1
|
Zheng Y, Li G, Shi A, Guo J, Xu Y, Cai W. Role of miR-455-3p in the alleviation of LPS-induced acute lung injury by allicin. Heliyon 2024; 10:e39338. [PMID: 39502213 PMCID: PMC11535764 DOI: 10.1016/j.heliyon.2024.e39338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Acute lung injury (ALI) is a type of diffuse lung injury that seriously affects the survival of critically ill patients. MicroRNAs (miRNAs) can serve as promising therapeutic targets or offer insights for the development of potential therapeutic strategies against ALI. In our previous study, we demonstrated the protective effect of allicin in ALI, but the role of miRNAs in the alleviation of ALI by allicin remains unclear. This study aimed to investigate whether miRNAs mediate the effects of allicin on ALI. Cell viability and proliferation were determined using CCK-8 and EdU assays, respectively, while cellular apoptosis was analyzed by flow cytometry. The claudin-4 protein was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and western blotting. The binding of miR-455 with claudin-4 was determined by bioinformatics analysis and validated by dual luciferase reporter assays. The lung wet/dry ratio of lipopolysaccharide (LPS)-treated rats was determined by hematoxylin and eosin (HE) and TUNEL staining of the pulmonary tissues. The levels of myeloperoxidase (MPO), interleukin (IL)-2, IL-6, and tumor necrosis factor (TNF)-α were determined by enzyme-linked immunosorbent assay (ELISA). We observed that allicin alleviated LPS-induced injury in A549 cells, and claudin-4 knockdown reversed the protective effect of allicin in ALI. Claudin-4 is a direct target of miR-455-3p, and miR-455-3p overexpression partially reversed the protective effect of allicin in LPS-treated A549 cells. Subsequent in vivo experiments confirmed that allicin protects against LPS-induced ALI by regulating the miR-455-3p/claudin-4 axis. The study revealed that the protective effect of allicin in ALI is mediated via miR-455-3p, which suppresses the expression of claudin-4.
Collapse
Affiliation(s)
- Yueliang Zheng
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gaoxiang Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aili Shi
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junping Guo
- Rainbowfish Rehabilitation & Nursing School, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang, China
| | - Yingge Xu
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenwei Cai
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Anthonymuthu S, Sabui S, Lee K, Sheikh A, Fleckenstein JM, Said HM. Bacterial lipopolysaccharide inhibits colonic carrier-mediated uptake of thiamin pyrophosphate: roles for TLR4 receptor and NF-κB/P38/JNK signaling pathway. Am J Physiol Cell Physiol 2023; 325:C758-C769. [PMID: 37519229 PMCID: PMC10635650 DOI: 10.1152/ajpcell.00272.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the effect of the bacterial endotoxin lipopolysaccharide (LPS) on colonic uptake of thiamin pyrophosphate (TPP), the biologically active form of vitamin B1 that is generated by gut microbiota. We used three complementary models in our study: in vitro (human-derived colonic epithelial NCM460), ex vivo (human differentiated colonoid monolayers), and in vivo (mouse colonic tissue). The results showed that exposure of NCM460 cells to LPS leads to a significant inhibition of carrier-mediated TPP uptake as well as in decreased expression of the colonic TPP transporter (cTPPT) protein, mRNA, and heterologous nuclear RNA (hnRNA) compared with untreated controls. Similarly, exposure of human differentiated colonoid monolayers and mice to LPS caused significant inhibition in colonic carrier-mediated TPP uptake and in cTPPT protein, mRNA, and hnRNA expression. The effect of LPS on colonic TPP uptake and cTTPT expression was also found to be associated with a significant reduction in activity of the SLC44A4 promoter as well as in decreased expression of the nuclear factor Elf-3 (E74-like ETS transcription factor 3), which is needed for promoter activity. Finally, we found that knocking down the Toll-like receptor 4 (TLR4) and blocking the nuclear factor kappa B (NF-κB), JNK, and p38 signaling pathways with the use of pharmacological inhibitors lead to significant abrogation in the degree of LPS-mediated inhibition in TPP uptake and cTPPT expression. These results demonstrated that exposure of colonic epithelia to LPS inhibits colonic TPP uptake via transcriptional mechanism(s) and that the effect is mediated via TLR4 receptor and NF-κB/p38/JNK signaling pathways.NEW & NOTEWORTHY This study examined the effect of the bacterial lipopolysaccharide (LPS) on the colonic uptake of thiamin pyrophosphate (TPP), the biologically active form of vitamin B1. Three complementary models were used: in vitro (human NCM460 cells), ex vivo (human colonoids), and in vivo (mice). The results showed LPS to significantly suppress TPP uptake and the expression of its transporter, and that these effects are mediated via the membrane TLR4 receptor, and involve the NF-κB/p38/JNK signaling pathways.
Collapse
Affiliation(s)
- Selvaraj Anthonymuthu
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Subrata Sabui
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| | - Katherine Lee
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medicine, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| |
Collapse
|
3
|
Zhang F, Xiao L, Yang Y, Zhou M, Zhao Y, Xie Z, Ouyang X, Ji F, Tang S, Li L. Human menstrual blood-derived stem cells alleviate autoimmune hepatitis via JNK/MAPK signaling pathway in vivo and in vitro. Front Med 2023; 17:534-548. [PMID: 37010727 DOI: 10.1007/s11684-022-0953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 04/04/2023]
Abstract
Autoimmune hepatitis (AIH) is a severe globally distributed liver disease that could occur at any age. Human menstrual blood-derived stem cells (MenSCs) have shown therapeutic effect in acute lung injury and liver failure. However, their role in the curative effect of AIH remains unclear. Here, a classic AIH mouse model was constructed through intravenous injection with concanavalin A (Con A). MenSCs were intravenously injected while Con A injection in the treatment groups. The results showed that the mortality by Con A injection was significantly decreased by MenSCs treatment and liver function tests and histological analysis were also ameliorated. The results of phosphoproteomic analysis and RNA-seq revealed that MenSCs improved AIH, mainly by apoptosis and c-Jun N-terminal kinase/mitogen-activated protein signaling pathways. Apoptosis analysis demonstrated that the protein expression of cleaved caspase 3 was increased by Con A injection and reduced by MenSCs transplantation, consistent with the TUNEL staining results. An AML12 co-culture system and JNK inhibitor (SP600125) were used to verify the JNK/MAPK and apoptosis signaling pathways. These findings suggested that MenSCs could be a promising strategy for AIH.
