated inflammation by inducing NF-kB, IL-2, and TLR-4 expression, and increased renal apoptosis. Levels of HSP 70, heme-oxygenase-1 (HO-1) and HSP 27 were increased following IRI and reversed following H2S treatment. H2S attenuated changes observed in pathology, lipid peroxidation, inflammation, and apoptosis following IRI. The administration of quercetin reversed all protective effects of H2S. CONCLUSION The present study indicated that H2S protected renal tissue against IRI induced lipid peroxidation, inflammation, and apoptosis, which may be attributed to the upregulation of HSP 70, HO-1, and HSP 27.
Collapse
Affiliation(s)
- Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Xiu-heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Heng-cheng Zhu
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Lei Wang
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Zhi-shun Wang
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Jin-zhuo Ning
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| | - Cheng-cheng Xiao
- Physician, Department of Urology, Renmin Hospital of Wuhan University, Hubei, China
| |
Collapse
|
22
|
Chen L, Li W, Qi D, Lu L, Zhang Z, Wang D. Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sci 2018; 210:86-95. [PMID: 30171880 DOI: 10.1016/j.lfs.2018.08.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022]
Abstract
AIMS Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia with diffuse alveolar damage and increased pulmonary microvascular permeability. Honokiol (HKL), the principal active ingredient of Chinese herb magnolia officinalis, protected the lung of experimental ARDS models via attenuation of inflammation and oxidative stress. However, whether HKL has protective effects against the dysfunction of pulmonary microvascular endothelial barrier and the potential mechanisms remain unclear. MAIN METHODS In the present study, we examined the levels of plasma Angiopoietin-2 (Ang-2) in ARDS patients, explored the effects of HKL on the vascular endothelial barrier at the ARDS animal and cell levels. KEY FINDINGS Our data showed that compared with the healthy controls, circulating Ang-2 level was higher in the patients with ARDS, and were usually supposed to be positively related to the severity of ARDS. Moreover, HKL effectively inhibited lung inflammatory injury and microvascular leakage, and improved ARDS mice survival. HKL also inhibited the expression of Ang-2, ICAM-1 and VCAM-1, and restored the expression of Sirt3, β-Catenin and VE-Cadherin. Furthermore, HKL improved ECs survival and inhibited the apoptosis of ECs. The inhibition of Ang-2 expression in vitro by HKL is accompanied by the upregulation of Sirt3 and AMPK phosphorylation. SIGNIFICANCE Our data demonstrated that HKL protected pulmonary microvascular endothelial barrier against LPS-induced ARDS at least in part through activating the Sirt3/AMPK signaling and inhibiting the Ang-2 expression. Thus, our findings show that the activation of Sirt3 signaling is a potential mechanism for the protective effects of HKL on vascular barrier.
Collapse
Affiliation(s)
- Lan Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Di Qi
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ling Lu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhengwei Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
23
|
Honokiol Protects against Anti- β1-Adrenergic Receptor Autoantibody-Induced Myocardial Dysfunction via Activation of Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1640804. [PMID: 30116474 PMCID: PMC6079338 DOI: 10.1155/2018/1640804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/04/2018] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Myocardial diseases are prevalent syndromes with high mortality rate. The exploration of effective interference is important. Anti-β1-adrenergic receptor autoantibody (β1-AAB) is highly correlated with myocardial dysfunction. The actions and underlying mechanisms of honokiol (HNK) in β1-AAB-positive patients await to be unraveled. In this study, we established a rat model of β1-AAB positive with myocardial dysfunction. Cardiac function following β1-AR-ECII administration was analyzed using the VisualSonics Vevo 770 High-Resolution In Vivo Imaging System. The levels of autophagy-related proteins were detected by Western blotting. Our data revealed that HNK reversed β1-AAB-induced effects and protected myocardial tissues from dysfunction. After HNK treatment, the cardiac contractile ability increased and the LDH activity decreased. HNK attenuated myocardial degeneration. In addition, HNK promoted the activation of the AMP-dependent protein kinase/Unc-51-like autophagy activating kinase (AMPK/ULK) pathway and activated autophagy. These results suggest that HNK protects against β1-AAB-induced myocardial dysfunction via activation of autophagy and it may be a potentially therapeutic compound for β1-AAB-positive myocardial diseases.
