1
|
Sztandera-Tymoczek M, Szuster-Ciesielska A. Fungal Aeroallergens-The Impact of Climate Change. J Fungi (Basel) 2023; 9:jof9050544. [PMID: 37233255 DOI: 10.3390/jof9050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The incidence of allergic diseases worldwide is rapidly increasing, making allergies a modern pandemic. This article intends to review published reports addressing the role of fungi as causative agents in the development of various overreactivity-related diseases, mainly affecting the respiratory tract. After presenting the basic information on the mechanisms of allergic reactions, we describe the impact of fungal allergens on the development of the allergic diseases. Human activity and climate change have an impact on the spread of fungi and their plant hosts. Particular attention should be paid to microfungi, i.e., plant parasites that may be an underestimated source of new allergens.
Collapse
Affiliation(s)
- Monika Sztandera-Tymoczek
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Agnieszka Szuster-Ciesielska
- Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
2
|
Ali H, Douwes J, Burmanje J, Gokhale P, Crane J, Pattemore P, Stanley T, Keenan J, Brooks C. Sputum inflammatory, neural, and remodelling mediators in eosinophilic and non-eosinophilic asthma. Ann Allergy Asthma Immunol 2023:S1081-1206(23)00181-3. [PMID: 36958472 DOI: 10.1016/j.anai.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Neural and remodelling mechanisms may play a role in asthma, particularly non-eosinophilic asthma (NEA). OBJECTIVE To assess sputum mediators associated with neural, remodelling, and inflammatory mechanisms in eosinophilic asthma (EA), NEA, and non-asthmatics. METHODS 111 participants with and 62 without asthma (14-21 years) underwent sputum induction, exhaled nitric oxide (FeNO), atopy, and spirometry tests. Twenty-four mediators were measured in sputum using ELISA or bead array. EA (n=52) and NEA (n=59) were defined using a sputum eosinophil cut-point of ≥2.5%. RESULTS Elevated levels of nociceptin (median: 39.1 vs 22.4 ng/mL, p=0.03), periostin (33.8 vs 9.4 ng/mL, p=0.01), and eosinophil cationic protein (ECP); (220.1 vs 83.7 ng/mL, p=0.03) were found in asthmatics compared with non-asthmatics. Nociceptin was elevated in EA (54.8 vs 22.4 ng/mL, p=0.02) compared with non-asthmatics. EA had higher levels of inflammatory (ECP: 495.5 vs 100.3 ng/mL, p≤0.01; interleukin-1β: 285.3 vs 209.3 pg/mL, p=0.03; histamine: 5805.0 vs 3172.5 pg/mL, p=<0.01) and remodelling (vascular endothelial growth factor A (VEGF-A); 3.3 vs 2.5 ng/mL, p=0.03; periostin: 47.7 vs 22.1 ng/mL, p=0.04) mediators than NEA. Whilst macrophages were associated with neural mediators e.g. neurokinin A (r=0.27, p=0.01) and nociceptin (r=0.30, p=0.02), granulocytes were associated with inflammatory/remodelling mediators; e.g. ECP and VEGF-A correlated with neutrophils (r=0.53 & r=0.33 respectively, p=<0.01) and eosinophils (r=0.53 & r=0.29 respectively, p≤0.01). CONCLUSION Elevated levels of nociceptin and inflammatory/remodelling markers were found in EA, but no evidence for neural and remodelling pathways was found in NEA. Neural and remodelling mechanisms appear to coexist with inflammation.
Collapse
Affiliation(s)
- Hajar Ali
- Research Centre for Hauora and Health Research Massey University, Wellington, New Zealand.