Collapse
Affiliation(s)
- Fen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Department of Infectious Diseases, First Affiliated Teaching Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Feiyang Ji
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, Hangzhou, 310016, China
| | - Shima Tang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Xue JC, Yuan S, Meng H, Hou XT, Li J, Zhang HM, Chen LL, Zhang CH, Zhang QG. The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed Pharmacother 2023; 158:114086. [PMID: 36502751 DOI: 10.1016/j.biopha.2022.114086] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine that presents clinically with abdominal pain, mucopurulent stools, and posterior urgency. The lesions of UC are mainly concentrated in the rectal and colonic mucosa and submucosa. For patients with mild to moderate UC, the best pharmacological treatment includes glucocorticoids, immunosuppressants, antibiotics, and biologics, but the long-term application can have serious toxic side effects. Currently, nearly 40% of UC patients are treated with herbal natural products in combination with traditional medications to reduce the incidence of toxic side effects. Flavonoid herbal natural products are the most widely distributed polyphenols in plants and fruits, which have certain antioxidant and anti-inflammatory activities. Flavonoid herbal natural products have achieved remarkable efficacy in the treatment of UC. The pharmacological mechanisms are related to anti-inflammation, promotion of mucosal healing, maintenance of intestinal immune homeostasis, and regulation of intestinal flora. In this paper, we summarize the flavonoid components of anti-ulcerative colitis and their mechanisms reported in the past 10 years, to provide a basis for rational clinical use and the development of new anti-ulcerative colitis drugs.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin Province 133002, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China
| | - Hua-Min Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Li Chen
- Jinan People's Hospital, Jinan, Shandong Province 271100, China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University, Yanji, Jilin Province 133000, China.
| | - Qing-Gao Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin Province 133002, China; Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning Province 116622, China.
| |
Collapse
|
5
|
Perilla Fruit Water Extract Attenuates Inflammatory Responses and Alleviates Neutrophil Recruitment via MAPK/JNK-AP-1/c-Fos Signaling Pathway in ARDS Animal Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4444513. [PMID: 35815275 PMCID: PMC9262517 DOI: 10.1155/2022/4444513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
Airway respiratory distress syndrome (ARDS) is usually caused by a severe pulmonary infection. However, there is currently no effective treatment for ARDS. Traditional Chinese medicine (TCM) has been shown to effectively treat inflammatory lung diseases, but a clear mechanism of action of TCM is not available. Perilla fruit water extract (PFWE) has been used to treat cough, excessive mucus production, and some pulmonary diseases. Thus, we propose that PFWE may be able to reduce lung inflammation and neutrophil infiltration in a lipopolysaccharide (LPS)-stimulated murine model. C57BL/6 mice were stimulated with LPS (10 μg/mouse) by intratracheal (IT) injection and treated with three doses of PFWE (2, 5, and 8 g/kg) by intraperitoneal (IP) injections. To investigate possible mechanisms, A549 cells were treated with PFWE and stimulated with LPS. Our results showed that PFWE decreased airway resistance, neutrophil infiltration, vessel permeability, and interleukin (IL)-6 and chemokine (C-C motif) ligand 2 (CCL2/MCP-1) expressions in vivo. In addition, the PFWE inhibited the expression of IL-6, CCL2/MCP-1, chemokine (CXC motif) ligand 1 (CXCL1/GROα), and IL-8 in vitro. Moreover, PFWE also inhibited the MAPK/JNK-AP-1/c-Fos signaling pathway in A549 cells. In conclusion, we demonstrated that PFWE attenuated pro-inflammatory cytokine and chemokine levels and downregulated neutrophil recruitment through the MAPK/JNK-AP-1/c-Fos pathway. Thus, PFWE can be a potential drug to assist the treatment of ARDS.
Collapse
|
6
|
Li C, Ma D, Chen Y, Liu W, Jin F, Bo L. Selective inhibition of JNK located on mitochondria protects against mitochondrial dysfunction and cell death caused by endoplasmic reticulum stress in mice with LPS‑induced ALI/ARDS. Int J Mol Med 2022; 49:85. [PMID: 35514298 PMCID: PMC9106374 DOI: 10.3892/ijmm.2022.5141] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Few pharmacological interventions are able to improve the mortality rate of acute lung injury and acute respiratory distress syndrome (ALI/ARDS). The aim of this research was to elucidate whether endoplasmic reticulum (ER) stress and c-Jun-N-terminal kinase (JNK)-mitochondria pathways serve important roles in ALI/ARDS and to determine whether the key component Sab is a potential treatment target. The current study investigated the activation of ER stress and the JNK pathway, the content of JNK located on the mitochondria during ER stress and lipopolysaccharide (LPS)-induced ALI/ARDS by western blot analysis. The treatment effects of Tat-SabKIM1, a selective inhibitor of JNK located on mitochondria were explored by multiple methods including histopathological evaluation, lung cell apoptosis tested by TUNEL assay, mitochondrial membrane permeability and survival analysis. The results verified that ER stress was enhanced during LPS-induced ALI/ARDS and could induce activation of the JNK pathway and JNK-mitochondrial localization as well as mitochondrial dysfunction and cell death. Tat-SabKIM1 alleviated LPS injection-induced lung injury and improved mouse survival rates by specifically inhibiting JNK localization to mitochondria and mito-JNK signal activation without affecting cytosolic/nuclear JNK activation. The protective effect of Tat-SabKIM1 against ALI/ARDS was partly caused by inhibition of the excessive activation of mitochondria-mediated apoptosis and autophagy. These results showed the important role of Sab as a treatment target of ALI/ARDS and the potential treatment effect of Tat-SabKIM1. In conclusion, abnormal activation of the JNK-mitochondrial pathway could significantly disrupt the normal physiological function of lung cells, resulting in the occurrence of ALI/ARDS and selective inhibit of JNK located on mitochondria by Tat-SabKIM1 had a protective effect against the mitochondrial dysfunction and cell death caused by endoplasmic reticulum stress in mice with LPS-induced ALI/ARDS.