Collapse
|
24
|
Wu F, Yao H, Zheng F, Tang S, Lin X, Li L, Zhou J, Li H. Protective effects of honokiol against oxidative stress-induced apoptotic signaling in mouse podocytes treated with H2O2. Exp Ther Med 2018; 16:1278-1284. [PMID: 30116378 PMCID: PMC6090302 DOI: 10.3892/etm.2018.6313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/13/2018] [Indexed: 01/11/2023] Open
Abstract
Honokiol (HNK), an important bioactive compound purified from Magnolia officinalis Cortex, has been demonstrated to have manifold beneficial anti-oxidative, anti-inflammatory, anti-bacterial and antitumor pharmacological effects. In the present study, the association of HNK in the signaling mechanism associated with hydrogen peroxide (H2O2)-induced apoptosis of cultured mouse podocytes was investigated. HNK did not cause significant changes in podocyte viability when its concentration remained below 20 µM. MTS assay and flow cytometry confirmed that H2O2 significantly enhanced the rates of apoptosis while produce significant reduction in viability of podocytes. Following 24 h of pre-treatment with different concentrations of HNK, the viability of adherent podocytes increased and apoptosis significantly decreased in a dose-dependent manner below 20 µM. Reverse transcription-polymerase chain reaction and western blot results indicated that HNK significantly decreased the expression of mRNA and cleaved protein of caspase-3 and caspase-9 in podocytes pre-treated with H2O2. Furthermore, phosphorylation of the signaling molecules protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) 1/2 appeared to increase following HNK treatment. In conclusion, HNK largely eliminated the role of promoting podocyte apoptosis in an oxidative stress environment, which was a protective factor on podocytes cultured with H2O2. The anti-oxidative stress mechanisms of HNK are partly due to suppressing the expression of caspase-3 and caspase-9 and upregulating phosphorylated-Akt and -Erk 1/2.
Collapse
Affiliation(s)
- Fang Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Institute of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shengjie Tang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Lin Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jiaqiang Zhou
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
25
|
Hu J, Cheng P, Huang GY, Cai GW, Lian FZ, Wang XY, Gao S. Effects of Xin-Ji-Er-Kang on heart failure induced by myocardial infarction: Role of inflammation, oxidative stress and endothelial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:245-257. [PMID: 29655692 DOI: 10.1016/j.phymed.2018.03.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/13/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Xin-Ji-Er-Kang (XJEK) is a Chinese herbal formula, which has been reported to exert effective protection on cardiovascular diseases like hypertension and myocarditis. PURPOSE To elucidate the protective effects of XJEK on heart failure (HF) induced by myocardial infarction (MI) through the amelioration of inflammation, oxidative stress (OS) and endothelial dysfunction(ED). MATERIALS AND METHODS Fifty-seven male KM mice were randomized into the following six groups (n = 9-10 for each): control group, model group, MI+XJEK low dose group(XJEKL) group, MI+XJEK middle dose group(XJEKM), MI+XJEK high dose group(XJEKH), and MI+fosinopril group (positive control group). After treatment for four weeks, electrocardiography (ECG) and haemodynamics were recorded. Serum and tissues were collected for further analysis. Endothelium-dependent relaxation induced by acetylcholine was assessed in isolated thoracic aorta ring experiment. Hematoxylin and eosin (HE) and Van Gieson (VG) staining were used to detect the pathological changes of heart and thoracic aorta. Colorimetric analysis was employed to determine serum nitric oxide level (NO), malondialdehyde (MDA) concentration and superoxide dismutase (SOD) activity. ELISA was used to detect serum B-type natriuretic peptide (BNP) and serum inflammatory cytokines, as well as endothelial NO synthetase (eNOS), angiotensinII (Ang II) and endothelin-1(ET-1) concentration in both serum and cardiac tissues. Immunohistochemistry and Western blotting (WB) were employed to detect eNOS and inflammatory cytokine expressions in cardiac tissues. RESULTS XJEK administration markedly ameliorated cardiac dysfunction and abnormal ECG manifested by decreased weight/body weight (HW/BW) ratio, BNP and remedied hypertrophy of cardiomyocytes and deposition of collagen, which might be in part attributed to the increased SOD and decreased MDA in serum. Furthermore, XJEK administration improved ED with boosted eNOS activities in serum and cardiac tissues, as well as up-regulated NO levels in serum, down-regulated Ang II and ET-1 content in serum and cardiac tissues. Lastly, protein expression of pro-inflammation cytokines significantly decreased, and anti-inflammatory cytokine was significantly enhanced in serum and cardiac tissues compared to model group. CONCLUSION XJEK may exert beneficial effects on HF induced by MI in mice, and the underlying mechanism may be attributable to the amelioration of ED, anti-OS and anti-inflammation effects.