| | - Jeroen Douwes
- Research Centre for Hauora and Health Research Massey University, Wellington, New Zealand
| | - Jeroen Burmanje
- Research Centre for Hauora and Health Research Massey University, Wellington, New Zealand
| | - Prachee Gokhale
- Research Centre for Hauora and Health Research Massey University, Wellington, New Zealand
| | - Julian Crane
- School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Philip Pattemore
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Thorsten Stanley
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Jacqueline Keenan
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Collin Brooks
- Research Centre for Hauora and Health Research Massey University, Wellington, New Zealand
| |
Collapse
|
3
|
Gurusamy M, Nasseri S, Rampa DR, Feng H, Lee D, Pekcec A, Doods H, Wu D. Triple-tyrosine kinase inhibition by BIBF1000 attenuates airway and pulmonary arterial remodeling following chronic allergen challenges in mice. Eur J Med Res 2023; 28:71. [PMID: 36755351 PMCID: PMC9909896 DOI: 10.1186/s40001-023-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Airway remodeling is an important pathological feature of chronic airway diseases, which leads to a progressive decline in lung function. The present study examined the anti-remodeling and anti- inflammatory effect of BIBF1000, a triple-tyrosine kinase inhibitor that targets VEGF, PDGF, and FGF receptor signaling in a mouse model of repeated ovalbumin (OVA) challenges. METHODS Female Balb-c mice were immunized intraperitoneally on days 0 and 12 with 50 µg ovalbumin plus 1 mg of Al(OH)3 in 200 μl saline. Intranasal OVA challenges (20 µg/50 µl in PBS) were administered on days 26, 29, and 31, and were repeated twice a week for 3 months. Animals received vehicle or BIBF1000 (25 mg/kg, b.i.d.) through gavage from day 26 to the end of fourth month. On day 120, bronchoalveolar lavage (BAL) and lung tissue were collected for biochemical and immunohistological analysis. RESULTS Compared to vehicle controls, treatment with BIBF1000 reduced the numbers of BAL eosinophils, macrophages, neutrophils, and lymphocytes by 70.0%, 57.9%, 47.5%, and 63.0%, respectively, and reduced IL-5 and IL-13 in BAL. Treatment with BIBF1000 reduced airway mucus secretion, peribronchial fibrosis, small airway, and pulmonary arterial wall thickness, compared to vehicle controls. Furthermore, treatment with BIBF1000 also reduced the expression of inflammatory mediators (TNF-α, IL-1β, IL-5, IL-13, MMP-2, MMP-9, COX-2, and iNOS) and inhibited ERK and AKT phosphorylation. CONCLUSIONS The protective effect afforded by triple-tyrosine kinase inhibition with BIBF1000 in reducing allergen-induced airway and arterial remodeling was associated with down-regulation of inflammatory mediators, as well as inhibition of ERK and AKT signaling pathways.
Collapse
Affiliation(s)
- Malarvizhi Gurusamy
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Saeed Nasseri
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea ,grid.411701.20000 0004 0417 4622Present Address: Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Dileep Reddy Rampa
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea
| | - Huiying Feng
- grid.411545.00000 0004 0470 4320Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea ,grid.410396.90000 0004 0430 4458Department of Research, Mount Sinai Medical Center, Miami Beach, FL USA
| | - Dongwon Lee
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea.
| | - Anton Pekcec
- grid.420061.10000 0001 2171 7500Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Henri Doods
- grid.420061.10000 0001 2171 7500Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dongmei Wu
- Department of Bio-Nanotechnology and Bio-Convergence Engineering, Chonbuk National University, Jeonju, South Korea. .,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
4
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
5
|
Hassoun D, Rose L, Blanc FX, Magnan A, Loirand G, Sauzeau V. Bronchial smooth muscle cell in asthma: where does it fit? BMJ Open Respir Res 2022; 9:9/1/e001351. [PMID: 36109087 PMCID: PMC9478857 DOI: 10.1136/bmjresp-2022-001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-β, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.
Collapse
Affiliation(s)
- Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lindsay Rose
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - François-Xavier Blanc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Magnan
- INRAe, UMR 0892, Hôpital Foch, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines Paris-Saclay, Versailles, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| |
Collapse
|
6
|
Wang X, Xu L, Yu Y, Fu Y. LncRNA RP5-857K21.7 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells through the miR-508-3p/PI3K/AKT/mTOR axis. Autoimmunity 2021; 55:65-73. [PMID: 34913773 DOI: 10.1080/08916934.2021.1998895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The continuous increase in the prevalence of asthma poses a threat to human health. Despites numerous researches, the understanding of asthma development still remain elusive, hindering the development of effective treatment. Here, we explored the role of lncRNA RP5-857K21.7 (RP5-857K21.7) in the development of asthma and its potential molecular mechanism of regulation. Airway smooth muscle cells (ASMCs) were isolated and cultured after which some of the cells were induced with PDGF-BB to build an asthma cell model, and then, qRT-PCR analysis was used to measure the expression level of RP5-857K21.7 in the cell model. Result shows that the RP5-857K21.7 is significantly downregulated in PDGF-BB-induced ASMCs cells. Through CCK-8, transwell, and flow cytometry assay, we examined the functional impact of RP5-857K21.7 on the proliferation, migration, and apoptosis of the ASMCs, respectively, and found that the overexpression of RP5-857K21.7 markedly inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. Bioinformatics analysis predicted that the RP5-857K21.7 could sponge miR-508-3p and result was validated through a dual-luciferase reporter assay, biotinylated RNA pull-down assay, and RIP-qRT-PCR analysis. Mechanistically, RP5-857K21.7 regulates the PI3K/AKT/mTOR pathway by endogenously sponging miR-508-3p to inhibit PDGF-BB-induced ASMCs cell proliferation, migration and induce apoptosis. The current research suggests that the RP5-857K21.7 and its associated molecular pathway (miR-508-3p/PI3K/AKT/mTOR axis) might be a useful therapeutic target for the treatment of asthma disease.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| | - Lingfen Xu