Collapse
Affiliation(s)
- Congcong Li
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Debin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Liyan Bo
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
7
|
Dietary Alpha-Ketoglutarate Partially Abolishes Adverse Changes in the Small Intestine after Gastric Bypass Surgery in a Rat Model. Nutrients 2022; 14:nu14102062. [PMID: 35631203 PMCID: PMC9146360 DOI: 10.3390/nu14102062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/03/2023] Open
Abstract
Alpha-ketoglutarate (AKG) is one of the key metabolites that play a crucial role in cellular energy metabolism. Bariatric surgery is a life-saving procedure, but it carries many gastrointestinal side effects. The present study investigated the beneficial effects of dietary AKG on the structure, integrity, and absorption surface of the small intestine after bariatric surgery. Male 7-week-old Sprague Dowley rats underwent gastric bypass surgery, after which they received AKG, 0.2 g/kg body weight/day, administered in drinking water for 6 weeks. Changes in small intestinal morphology, including histomorphometric parameters of enteric plexuses, immunolocalization of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal mucosa, and selected hormones, were evaluated. Proliferation, mucosal and submucosal thickness, number of intestinal villi and Paneth cells, and depth of crypts were increased; however, crypt activity, the absorption surface, the expression of claudin 3, MarvelD3, occludin and zonula ocludens 1 in the intestinal epithelium were decreased after gastric bypass surgery. Alpha-ketoglutarate supplementation partially improved intestinal structural parameters and epithelial integrity in rats undergoing this surgical procedure. Dietary AKG can abolish adverse functional changes in the intestinal mucosa, enteric nervous system, hormonal response, and maintenance of the intestinal barrier that occurred after gastric bypass surgery.
Collapse
|
8
|
Yu YY, Li XQ, Hu WP, Cu SC, Dai JJ, Gao YN, Zhang YT, Bai XY, Shi DY. Self-developed NF-κB inhibitor 270 protects against LPS-induced acute kidney injury and lung injury through improving inflammation. Biomed Pharmacother 2022; 147:112615. [PMID: 35026488 DOI: 10.1016/j.biopha.2022.112615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 12/11/2022] Open
Abstract
Sepsis-induced acute kidney injury (AKI) and acute lung injury (ALI) have high morbidity and mortality, with no effective clinically available drugs. Anti-inflammation is effective strategy in the therapy of AKI and ALI. NF-κB is a target for the development of anti‑inflammatory agents. The purpose of the study is to evaluate the effect of 270, self-developed NF-κB inhibitor, in LPS-induced AKI and ALI. LPS-induced macrophages were used to examine the anti-inflammation activity of 270 in vitro. Sepsis-induced AKI and ALI mice models were established by intraperitoneal injection of LPS (10 mg/kg) for 24 h. Oral administration 270 for 14 days before LPS stimulation. Plasma, kidney and lung tissues were collected and used for histopathology, biochemical assay, ELISA, RT-PCR, and western blot analyses. In vitro, we showed that 270 suppressed the inflammation response in LPS-induced RAW 264.7 macrophages and bone marrow derived macrophages. In vivo, we found that 270 ameliorated LPS-induced AKI and ALI, as evidenced by improving various pathological changes, reducing the expression of pro-inflammation genes, blocking the activation of NF-κB and JNK pathways, attenuating the elevated myeloperoxidase (MPO) activity and malondialdehyde (MDA) content, ameliorating the activated ER stress, reversing the inhibition effect on autophagy in kidney and lung tissues, and alleviating the enhanced plasma level of creatinine (Crea), blood urea nitrogen (BUN) and pro-inflammation cytokines. Our investigations provides evidence that NF-κB inhibitor 270 is a potential drug that against LPS-induced AKI and ALI in the future.
Collapse
Affiliation(s)
- Yan-Yan Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Xiang-Qian Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Wen-Peng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Shi-Chao Cu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China
| | - Jia-Jia Dai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Ya-Nan Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Yi-Ting Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Xiao-Yi Bai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China
| | - Da-Yong Shi
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266200 China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
9
|
Koch SR, Stark RJ. Cell penetrating peptides coupled to an endothelial nitric oxide synthase sequence alter endothelial permeability. Tissue Barriers 2021; 10:2017226. [PMID: 34923902 DOI: 10.1080/21688370.2021.2017226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Delivery of cargo to cells through the use of cell-penetrating peptide (CPP) sequences is an area of rich investigation for targeted therapeutics. Specific to the endothelium, the layer of cells that cover every blood vessel in the body, the loss or alteration of a key enzyme, endothelial nitric oxide synthase (eNOS), is known to contribute to endothelial health during severe, infectious challenge. While the beneficial effects of eNOS are often thought to be mediated through the generation of nitric oxide, some protection is theorized to be through eNOS binding to regulatory pathways via a pentabasic RRKRK motif. We hypothesized that delivery of the eNOS-RRKRK peptide sequence using common CPPs would allow protection against gram-negative lipopolysaccharide (LPS). Combination of the eNOS-RRKRK sequence to the CPP antennapedia (AP) reduced the impact of LPS-induced permeability in cultured human microvascular endothelial cells (HMVECs) as measured by transendothelial electrical resistance (TEER). There was also a modest reduction in cytokine production, however it was observed that AP alone significantly impaired LPS-induced endothelial permeability and cytokine production. In comparison, the CPP trans-activator of transcription (TAT) did not significantly alter endothelial inflammation by itself. When TAT was coupled to the eNOS-RRKRK sequence, protection against LPS-induced permeability was still demonstrated, however cytokine production was not reduced. These data demonstrate that the RRKRK sequence of eNOS can offer some NO-independent protection against LPS-mediated endothelial inflammation, however the degree of protection is highly dependent on the type of CPP utilized for cargo delivery.