Collapse
Affiliation(s)
- Juan Hu
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Pan Cheng
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guang-Yao Huang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Guo-Wei Cai
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Feng-Zhen Lian
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yun Wang
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China
| | - Shan Gao
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
26
|
Honokiol Ameliorates Myocardial Ischemia/Reperfusion Injury in Type 1 Diabetic Rats by Reducing Oxidative Stress and Apoptosis through Activating the SIRT1-Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3159801. [PMID: 29675132 PMCID: PMC5838504 DOI: 10.1155/2018/3159801] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/29/2017] [Indexed: 01/07/2023]
Abstract
Reducing oxidative stress is a crucial therapeutic strategy for ameliorating diabetic myocardial ischemia/reperfusion (MI/R) injury. Honokiol (HKL) acts as an effective cardioprotective agent for its strong antioxidative activity. However, its roles and underlying mechanisms against MI/R injury in type 1 diabetes (T1D) remain unknown. Since SIRT1 and Nrf2 are pivotal regulators in diabetes mellitus patients suffering from MI/R injury, we hypothesized that HKL ameliorates diabetic MI/R injury via the SIRT1-Nrf2 signaling pathway. Streptozotocin-induced T1D rats and high-glucose-treated H9c2 cells were exposed to HKL, with or without administration of the SIRT1 inhibitor EX527, SIRT1 siRNA, or Nrf2 siRNA, and then subjected to I/R operation. We found that HKL markedly improved the postischemic cardiac function, decreased the infarct size, reduced the myocardial apoptosis, and diminished the reactive oxygen species generation. Intriguingly, HKL remarkably activated SIRT1 signaling, enhanced Nrf2 nuclear translocation, increased antioxidative signaling, and decreased apoptotic signaling. However, these effects were largely abolished by EX527 or SIRT1 siRNA. Additionally, our cellular experiments showed that Nrf2 siRNA blunted the cytoprotective effects of HKL, without affecting SIRT1 expression and activity. Collectively, these novel findings indicate that HKL abates MI/R injury in T1D by ameliorating myocardial oxidative damage and apoptosis via the SIRT1-Nrf2 signaling pathway.
Collapse
|
27
|
Umbelliferone Alleviates Myocardial Ischemia: the Role of Inflammation and Apoptosis. Inflammation 2017; 41:464-473. [DOI: 10.1007/s10753-017-0702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Honokiol suppresses formyl peptide-induced human neutrophil activation by blocking formyl peptide receptor 1. Sci Rep 2017; 7:6718. [PMID: 28751674 PMCID: PMC5532207 DOI: 10.1038/s41598-017-07131-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/23/2017] [Indexed: 11/24/2022] Open
Abstract
Formyl peptide receptor 1 (FPR1) mediates bacterial and mitochondrial N-formyl peptides-induced neutrophil activation. Therefore, FPR1 is an important therapeutic target for drugs to treat septic or sterile inflammatory diseases. Honokiol, a major bioactive compound of Magnoliaceae plants, possesses several anti-inflammatory activities. Here, we show that honokiol exhibits an inhibitory effect on FPR1 binding in human neutrophils. Honokiol inhibited superoxide anion generation, reactive oxygen species formation, and elastase release in bacterial or mitochondrial N-formyl peptides (FPR1 agonists)-activated human neutrophils. Adhesion of FPR1-induced human neutrophils to cerebral endothelial cells was also reduced by honokiol. The receptor-binding results revealed that honokiol repressed FPR1-specific ligand N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein binding to FPR1 in human neutrophils, neutrophil-like THP-1 cells, and hFPR1-transfected HEK293 cells. However, honokiol did not inhibit FPR2-specific ligand binding to FPR2 in human neutrophils. Furthermore, honokiol inhibited FPR1 agonist-induced calcium mobilization as well as phosphorylation of p38 MAPK, ERK, and JNK in human neutrophils. In conclusion, our data demonstrate that honokiol may have therapeutic potential for treating FPR1-mediated inflammatory diseases.
Collapse
|
29
|
Chunhua M, Hongyan L, Weina Z, Xiaoli H, Yajie Z, Jie R. Dang Gui Bu Xue Tang ameliorates coronary artery ligation-induced myocardial ischemia in rats. Biomed Pharmacother 2017; 88:617-624. [PMID: 28142118 DOI: 10.1016/j.biopha.2017.01.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/01/2022] Open
Abstract
Dang The present study was designed to investigate cardioprotective effects of Dang Gui Bu Xue Tang (DGBUT) on coronary artery ligation-induced myocardial ischemia. Myocardial ischemia (MI) model was induced in SD rats by surgical ligation of the left anterior descending coronary artery. ST segment elevation of Electrocardiograph (ECG) infarct size, levels of lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH) and catalase (CAT), catalase (SOD), malondialdehyde (MDA), and inflammatory cytokines and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun NH2 terminal kinases (JNK), nuclear factor (NF)-κBp65, inhibitory kappa B (IκB) α, IκB kinase (IKK) α and IKKβ were evaluated in rats treated with or without DGBUT. DGBUT treatment significantly reduced the elevation of the ST segment of ECG, the myocardial infarct size of MI. The level of LDH, CK and MDA were suppressed, the contents of SOD, GSH and CAT were enhanced with DGBUT. The elevated concentration of inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6 in MI rats were effectively reversed by the DGBUT administration. Also, highly expressed p-JNK, p-ERK, p-p38, p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ in MI rats were restored respectively by DGBUT treatment. The protective effect of DGBUT against MI injury might be associated with MAPK/NF-кB pathway.