- Department of General Medicine, Qinghai Province People's Hospital, Xining, China
| | - Yong Yu
- Urinary surgery, Qinghai Province People's Hospital, Xining, China
| | - Yimin Fu
- Department of Geratology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
7
|
Li C, Deng C, Zhou T, Hu J, Dai B, Yi F, Tian N, Jiang L, Dong X, Zhu Q, Zhang S, Cui H, Cao L, Shang Y. MicroRNA-370 carried by M2 macrophage-derived exosomes alleviates asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Int J Biol Sci 2021; 17:1795-1807. [PMID: 33994863 PMCID: PMC8120458 DOI: 10.7150/ijbs.59715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence has suggested the functions of exosomes in allergic diseases including asthma. By using a mouse model with asthma induced by ovalbumin (OVA), we explored the roles of M2 macrophage-derived exosomes (M2Φ-Exos) in asthma progression. M2Φ-Exos significantly alleviated OVA-induced fibrosis and inflammatory responses in mouse lung tissues, as well as inhibited abnormal proliferation, invasion, and fibrosis-related protein production in platelet derived growth factor (PDGF-BB) treated primary mouse airway smooth muscle cells (ASMCs). The OVA administration in mice or the PDGF-BB treatment in ASMCs reduced the expression of miR-370, which was detected in M2Φ-Exos by miRNA sequencing. However, treating the mice or ASMCs with M2Φ-Exos reversed the inhibitory effect of OVA or PDGF-BB on miR-370 expression. We identified that the target of miR-370 was fibroblast growth factor 1 (FGF1). Downregulation of miR-370 by Lv-miR-370 inhibitor or overexpression of FGF1 by Lv-FGF1 blocked the protective roles of M2Φ-Exos in asthma-like mouse and cell models. M2Φ-Exos were found to inactivate the MAPK signaling pathway, which was recovered by miR-370 inhibition or FGF1 overexpression. Collectively, we conclude that M2Φ-Exos carry miR-370 to alleviate asthma progression through downregulating FGF1 expression and the MAPK/STAT1 signaling pathway. Our study may offer a novel insight into asthma treatment.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chengsi Deng
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Tingting Zhou
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fei Yi
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Na Tian
- Jilin Tuohua Biotechnology Co., Ltd. Changchun, Jilin 13000, China
| | - Lijun Jiang
- Jilin Tuohua Biotechnology Co., Ltd. Changchun, Jilin 13000, China
| | - Xiang Dong
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Qingfeng Zhu
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Siyi Zhang
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Hongyan Cui
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Liu Cao
- College of Basic Medicine Science, China Medical University, Shenyang 110122, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
8
|
Li C, Dai B, Hu J, Shang Y. WITHDRAWN: M2 macrophage-derived exosomes carry microRNA-370 to alleviate asthma progression through inhibiting the FGF1/MAPK/STAT1 axis. Exp Cell Res 2020:112285. [PMID: 32941809 DOI: 10.1016/j.yexcr.2020.112285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, P.R. China
| |
Collapse
|
9
|
Kardas G, Daszyńska-Kardas A, Marynowski M, Brząkalska O, Kuna P, Panek M. Role of Platelet-Derived Growth Factor (PDGF) in Asthma as an Immunoregulatory Factor Mediating Airway Remodeling and Possible Pharmacological Target. Front Pharmacol 2020; 11:47. [PMID: 32116722 PMCID: PMC7033439 DOI: 10.3389/fphar.2020.00047] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Asthma is a chronic and heterogenic disease of the respiratory system, one of the most common lung diseases worldwide. The underlying pathologies, which are chronic inflammatory process and airway remodeling (AR), are mediated by numerous cells and cytokines. Particularly interesting in this field is the platelet-derived growth factor (PDGF), one of the members of the human growth factor family. In this article, the authors analyze the available data on the role of PDGF in asthma in experimental models and in human research. PDGF is expressed in airway by various cells contributing to asthma pathogenesis—mast cells, eosinophils, and airway epithelial cells. Research confirms the thesis that this factor is also secreted by these cells in the course of asthma. The main effects of PDGF on bronchi are the proliferation of airway smooth muscle (ASM) cells, migration of ASM cells into the epithelium and enhanced collagen synthesis by lung fibroblasts. The importance of AR in asthma is well recognized and new therapies should also aim to manage it, possibly targeting PDGFRs. Further studies on new and already existing drugs, mediating the PDGF signaling and related to asthma are necessary. Several promising drugs from the tyrosine kinase inhibitors group, including nilotinib, imatinib masitinib, and sunitinib, are currently being clinically tested and other molecules are likely to emerge in this field.