Collapse
Affiliation(s)
- Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Tan HY, Qing B, Luo XM, Liang HX. Downregulation of miR-223 promotes HMGB2 expression and induces oxidative stress to activate JNK and promote autophagy in an in vitro model of acute lung injury. JOURNAL OF INFLAMMATION-LONDON 2021; 18:29. [PMID: 34732212 PMCID: PMC8565047 DOI: 10.1186/s12950-021-00295-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Background Excessive autophagic activity in alveolar epithelial cells is one of the main causes of acute lung injury (ALI), but the underlying molecular mechanism has not been fully elucidated. Previous studies have shown that microRNAs (miRs) are involved in regulating autophagy in several diseases. This study aimed to determine the role of miR-223 in excessive autophagic activity in alveolar epithelial cells and the underlying mechanism to identify a novel therapeutic targets for the development of new drugs to treat acute respiratory distress syndrome (ARDS). Methods A549 cells were treated with lipopolysaccharide (LPS) to establish an ALI in vitro model. The expression of miR-223 and its role of miR-223 in regulating oxidative stress and autophagy in the LPS-treated A549 cells, were examined using RT-PCR, flow cytometry and ELISA. A luciferase reporter assay was performed to verify the interaction between miR-223 and the high-mobility group box 2 (HMGB2) protein. Results The results showed that the LPS treatment downregulated miR-223 expression in alveolar epithelial cells. We further proved that miR-223 directly targeted the 3-untranslated region of the HMGB2 gene and the downregulation of miR-223 increased HMGB2 protein level, which activated the JNK signalling pathway and thus induced oxidative stress and autophagy in LPS-treated alveolar epithelial cells. Knockdown of HMGB2 protein deactivated the JNK signalling pathway and inhibited autophagy and oxidative stress in alveolar epithelial cells. Conclusions The results of this study suggest that miR-223 regulates oxidative stress and autophagy in alveolar epithelial cells by targeting HMGB2 via the JNK signalling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-021-00295-3.
Collapse
Affiliation(s)
- Hao-Yu Tan
- Department of Cardio-vascular Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Bei Qing
- Department of Cardio-vascular Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Xian-Mei Luo
- Department of Cardio-vascular Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China
| | - Heng-Xing Liang
- Department of Cardio-vascular Surgery, the Second Xiangya Hospital of Central South University, No.139 Middle Renmin Road, Hunan Province, 410011, Changsha, People's Republic of China.
| |
Collapse
|
11
|
p38/JNK Is Required for the Proliferation and Phenotype Changes of Vascular Smooth Muscle Cells Induced by L3MBTL4 in Essential Hypertension. Int J Hypertens 2021; 2020:3123968. [PMID: 33381308 PMCID: PMC7759026 DOI: 10.1155/2020/3123968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
Aim Hypertension is a complicated disorder with multifactorial etiology and high heritability. Our previous work has identified L3MBTL4 as a novel susceptibility gene for the development of essential hypertension, accompanied with activation of p38/JNK. Yet, little evidence has been reported whether p38/JNK contributed directly to L3MBTL4-induced vascular remodeling and exploring the potential mechanism of L3MBTL4 in vascular smooth muscle cells (VSMCs). Methods We evaluated the contribution of L3MBTL4 on proliferation, migration, and phenotype changes of VSMCs and further explored the critical role of p38 and JNK signaling pathway underlying. Results In L3MBTL4 transgenic rats, we found that the elevated blood pressure, increased left ventricular hypertrophy, and thickened vascular media layer were significantly relieved by both p38 and JNK inhibitors. Meanwhile, increased cell proliferation, advanced cell cycle progression, greater migratory capability, and synthetic phenotype were observed in L3MBTL4 overexpressed VSMCs, which could be blocked by either p38 or JNK inhibitor. Conclusions Our findings pinpointed that p38 and JNK were required for the proliferation and phenotype changes of VSMCs induced by L3MBTL4 in hypertension. These novel findings yield new insights into the genetic and biological basis of hypertension and are fundamental for further studies to explore the intervention strategies targeting L3MBTL4 and p38/JNK to counteract the progression of hypertension.
Collapse
|
12
|
Inhibition of JNK Alleviates Chronic Hypoperfusion-Related Ischemia Induces Oxidative Stress and Brain Degeneration via Nrf2/HO-1 and NF- κB Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5291852. [PMID: 32617137 PMCID: PMC7315317 DOI: 10.1155/2020/5291852] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022]
Abstract
Cerebral ischemia is one of the leading causes of neurological disorders. The exact molecular mechanism related to chronic unilateral cerebral ischemia-induced neurodegeneration and memory deficit has not been precisely elucidated. In this study, we examined the effect of chronic ischemia on the induction of oxidative stress and c-Jun N-terminal kinase-associated detrimental effects and unveiled the inhibitory effect of specific JNK inhibitor (SP600125) on JNK-mediated brain degeneration in adult mice. Our behavioral, biochemical, and immunofluorescence studies revealed that chronic ischemic injuries sustained increased levels of oxidative stress-induced active JNK for a long time, whereas SP600125 significantly reduced the elevated level of active JNK and further regulated Nrf2/HO-1 and NF-κB signaling, which have been confirmed in vivo. Neuroinflammatory mediators and loss of neuronal cells was significantly reduced with the administration of SP600125. Ischemic brain injury caused synaptic dysfunction and memory impairment in mice. However, these were significantly improved with SP600125. On the whole, these findings suggest that elevated ROS-mediated JNK is a key mediator in chronic ischemic conditions and has a crucial role in neuroinflammation, neurodegeneration, and memory dysfunction. Our findings suggest that chronic oxidative stress associated JNK would be a potential target in time-dependent studies of chronic ischemic conditions induced brain degeneration.