Collapse
Affiliation(s)
- Ma Chunhua
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China
| | - Long Hongyan
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China.
| | - Zhu Weina
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China
| | - He Xiaoli
- Department of Cardiology, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China
| | - Zhang Yajie
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China
| | - Ruan Jie
- Central Laboratory, Nanjing Municipal Hospital of T.C.M, The Third Affiliated Hospital of Nanjing University of T.C.M, Nanjing 210001, China
| |
Collapse
|
30
|
Ma N, Bai J, Zhang W, Luo H, Zhang X, Liu D, Qiao C. Trimetazidine protects against cardiac ischemia/reperfusion injury via effects on cardiac miRNA‑21 expression, Akt and the Bcl‑2/Bax pathway. Mol Med Rep 2016; 14:4216-4222. [PMID: 27666568 PMCID: PMC5101925 DOI: 10.3892/mmr.2016.5773] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/04/2016] [Indexed: 11/21/2022] Open
Abstract
Trimetazidine is a piperazine-derived metabolic agent, which exerts cell protective effects and has been reported to be efficient in the treatment of chronic stable angina pectoris. In addition, it has been shown to exert protection against acute myocardial infarction. The present study aimed to investigate whether trimetazidine protects against cardiac ischemia/reperfusion (I/R) injury, and to determine whether its curative effects are associated with microRNA (miRNA)-21 expression, Akt, and the B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) pathway. Cardiac I/R injury was induced by ligating the left anterior descending coronary artery in adult rats. Subsequently, cardiac function was evaluated, and the expression levels of miRNA-21, Bcl-2, Bax and phosphorylated-Akt were detected using quantitative polymerase chain reaction and western blotting. The results indicated that trimetazidine was able to significantly protect cardiac function and reduce infarct size in rats following cardiac I/R injury. Furthermore, trimetazidine significantly promoted miRNA-21 expression and phosphorylated-Akt protein expression, and reduced the Bcl-2/Bax ratio in rats following cardiac I/R injury. Knockdown of miRNA-21 using anti-miR-21 plasmids was able to reverse the protective effects of trimetazidine against cardiac I/R injury. These results indicated that miRNA-21 serves a protective role in cardiac I/R injury via Akt and the Bcl-2/Bax pathway. In addition, trimetazidine exerts protective effects against cardiac I/R injury through cardiac miRNA-21 expression, Akt, and the Bcl-2/Bax pathway. Therefore, the present study provided evidence regarding the protective effects of miRNA-21 on cardiac I/R injury following treatment with trimetazidine in vivo.
Collapse
Affiliation(s)
- Ning Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jingyun Bai
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weihua Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hong Luo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Donghai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenhui Qiao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
31
|
Zhang WP, Zong QF, Gao Q, Yu Y, Gu XY, Wang Y, Li ZH, Ge M. Effects of endomorphin-1 postconditioning on myocardial ischemia/reperfusion injury and myocardial cell apoptosis in a rat model. Mol Med Rep 2016; 14:3992-8. [DOI: 10.3892/mmr.2016.5695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/29/2016] [Indexed: 11/06/2022] Open
|
32
|
Fu A, Jacobs DI, Hoffman AE, Zheng T, Zhu Y. PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis 2015. [PMID: 26210741 DOI: 10.1093/carcin/bgv105] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although PIWI-interacting RNAs (piRNAs) account for the largest class of the small non-coding RNA superfamily, virtually nothing is known of their function in human carcinogenesis. Once thought to be expressed solely in the germ line where they safeguard the genome against transposon-induced insertional mutations, piRNAs are now believed to play an active role in somatic gene regulation through sequence-specific histone modification and DNA methylation. In the current study, we investigate the role of piRNA-021285 (piR-021285) in the regulation of the breast cancer methylome. Genotypic screening of a panel of single-nucleotide polymorphism (SNP)-containing piRNAs revealed a significant association between SNP rs1326306 G>T in piR-021285 and increased likelihood for breast cancer in a Connecticut-based population (441 cases and 479 controls). Given nascent but compelling evidence of piRNA-mediated gene-specific methylation in the soma, a genome-wide methylation screen was then carried out using wild type (WT) and variant piR-021285 mimic-transfected MCF7 cells to explore whether the observed association could be attributed in part to piR-021285-induced methylation at cancer-relevant genes. We found significant methylation differences at a number of experimentally implicated breast cancer-related genes, including attenuated 5' untranslated region (UTR)/first exon methylation at the proinvasive ARHGAP11A gene in variant mimic-transfected cells. Follow-up functional analyses revealed both concurrent increased ARHGAP11A mRNA expression and enhanced invasiveness in variant versus WT piR-021285 mimic-transfected breast cancer cell lines. Taken together, our findings demonstrate the first evidence supporting a role of piRNAs, a novel group of non-coding RNA, in human tumorigenesis via a piRNA-mediated epigenetic mechanism, which warrants further confirmation and investigation.
Collapse
Affiliation(s)
- Alan Fu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT 06520, USA and Present Address: Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Daniel I Jacobs
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT 06520, USA and
| | - Aaron E Hoffman
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine and Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT 06520, USA and
| | - Yong Zhu
- Department of Environmental Health Sciences, Yale University School of Public Health, New Haven, CT 06520, USA and
| |
Collapse
|
33
|
Liao HR, Chien CR, Chen JJ, Lee TY, Lin SZ, Tseng CP. The anti-inflammatory effect of 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol by targeting Lyn kinase in human neutrophils. Chem Biol Interact 2015; 236:90-101. [PMID: 25980585 DOI: 10.1016/j.cbi.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022]
Abstract
The undesirable respiratory burst in neutrophils can lead to inflammation and tissue damage. This study investigates the effect and the underlying mechanism of 2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol (honokiol), a lignan extracted from the stem bark of Magnolia officinalis Rehd. et Wils (Magnoliaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst in human neutrophils. Signaling pathways regulated by honokiol which modulate fMLP-induced respiratory burst and cathepsin G release were evaluated by phosphorylation of Src family kinase induced by fMLP, Src family kinases activities and by immunoblotting analysis of the downstream targets of Src kinase. Briefly, honokiol inhibited fMLP-induced superoxide anion production (IC50 = 9.80 ± 0.21 μM, n = 4), cathepsin G release (IC50 = 14.23 ± 1.43 μM, n = 4) and migration (IC50 = 5.69 ± 1.51 μM, n = 4) in a concentration dependent manner. Further, honokiol specifically suppresses fMLP-induced Lyn (a member of the Src kinase family) phosphorylation, by inhibiting Lyn kinase activity. Consequently, honokiol attenuated the downstream targets of Lyn kinase, such as Tec translocation from the cytosol to the inner leaflet of the plasma membrane, phosphorylation of AKT, P38, PLCγ2, protein kinase C and membrane localization of p47(phox). On the other hand, fMLP-induced phosphorylation of Hck, Fgr kinase activity (other members of Src kinase), downstream phosphorylation of Vav1 and extracellular signal-regulated kinase remained unaffected. In addition, honokiol neither inhibited NADPH oxidase activity nor increased cyclic AMP levels. Honokiol is not a competitive or allosteric antagonist of fMLP. In conclusion, honokiol specifically modulates fMLP-mediated neutrophil activation by inhibiting Lyn activation which subsequently interferes with the activation of PLCγ2, AKT, p38, protein kinase C, and p47(phox).
Collapse
Affiliation(s)
- Hsiang-Ruei Liao
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan.
| | - Ching-Ru Chien
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Ta-jen University, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Shinn-Zhi Lin
- Graduate Institute of Natural Products, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan
| | - Ching-Ping Tseng
- Graduate Institute of Medical Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
34
|
Effects of honokiol on sepsis-induced acute kidney injury in an experimental model of sepsis in rats. Inflammation 2015; 37:1191-9. [PMID: 24531855 DOI: 10.1007/s10753-014-9845-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) is a severe complication of sepsis, which largely contributes to the high mortality rate of sepsis. Honokiol, a natural product isolated from Magnolia officinalis (Houpo), has been shown to exhibit anti-inflammatory and antioxidant properties. Here, we investigated the effects of honokiol on sepsis-associated AKI in rats subjected to cecal ligation and puncture (CLP). We found that the administration of honokiol improved the survival of septic rats. Periodic acid-Schiff stain revealed that the morphological changes of kidney tissues in CLP rats were restored after honokiol treatment. Furthermore, honokiol reduced CLP-induced oxidative stress and inflammatory cytokine production. The levels of nitric oxide (NO) and inducible NO synthetase (iNOS) were attenuated by honokiol in septic rats. Finally, honokiol inhibited CLP-induced activation of NF-κB signaling in CLP rats. Our findings suggest that honokiol might be used as a potential therapeutic agent for complications of sepsis, especially for sepsis-induced AKI.