Collapse
|
13
|
Wei H, Ren Z, Tang L, Yao H, Li X, Wang C, Mu C, Shi C, Wang H. JNK signaling pathway regulates the development of ovaries and synthesis of vitellogenin (Vg) in the swimming crab Portunus trituberculatus. Cell Stress Chaperones 2020; 25:441-453. [PMID: 32172493 PMCID: PMC7193009 DOI: 10.1007/s12192-020-01085-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
The development of Portunus trituberculatus egg cells is directly related to the nutritional status of the fertilized egg, which affects the key production stages of offspring hatching. Vitellogenin plays a key role in the nutrient supply required for the development of the egg cells. The c-Jun N-terminal kinase (JNK) is an important member of the mitogen-activated protein kinase (MAPK) superfamily and plays an important role in cell proliferation, transformation, differentiation, and apoptosis. At present, there are no reports on the involvement of the JNK signaling pathway in the reproductive regulation of P. trituberculatus. In this study, rapid amplification of complementary DNA ends amplification technology was used to clone the full length of JNK complementary DNA, which has a length of 2094 bp, including an open reading frame (ORF) of 1266 bp encoding a 421-amino acid protein. The protein includes the S_TKC conserved domain with a TPY phosphorylation site, which is a typical feature of the JNK gene family. Observing tissue sections found the oocytes in the inhibitor group developed slowly, while the oocytes in the activated group showed accelerated development. Meanwhile, Portunus trituberculatus JNK and vitellogenin (Vg) genes exhibited the same trend in the hepatopancreas and ovaries, and the expression of the SP600125 group was downregulated (P < 0.05), while the anisomycin group was upregulated (P < 0.05). In addition, JNK enzyme activity and vitellin (Vn) content in the ovarian tissue showed that the JNK activity of the SP600125 group decreased, while activity increased in the anisomycin group. The accumulation of Vn content in the SP600125 group decreased, and that in the anisomycin group increased. In summary, after injection with inhibitor or activator, the JNK signaling pathway of P. trituberculatus was inhibited or activated, the accumulation of Vn in the ovary was reduced or increased, and ovarian development was inhibited or accelerated, respectively. These results indicated that the JNK signaling pathway is involved in the regulation of Vg synthesis and ovarian development in P. trituberculatus. The results of this study further add to the knowledge of the breeding biology of P. trituberculatus and provide a theoretical reference for the optimization of breeding techniques in aquaculture production systems.
Collapse
Affiliation(s)
- Hongling Wei
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Zhiming Ren
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Lei Tang
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Hongzhi Yao
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Xing Li
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Chunlin Wang
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Changkao Mu
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Ce Shi
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| | - Huan Wang
- School of Marine Science, Ningbo University, Ningbo, 315211 Zhejiang China
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211 Zhejiang China
| |
Collapse
|
14
|
Scheraga RG, Abraham S, Grove LM, Southern BD, Crish JF, Perelas A, McDonald C, Asosingh K, Hasday JD, Olman MA. TRPV4 Protects the Lung from Bacterial Pneumonia via MAPK Molecular Pathway Switching. THE JOURNAL OF IMMUNOLOGY 2020; 204:1310-1321. [PMID: 31969384 DOI: 10.4049/jimmunol.1901033] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
Mechanical cell-matrix interactions can drive the innate immune responses to infection; however, the molecular underpinnings of these responses remain elusive. This study was undertaken to understand the molecular mechanism by which the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), alters the in vivo response to lung infection. For the first time, to our knowledge, we show that TRPV4 protects the lung from injury upon intratracheal Pseudomonas aeruginosa in mice. TRPV4 functions to enhance macrophage bacterial clearance and downregulate proinflammatory cytokine secretion. TRPV4 mediates these effects through a novel mechanism of molecular switching of LPS signaling from predominant activation of the MAPK, JNK, to that of p38. This is accomplished through the activation of the master regulator of inflammation, dual-specificity phosphatase 1. Further, TRPV4's modulation of the LPS signal is mechanosensitive in that both upstream activation of p38 and its downstream biological consequences depend on pathophysiological range extracellular matrix stiffness. We further show the importance of TRPV4 on LPS-induced activation of macrophages from healthy human controls. These data are the first, to our knowledge, to demonstrate new roles for macrophage TRPV4 in regulating innate immunity in a mechanosensitive manner through the modulation of dual-specificity phosphatase 1 expression to mediate MAPK activation switching.
Collapse
Affiliation(s)
- Rachel G Scheraga
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Susamma Abraham
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Lisa M Grove
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Brian D Southern
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - James F Crish
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | | | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Jeffrey D Hasday
- Department of Pulmonary and Critical Care, University of Maryland, Baltimore, MD 21201
| | - Mitchell A Olman
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| |
Collapse
|
15
|
Wei K, Luo J, Cao J, Peng L, Ren L, Zhang F. Adiponectin Protects Obese Rats from Aggravated Acute Lung Injury via Suppression of Endoplasmic Reticulum Stress. Diabetes Metab Syndr Obes 2020; 13:4179-4190. [PMID: 33192080 PMCID: PMC7653273 DOI: 10.2147/dmso.s278684] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Endoplasmic reticulum (ER) stress seems to mediate the obesity-induced susceptibility to acute lung injury (ALI). The present study was designed to evaluate the role of ER stress in adiponectin (APN)-induced lung protection in an obese rat model treated with lipopolysaccharide (LPS). METHODS Four-week-old male Sprague-Dawley rats fed either a normal chow diet or a high-fat diet for 12 weeks were randomly assigned to one of the following groups: lean rats, diet-induced obesity rats, lean rats with ALI, obese rats with ALI, obese rats pretreated with 4-phenylbutyric acid (4-PBA) before ALI or obese rats pretreated with APN before ALI. At 24 h after instillation of LPS into the lungs, cell counts in the bronchoalveolar lavage fluid (BALF) were determined. Lung tissues were separated to assess the degree of inflammation, pulmonary oedema, epithelial apoptosis and the expression of ER stress marker proteins. RESULTS The 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) expression in the lung tissues of obese rats was upregulated before ALI, as well as the elevated apoptosis in epithelial cells. During ALI, the expression of ER stress marker proteins was similarly increased in both lean and obese rats, while significant downregulation of Mitofusin 2 (MFN2) was detected in obese epithelial cells. The lung tissues of obese rats showed higher concentrations of tumor necrosis factor-alpha (TNF-α), Interleukin 6 (IL-6) and IL-10, enhanced neutrophil counts and elevated wet/dry weight ratios. APN and 4-PBA decreased the degree of ER stress and suppressed LPS-induced lung inflammation, pulmonary oedema and epithelial apoptosis. CONCLUSION APN may exert protective effects against the exacerbated lung injuries in obese rats by attenuating ER stress, which operates as a key molecular pathway in the progression of ALI.