Collapse
|
35
|
Wang L, Liu XH, Chen H, Chen ZY, Weng XD, Qiu T, Liu L. Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway. Exp Ther Med 2015; 9:1253-1258. [PMID: 25780418 PMCID: PMC4353747 DOI: 10.3892/etm.2015.2225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023] Open
Abstract
Picroside II possesses a wide range of pharmacological effects and has been demonstrated to ameliorate cerebral ischemia and reperfusion (I/R) injury. However, its effects on renal I/R injury remain unclear. In the present study, the role of picroside II in attenuating oxidative stress and the inflammatory response in a rat model of renal I/R injury was investigated. Sprague Dawley rats were subjected to 45 min of ischemia followed by 24 h of reperfusion. Prior to reperfusion, the rats were treated with picroside II or an equal volume of phosphate-buffered saline. Renal function and histological changes were compared and the relevant parameters of oxidative stress and inflammation were detected. The expression of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB; p65) were assessed by immunohistochemistry and western blotting. It was observed that renal function was significantly improved by treatment with picroside II. Morphological analysis indicated that picroside II clearly reduced tissue damage and the expression of TLR4 and NF-κB. Reverse transcription-quantitative polymerase chain reaction demonstrated that picroside II inhibited the increase of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and intercellular adhesion molecule (ICAM)-1 expression induced by I/R injury. Western blot analysis indicated that the expression levels of TLR4 and NF-κB were significantly downregulated in the picroside II group compared with those in the I/R group. These results indicate that picroside II treatment suppressed the TLR4/NF-κB signaling pathway, protecting renal tissue against I/R-induced oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
36
|
Agacayak E, Tunc SY, Icen MS, Alabalik U, Findik FM, Yuksel H, Gul T. Honokiol Decreases Intra-Abdominal Adhesion Formation in a Rat Model. Gynecol Obstet Invest 2015; 79:160-7. [DOI: 10.1159/000367661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022]
|
37
|
Ai F, Chen M, Li W, Yang Y, Xu G, Gui F, Liu Z, Bai X, Chen Z. Protective role of Klotho on cardiomyocytes upon hypoxia/reoxygenation via downregulation of Akt and FOXO1 phosphorylation. Mol Med Rep 2014; 11:2013-9. [PMID: 25377663 DOI: 10.3892/mmr.2014.2899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/05/2014] [Indexed: 11/05/2022] Open
Abstract
Klotho is a novel anti-aging hormone involved in human coronary artery disease. The present study aimed to detect the effects and mechanism of Klotho on cardiomyocytes in a hypoxia/reoxygenation (H/R) model in vitro. Neonatal Sprague-Dawley rat cardiomyocytes were randomly distributed into experimental groups as follows: Control group; H/R group, 4‑h hypoxia followed by 3‑h reoxygenation; and H/R+Klotho group, incubated with 0.1, 0.2 or 0.4 µg/ml Klotho protein for 16 h and then subjected to 4‑h hypoxia/3‑h reoxygenation. In order to evaluate cardiomyocyte damage, cell viability and lactate dehydrogenase (LDH) levels were measured. Cell apoptosis was measured by flow cytometry. The 2',7'-dichlorofluorescein diacetate reagent was used to estimate the intracellular generation of reactive oxygen species (ROS). Immunofluorescence staining was used to test whether Klotho induced decreased nuclear translocation of forkhead box protein O1 (FOXO1). Western blot analysis was performed to detect protein levels of FOXO1, phospho-FOXO1, Akt, phospho-Akt and superoxide dismutase 2 (SOD2). Cell viability was significantly decreased, levels of LDH in the cardiomyocyte culture medium were significantly increased and the apoptotic rate was enhanced in the H/R group when compared with those of the control group. Compared with the H/R group, cell viability of the H/R+Klotho groups was significantly higher (P<0.05). Treatment with Klotho protein resulted in a significant resistance of cardiomyocytes to apoptosis and the release of LDH was decreased. Intracellular ROS levels in the H/R group were significantly elevated above those of the control group (P<0.05). Following treatment with Klotho, intracellular ROS levels were significantly decreased compared with those of the H/R group (P<0.05). Western blot analysis confirmed that Klotho protein treatment increased FOXO1 levels in the nucleus and decreased FOXO1 levels in the cytoplasm. Furthermore, exogenous Klotho protein promoted translocation of FOXO1 from cytoplasm to nucleus. In addition, the administration of Klotho protein suppressed phosphorylation of FOXO1 and Akt, and markedly increased the protein expression levels of SOD2. In conclusion, treatment with Klotho protein had beneficial effects on cardiomyocytes undergoing H/R injury. The mechanism of this effect may be associated with suppressed apoptosis of cardiomyocytes, inhibition of phosphorylation of FOXO1 and Akt as well as suppression of cytoplasm transfer of FOXO1.
Collapse
Affiliation(s)
- Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yang Yang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Guizhong Xu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zhenxing Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xiangyan Bai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
38
|