Collapse
Affiliation(s)
- Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
- Correspondence: Ke Wei Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1# Youyi Road, Yuzhong District, Chongqing, People’s Republic of ChinaTel +86 23 89011069Fax +86 23 89011062 Email
| | - Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lihua Peng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Fan Zhang
- Department of Anesthesiology, Jianyang People’s Hospital, Jianyang, Sichuan641400, People’s Republic of China
| |
Collapse
|
16
|
Hebert KD, Mclaughlin N, Galeas-Pena M, Zhang Z, Eddens T, Govero A, Pilewski JM, Kolls JK, Pociask DA. Targeting the IL-22/IL-22BP axis enhances tight junctions and reduces inflammation during influenza infection. Mucosal Immunol 2020; 13:64-74. [PMID: 31597930 PMCID: PMC6917921 DOI: 10.1038/s41385-019-0206-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/20/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023]
Abstract
The seasonal burden of influenza coupled with the pandemic outbreaks of more pathogenic strains underscore a critical need to understand the pathophysiology of influenza injury in the lung. Interleukin-22 (IL-22) is a promising cytokine that is critical in protecting the lung during infection. This cytokine is strongly regulated by the soluble receptor IL-22-binding protein (IL-22BP), which is constitutively expressed in the lungs where it inhibits IL-22 activity. The IL-22/IL-22BP axis is thought to prevent chronic exposure of epithelial cells to IL-22. However, the importance of this axis is not understood during an infection such as influenza. Here we demonstrate through the use of IL-22BP-knockout mice (il-22ra2-/-) that a pro-IL-22 environment reduces pulmonary inflammation during H1N1 (PR8/34 H1N1) infection and protects the lung by promoting tight junction formation. We confirmed these results in normal human bronchial epithelial cells in vitro demonstrating improved membrane resistance and induction of the tight junction proteins Cldn4, Tjp1, and Tjp2. Importantly, we show that administering recombinant IL-22 in vivo reduces inflammation and fluid leak into the lung. Taken together, our results demonstrate the IL-22/IL-22BP axis is a potential targetable pathway for reducing influenza-induced pneumonia.
Collapse
Affiliation(s)
- K D Hebert
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - N Mclaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - M Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Z Zhang
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - T Eddens
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
| | - A Govero
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - J M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA, USA
| | - D A Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
17
|
Xiao Z, Xu F, Zhu X, Bai B, Guo L, Liang G, Shan X, Zhang Y, Zhao Y, Zhang B. Inhibition Of JNK Phosphorylation By Curcumin Analog C66 Protects LPS-Induced Acute Lung Injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4161-4171. [PMID: 31849448 PMCID: PMC6911336 DOI: 10.2147/dddt.s215712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 01/11/2023]
Abstract
Background Acute lung injury (ALI) is characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Curcumin analog C66, having reported as an inhibitor of c-Jun N-terminal kinase (JNK), exhibits anti-inflammatory property both in vitro and in vivo. However, whether C66 is capable of reducing lipopolysaccharide (LPS)-induced ALI through the inhibition of inflammation by targeting JNK remains unknown. Methods Intratracheal injection of LPS was employed to build a mouse ALI model. H&E staining, wet/dry ratio, immunofluorescence staining, inflammatory cell detection, and inflammatory gene expression were used to evaluate lung injury and lung inflammation. In vitro, LPS was used to induce the expression of inflammatory cytokines both in protein and gene levels. Results The results of our studies showed that the pretreatment with C66 and JNK inhibitor SP600125 was capable of attenuating the LPS-induced ALI by detecting pulmonary edema, pathological changes, total protein concentration, and inflammatory cell number in bronchoalveolar lavage fluid (BALF). Besides, C66 and SP600125 also suppressed LPS-induced inflammatory cytokine expression in BALF, serum, and lung tissue. In vitro, LPS-induced production of TNF-α and IL-6 and gene expression of TNF-α, IL-6, IL-1β, and COX-2 could be inhibited by the pretreatment with C66 and SP600125. It was found that C66 and SP600125 could inhibit LPS-induced phosphorylation of JNK both in vitro and in vivo. Conclusion In brief, our results suggested that C66 protects LPS-induced ALI through the inhibition of inflammation by targeting the JNK pathway. These findings further confirmed the pivotal role of JNK in ALI and implied that C66 is likely to serve as a potential therapeutic agent for ALI.