Hu L, Zhou L, Wu X, Liu C, Fan Y, Li Q. Hypoxic preconditioning protects cardiomyocytes against hypoxia/reoxygenation injury through AMPK/eNOS/PGC-1α signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7378-7388. [PMID: 25550773 PMCID: PMC4270574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE AMP-activated protein kinase (AMPK) is an important regulator of multiple cellular pathways in the setting of energetic stress. Whether AMPK plays a critical role in hypoxic preconditioning (HPC), protecting cardiomyocytes against hypoxia reoxygenation (H/R) injury remains uncertain. METHODS H9c2 cells were preconditioned by exposing to 10 min of hypoxia and 30 min of reoxygenation. Then, the preconditioned and non-preconditioned cardiomyocytes were exposed to 90 min of hypoxia followed by 120 min of reoxygenation. RESULTS HPC protected H9c2 cells against H/R injury, the AMPK inhibitor or eNOS inhibitor abolished the effect of HPC. Compared with H/R group, HPC significantly increased the expression of p-AMPK (Thr172). HPC also markedly increased p-eNOS (Ser1177) expression, which was abolished by AMPK inhibition. HPC significantly increased PGC-1α expression, which were nullified by AMPK inhibition or eNOS inhibition. HPC attenuated the oxidative stress by increasing the SOD activity and decreasing the MDA and ROS level, which were abolished by AMPK inhibition or eNOS inhibition. Interestingly, the AMPK activator metformin mimicked the effects of HPC in part. CONCLUSIONS These results indicated that HPC protects H9c2 cells against H/R injury by reducing oxidative stress partly via AMPK/eNOS/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Liang Hu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Lu Zhou
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Xiaowei Wu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Chao Liu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Yue Fan
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| | - Qingping Li
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing 210029, P. R. China
| |
Collapse
|
39
|
Sulakhiya K, Kumar P, Jangra A, Dwivedi S, Hazarika NK, Baruah CC, Lahkar M. Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. Eur J Pharmacol 2014; 744:124-31. [PMID: 25446914 DOI: 10.1016/j.ejphar.2014.09.049] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/21/2014] [Accepted: 09/30/2014] [Indexed: 02/01/2023]
Abstract
Depression is an inflammatory, commonly occurring and lethal psychiatric disorder having high lifetime prevalence. Preclinical and clinical studies suggest that activation of immuno-inflammatory and oxido-nitrosative stress pathways play major role in the pathophysiology of depression. Honokiol (HNK) is a biphenolic neolignan possessing multiple biological activities including antioxidant, anti-inflammatory, anxiolytic, antidepressant and neuroprotective. The present study investigated the effect of HNK (2.5 and 5 mg/kg, i.p.) pretreatment (30 min prior to LPS) on lipopolysaccharide (LPS) (0.83 mg/kg, i.p.) induced depressive like behavior, neuroinflammation, and oxido-nitrosative stress in mice. HNK pretreatment at both the doses significantly attenuated LPS induced depressive-like behavior by reducing the immobility time in forced swim and tail suspension test, and by improving the anhedonic behavior observed in sucrose preference test. HNK pretreatment ameliorated LPS induced neuroinflammation by reducing IL-1β, IL-6 and TNF-α level in hippocampus (HC) and prefrontal cortex (PFC). HNK pretreatment prevented LPS evoked oxidative/nitrosative stress via improving reduced glutathione level along with reduction in the lipid peroxidation and nitrite level in HC and PFC. Pretreatment with HNK also prevented the increase in plasma corticosterone (CORT) and decrease in hippocampal BDNF level in LPS challenged mice. In conclusion, current investigation suggested that HNK pretreatment provided protection against LPS-induced depressive like behavior which may be mediated by repression of pro-inflammatory cytokines as well as oxido-nitrosative stress in HC and PFC. Our results strongly speculated that HNK could be a therapeutic approach for the treatment of depression and other pathophysiological conditions which are closely associated with neuroinflammation and oxido-nitrosative stress.
Collapse
Affiliation(s)
- Kunjbihari Sulakhiya
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India.
| | - Parveen Kumar
- Laboratory of Molecular Pharmacology and Toxicology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Ashok Jangra
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Shubham Dwivedi
- Laboratory of Neuroscience, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Naba K Hazarika
- Department of Microbiology, Guwahati Medical College, Guwahati, Assam 781032, India
| | - Chandana C Baruah
- Department of Pharmacology and Toxicology, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam 781022, India
| | - Mangala Lahkar
- Department of Pharmacology, Guwahati Medical College, Guwahati, Assam 781032, India
| |
Collapse
|
40
|
Chen BL, Wang LT, Huang KH, Wang CC, Chiang CK, Liu SH. Quercetin attenuates renal ischemia/reperfusion injury via an activation of AMP-activated protein kinase-regulated autophagy pathway. J Nutr Biochem 2014; 25:1226-1234. [PMID: 25087994 DOI: 10.1016/j.jnutbio.2014.05.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/06/2014] [Accepted: 05/29/2014] [Indexed: 01/13/2023]
Abstract
Renal ischemia/reperfusion (I/R) is a major cause of acute renal failure. Quercetin, a flavonoid antioxidant, presents in many kinds of food. The molecular mechanism of quercetin on renal protection during I/R is still unclear. Here, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renal protection by quercetin. To investigate whether quercetin protects renal cells from I/R-induced cell injury, an in vitro model of I/R and an in vivo I/R model were used. Cell apoptosis was determined by propidium iodide/annexin V staining. Western blotting and immunofluorescence were used to determine the autophagy. AMPK expression was inhibited with appropriate short hairpin RNA (shRNA). In cultured renal tubular cell I/R model, quercetin decreased the cell injury, up-regulated the AMPK phosphorylation, down-regulated the mammalian target of rapamycin (mTOR) phosphorylation and activated autophagy during I/R. Knockdown of AMPK by shRNA transfection decreased the quercetin-induced autophagy but did not affect the mTOR phosphorylation. In I/R mouse model, quercetin decreased the increased serum creatinine level and altered renal histological score. Quercetin also increased AMPK phosphorylation, inhibited the mTOR phosphorylation and activated autophagy in the kidneys of I/R mice. These results suggest that quercetin activates an AMPK-regulated autophagy signaling pathway, which offers a protective effect in renal I/R injury.
Collapse
Affiliation(s)
- Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
Zhu X, Wang Z, Hu C, Li Z, Hu J. Honokiol suppresses TNF-α-induced migration and matrix metalloproteinase expression by blocking NF-κB activation via the ERK signaling pathway in rat aortic smooth muscle cells. Acta Histochem 2014; 116:588-95. [PMID: 24360976 DOI: 10.1016/j.acthis.2013.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/14/2013] [Accepted: 11/17/2013] [Indexed: 10/25/2022]
Abstract
Honokiol, a small-molecule polyphenol derived and isolated from the Chinese medicinal herb Magnolia officinalis, has been shown to possess a wide range of pharmacological activities. In the present study, we aimed to investigate the effects of honokiol on tumor necrosis factor-α (TNF-α)-induced migration in rat aortic smooth muscle cells (RASMCs). We found that honokiol inhibited TNF-α-induced RASMC proliferation and migration in a dose-dependent manner. At the molecular level, pretreatment with honokiol blocked TNF-α-induced protein expression of matrix metalloproteinase (MMP)-2 and MMP-9, nuclear factor (NF)-κB activation, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Moreover, NF-κB inhibitor (BAY 11-7028) and ERK inhibitor (U0126) also mimicked the inhibitory effects of honokiol in TNF-α-treated RASMCs. In conclusion, these results indicate that honokiol suppresses TNF-α-induced migration and MMP expression by blocking NF-κB activation via the ERK signaling pathway in RASMCs. Our findings support honokiol as a promising novel agent for the prevention and treatment of atherosclerosis.
Collapse
|
42
|
Wang DW, Zhang Y, Yao JM, Xiao ZB. Surgical treatment of a ventricular aneurysm in a patient with essential thrombocythemia complicated by acute myocardial infarction: A case report. Exp Ther Med 2013; 7:267-269. [PMID: 24348803 PMCID: PMC3861510 DOI: 10.3892/etm.2013.1389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 10/29/2013] [Indexed: 11/06/2022] Open
Abstract
Essential thrombocythemia (ET) is a chronic clonal myeloproliferative disorder, which is often complicated by arterial or venous thrombosis and idiopathic bleeding diathesis. The present study reports a female patient with ET complicated by acute myocardial infarction, leading to ventricular aneurysm following interventional therapy for 3 years and a subsequent in-stent restenosis. Following careful examination, a ventricular aneurysm resection and coronary artery bypass graft were carried out. During this case, the monitoring and controlling of the platelet count, pre- and post-operatively, was extremely important for successful surgery.
Collapse
Affiliation(s)
- Dong-Wen Wang
- Department of Cardiovascular Surgery, Beijing Military Region General Hospital, Beijing 100700, P.R. China
| | - Yong Zhang
- Department of Cardiovascular Surgery, Beijing Military Region General Hospital, Beijing 100700, P.R. China
| | - Jian-Min Yao
- Department of Cardiovascular Surgery, Beijing Military Region General Hospital, Beijing 100700, P.R. China
| | - Zhi-Bin Xiao
- Department of Cardiovascular Surgery, Beijing Military Region General Hospital, Beijing 100700, P.R. China
| |
Collapse
|
43
|
Wang Z, Liu Y, Han Y, Guan W, Kou X, Fu J, Yang D, Ren H, He D, Zhou L, Zeng C. Protective effects of aliskiren on ischemia-reperfusion-induced renal injury in rats. Eur J Pharmacol 2013; 718:160-6. [PMID: 24041923 DOI: 10.1016/j.ejphar.2013.08.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 01/08/2023]
Abstract
The protective effect of aliskiren on ischemia-reperfusion (I/R) injury in the heart and brain has been reported. Whether or not this protective effect extends into the alleviation of renal I/R injury is not known. Therefore, we investigated the protective effect of aliskiren in the kidney in this study. Sprague-Dawley rats were randomly divided into four groups: sham control group; sham control with aliskiren pretreatment; I/R group and I/R with aliskiren pretreatment. Aliskiren (3mg/kg) or vehicle was administrated intravenously via vena cava. Blood samples and the left kidneys were then collected to check for renal function, angiotensin II (Ang II), apoptosis and oxidative stress levels. Compared with the sham rats, serum creatinine (SCR) and blood urea nitrogen (BUN) were significantly increased in the I/R rats, accompanied by histopathological damage to the kidney, which included tubular cell swelling, desquamation, and cast formation. There were also more apoptotic cells and leukocyte infiltration in the I/R rats than in the sham rats. Pretreatment with aliskiren ameliorated I/R induced renal injury, i.e. reduced SCR and BUN levels, ameliorated renal histopathological changes, and decreased the apoptosis of cells and leukocyte infiltration in kidney. I/R injury also decreased superoxide dismutase (SOD) and glutathione (GSH-reduced form) levels, which were blocked with the aliskiren pretreatment. Aliskiren pretreatment exerts a protective effect on ischemia/reperfusion injury in the kidney, via amelioration of oxidative stress, and reduction in leukocyte infiltration and cellular apoptosis.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, China; Chongqing Institute of Cardiology, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|