Collapse
Affiliation(s)
- Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fengli Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Bin Bai
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Lu Guo
- Department of Pharmacy, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, People's Republic of China
| | - Guang Liang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Xiaoou Shan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
18
|
You R, Ho YS, Hung CHL, Liu Y, Huang CX, Chan HN, Ho SL, Lui SY, Li HW, Chang RCC. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol 2018; 15:28. [PMID: 29970116 PMCID: PMC6029039 DOI: 10.1186/s12989-018-0263-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/29/2018] [Indexed: 12/27/2022] Open
Abstract
Background Silica nanoparticles (SiO2-NPs) are naturally enriched and broadly utilized in the manufacturing industry. While previous studies have demonstrated toxicity in neuronal cell lines after SiO2-NPs exposure, the role of SiO2-NPs in neurodegeneration is largely unknown. Here, we evaluated the effects of SiO2-NPs-exposure on behavior, neuropathology, and synapse in young adult mice and primary cortical neuron cultures. Results Male C57BL/6 N mice (3 months old) were exposed to either vehicle (sterile PBS) or fluorescein isothiocyanate (FITC)-tagged SiO2-NPs (NP) using intranasal instillation. Behavioral tests were performed after 1 and 2 months of exposure. We observed decreased social activity at both time points as well as anxiety and cognitive impairment after 2 months in the NP-exposed mice. NP deposition was primarily detected in the medial prefrontal cortex and the hippocampus. Neurodegeneration-like pathological changes, including reduced Nissl staining, increased tau phosphorylation, and neuroinflammation, were also present in the brains of NP-exposed mice. Furthermore, we observed NP-induced impairment in exocytosis along with decreased synapsin I and increased synaptophysin expression in the synaptosome fractions isolated from the frontal cortex as well as primary neuronal cultures. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were also activated in the frontal cortex of NP-exposed mice. Moreover, inhibition of ERK activation prevented NP-mediated changes in exocytosis in cultured neurons, highlighting a key role in the changes induced by NP exposure. Conclusions Intranasal instillation of SiO2-NPs results in mood dysfunction and cognitive impairment in young adult mice and causes neurodegeneration-like pathology and synaptic changes via ERK activation. Electronic supplementary material The online version of this article (10.1186/s12989-018-0263-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Present address: Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Clara Hiu-Ling Hung
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Yan Liu
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Chun-Xia Huang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China
| | - Hei-Nga Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Sheung-Yeung Lui
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China. .,School of Biomedical Sciences, Rm. L4-49, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
19
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
20
|
He L, Zhou X, Huang N, Li H, Cui Z, Tian J, Jiang Q, Liu S, Wu J, Li T, Yao K, Yin Y. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets. Oncotarget 2017; 8:91965-91978. [PMID: 29190890 PMCID: PMC5696156 DOI: 10.18632/oncotarget.20555] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is an important cellular metabolite that participates in energy production and amino acid metabolism. However, the protective effects and mechanism of AKG on mucosal lesions have not been well understood. This study was conducted to investigate the effects of dietary AKG supplementation on epithelial restitution in early-weaning piglets under Escherichia coli lipopolysaccharide (LPS) induction. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were dietary treatment (basal diet or AKG diet) and inflammatory challenge (LPS or saline). The results showed that AKG supplementation improved the growth performance and intestinal morphology in the LPS-induced early-weaning piglets. Compared with the basal diet, the AKG diet remarkably decreased the concentration and mRNA expression of intestinal inflammatory cytokines (IL-1β, IL-6, and IL-12) in the LPS-induced piglets. Moreover, AKG administration upregulated the mRNA expression of nutrient-sensing transporters (GLUT-2, SGLT-1, PEPT-1, I-FABP2) in the small intestine of both saline- and LPS-treated piglets, and improved the distribution and expression of tight-junction genes andproteins (ZO-1, Occludin, Claudins, E-cadherin). Collectively, our findings indicate that AKG has the potential to alleviate intestinal inflammatory response and improve epithelial restitution and nutrient-sensing ability under stress injury in early-weaning piglets, and it also provides an experimental basis for enteral use of AKG in swine production and clinical application to prevent intestinal epithelial damage.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhijie Cui
- Xiangtan University, Xiangtan, Hunan 411105, China
| | - Junquan Tian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Qian Jiang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Shaojuan Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Jian Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410006, China
| |
Collapse
|
21
|
Lai JB, Qiu CF, Chen CX, Chen MY, Chen J, Guan XD, Ouyang B. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats. Chin Med J (Engl) 2017; 129:1719-24. [PMID: 27411461 PMCID: PMC4960963 DOI: 10.4103/0366-6999.185867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: An acute respiratory distress syndrome (ARDS) is still one of the major challenges in critically ill patients. This study aimed to investigate the effect of inhibiting c-Jun N-terminal kinase (JNK) on ARDS in a lipopolysaccharide (LPS)-induced ARDS rat model. Methods: Thirty-six rats were randomized into three groups: control, LPS, and LPS + JNK inhibitor. Rats were sacrificed 8 h after LPS treatment. The lung edema was observed by measuring the wet-to-dry weight (W/D) ratio of the lung. The severity of pulmonary inflammation was observed by measuring myeloperoxidase (MPO) activity of lung tissue. Moreover, the neutrophils in bronchoalveolar lavage fluid (BALF) were counted to observe the airway inflammation. In addition, lung collagen accumulation was quantified by Sircol Collagen Assay. At the same time, the pulmonary histologic examination was performed, and lung injury score was achieved in all three groups. Results: MPO activity in lung tissue was found increased in rats treated with LPS comparing with that in control (1.26 ± 0.15 U in LPS vs. 0.77 ± 0.27 U in control, P < 0.05). Inhibiting JNK attenuated LPS-induced MPO activity upregulation (0.52 ± 0.12 U in LPS + JNK inhibitor vs. 1.26 ± 0.15 U in LPS, P < 0.05). Neutrophils in BALF were also found to be increased with LPS treatment, and inhibiting JNK attenuated LPS-induced neutrophils increase in BALF (255.0 ± 164.4 in LPS vs. 53 (44.5-103) in control vs. 127.0 ± 44.3 in LPS + JNK inhibitor, P < 0.05). At the same time, the lung injury score showed a reduction in LPS + JNK inhibitor group comparing with that in LPS group (13.42 ± 4.82 vs. 7.00 ± 1.83, P = 0.001). However, the lung W/D ratio and the collagen in BALF did not show any differences between LPS and LPS + JNK inhibitor group. Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.
Collapse
Affiliation(s)
- Jian-Bo Lai
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Chun-Fang Qiu
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Chuan-Xi Chen
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Min-Ying Chen
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Juan Chen
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Bin Ouyang
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
22
|
Wei CY, Sun HL, Yang ML, Yang CP, Chen LY, Li YC, Lee CY, Kuan YH. Protective effect of wogonin on endotoxin-induced acute lung injury via reduction of p38 MAPK and JNK phosphorylation. ENVIRONMENTAL TOXICOLOGY 2017; 32:397-403. [PMID: 26892447 DOI: 10.1002/tox.22243] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 01/13/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Acute lung injury (ALI) is a serious inflammatory disorder which remains the primary cause of incidence and mortality in patients with acute pulmonary inflammation. However, there is still no effective medical strategy available clinically for the improvement of ALI. Wogonin, isolated from roots of Scutellaria baicalensis Georgi, is a common medicinal herb which presents biological and pharmacological effects, including antioxidation, anti-inflammation, and anticancer. Preadministration of wogonin inhibited not only lung edema but also protein leakage into the alveolar space in murine model of lipopolysaccharide (LPS)-induced ALI. Moreover, wogonin not only reduced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 but also inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) induced by LPS. We further found wogonin inhibited the phosphorylation of p38 MAPK and JNK at a concentration lower than ERK. In addition, inhibition of lung edema, protein leakage, expression of iNOS and COX-2, and phosphorylation of p38 MAPK and JNK were all observed in a parallel concentration-dependent manner. These results suggest that wogonin possesses potential protective effect against LPS-induced ALI via downregulation of iNOS and COX-2 expression by blocking phosphorylation of p38 MAPK and JNK. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 397-403, 2017.
Collapse
Affiliation(s)
- Cheng-Yu Wei
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Neurology, Show Chwan Memorial Hospital, Changhua County, Taiwan, Republic of China
- Department of Exercise and Health Promotion, College of Education, Chinese Culture University, Taipei, Taiwan, Republic of China
| | - Hai-Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Ching-Ping Yang
- Department of Biotechology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-You Chen
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung Taiwan
| | - Yi-Ching Li
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
23
|
JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci Rep 2017; 7:39914. [PMID: 28054591 PMCID: PMC5215076 DOI: 10.1038/srep39914] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/29/2016] [Indexed: 11/08/2022] Open
Abstract
The proinflammatory cytokine interleukin 1β (IL-1β) induces prostaglandin E2 (PGE2) production via upregulation of cyclooxygenase-2 (COX-2) expression in synovial fibroblasts. This effect of IL-1β is involved in osteoarthritis. We investigated MAPK signaling pathways in IL-1β-induced COX-2 expression in feline synovial fibroblasts. In the presence of MAPK inhibitors, IL-1β-induced COX-2 expression and PGE2 release were both attenuated. IL-1β induced the phosphorylation of p38, JNK, MEK, and ERK1/2. A JNK inhibitor prevented not only JNK phosphorylation but also MEK and ERK1/2 phosphorylation in IL-1β-stimulated cells, but MEK and ERK1/2 inhibitors had no effect on JNK phosphorylation. A p38 inhibitor prevented p38 phosphorylation, but had no effect on MEK, ERK1/2, and JNK phosphorylation. MEK, ERK1/2, and JNK inhibitors had no effect on p38 phosphorylation. We also observed that in IL-1β-treated cells, phosphorylated MEK, ERK1/2, and JNK were co-precipitated with anti-phospho-MEK, ERK1/2, and JNK antibodies. The silencing of JNK1 in siRNA-transfected fibroblasts prevented IL-1β to induce phosphorylation of MEK and ERK1/2 and COX-2 mRNA expression. These observations suggest that JNK1 phosphorylation is necessary for the activation of the MEK/ERK1/2 pathway and the subsequent COX-2 expression for PGE2 release, and p38 independently contributes to the IL-1β effect in synovial fibroblasts.
Collapse
|
24
|
Ye J, Zhang H, He W, Zhu B, Zhou D, Chen Z, Ashraf U, Wei Y, Liu Z, Fu ZF, Chen H, Cao S. Quantitative phosphoproteomic analysis identifies the critical role of JNK1 in neuroinflammation induced by Japanese encephalitis virus. Sci Signal 2016; 9:ra98. [DOI: 10.1126/scisignal.aaf5132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Li J, Li YX, Chen MH, Li J, Du J, Shen B, Xia XM. Changes in the phosphorylation of claudins during the course of experimental colitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12225-12233. [PMID: 26722407 PMCID: PMC4680352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
The phosphorylation of the tight-junction protein claudin causes allosterism, endocytosis and changes in the polarity of the epithelium, thus affecting the barrier function. The phosphorylation status of claudin during the course of colitis has not been demonstrated. In the present study, we found that the phosphorylated claudin-4 and claudin-7 contents were increased in experimental colitis at days 6 and 8, and colonic phosphorylated claudin-6 was found to be increased at day 4 and day 8. Colonic phosphorylated claudin-5 was found to be decreased at day 4 but increased at day 6. These changes were accompanied by increases in intestinal permeability. In T84 cells, phosphorylated claudin-3 was increased at 48 h but decreased at 72 h after lipopolysaccharide (LPS) treatment. Phosphorylated claudin-5 and claudin-7 were decreased 72 h after LPS treatment, while phosphorylated claudin-6 was increased at 72 h after LPS treatment. We conclude that the phosphorylation of colonic claudins was changed during the course of colitis, which may be related to the change in the intestinal barrier function. Cytokine such as LPS was found to affect the phosphorylation of colonic claudins.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Yong-Xiang Li
- The Eighth Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Mei-Hua Chen
- Department of Physiology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Jie Li
- Department of Physiology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Juan Du
- Department of Physiology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Bing Shen
- Department of Physiology, Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xian-Ming Xia
- Department of Gastroenterology and Hepatology, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
26
|
Abstract
The c-Jun N-terminal kinases (JNKs) are serine/threonine kinases implicated in the pathogenesis of various diseases. Recent advances in the development of novel inhibitors of JNKs will be reviewed. Significant progress in the design of JNK inhibitors displaying selectivity versus other kinases has been achieved within the past 4 years. However, the development of isoform selective JNK inhibitors is still an open task.
Collapse
Affiliation(s)
- Pierre Koch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen , Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | |
Collapse
|