Collapse
Affiliation(s)
- Grzegorz Kardas
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | | | - Mateusz Marynowski
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | - Oliwia Brząkalska
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | - Piotr Kuna
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| | - Michał Panek
- Clinic of Internal Diseases, Asthma and Allergy, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
10
|
Lin L, Li Q, Hao W, Zhang Y, Zhao L, Han W. Upregulation of LncRNA Malat1 Induced Proliferation and Migration of Airway Smooth Muscle Cells via miR-150-eIF4E/Akt Signaling. Front Physiol 2019; 10:1337. [PMID: 31695627 PMCID: PMC6817469 DOI: 10.3389/fphys.2019.01337] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023] Open
Abstract
The increased proliferation and migration of airway smooth muscle cells (ASMCs) are critical processes in the formation of airway remodeling in asthma. Long non-coding RNAs (lncRNAs) have emerged as key mediators of diverse physiological and pathological processes, and are involved in the pathogenesis of various diseases, including asthma. LncRNA Malat1 has been widely reported to regulate the proliferation and migration of multiple cell types and be involved in the pathogenesis of various human diseases. However, it remains unknown whether Malat1 regulates ASMC proliferation and migration. Here, we explored the function of Malat1 in ASMC proliferation and migration in vitro stimulated by platelet-derived growth factor BB (PDGF-BB), and the underlying molecular mechanism involved. The results showed that Malat1 was significantly upregulated in ASMCs treated with PDGF-BB, and knockdown of Malat1 effectively inhibited ASMC proliferation and migration induced by PDGF-BB. Our data also showed that miR-150 was a target of Malat1 in ASMCs, and inhibited PDGF-BB-induced ASMC proliferation and migration, whereas the inhibition effect was effectively reversed by Malat1 overexpression. Additionally, translation initiation factor 4E (eIF4E), an important regulator of Akt signaling, was identified to be a target of miR-150, and both eIF4E knockdown and Akt inhibitor GSK690693 inhibited PDGF-BB-induced ASMC proliferation and migration. Collectively, these data indicate that Malat1, as a competing endogenous RNA (ceRNA) for miR-150, derepresses eIF4E expression and activates Akt signaling, thereby being involved in PDGF-BB-induced ASMC proliferation and migration. These findings suggest that Malat1 knockdown may present a new target to limit airway remodeling in asthma.
Collapse
Affiliation(s)
- Li Lin
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Qinghai Li
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wanming Hao
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Yu Zhang
- Department of Ophthalmology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Long Zhao
- Department of Clinical Laboratory, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Wei Han
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
12
|
TRIM37 inhibits PDGF-BB-induced proliferation and migration of airway smooth muscle cells. Biomed Pharmacother 2018; 101:24-29. [PMID: 29477054 DOI: 10.1016/j.biopha.2018.02.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
Tripartite motif 37 (TRIM37) belongs to the TRIM family of proteins and has been reported to be involved in the progression of asthma. However, the effects of TRIM37 on airway smooth muscle cells (ASMCs) proliferation and migration are still unknown. This study aimed to investigate the effects of TRIM37 on cell proliferation and migration in platelet-derived growth factor BB (PDGF-BB)-stimulated ASMCs, and the potential molecular mechanisms was also explored. Our data demonstrated that the expression of TRIM37 was significantly decreased in ASMCs stimulated with PDGF-BB. In addition, overexpression of TRIM37 efficiently suppressed PDGF-BB-induced ASMCs proliferation and migration. Furthermore, overexpression of TRIM37 obviously inhibited the protein expression levels of β-catenin, c-Myc and cyclinD1 in PDGF-BB-stimulated ASMCs. The Wnt/β-catenin pathway activator LiCl significantly reversed the inhibitory effects of TRIM37 on cell proliferation and migration in PDGF-BB-stimulated ASMCs. Taken together, these results demonstrate that TRIM37 inhibits the proliferation and invasion of ASMCs cultured with PDGF-BB through suppressing the Wnt/β-catenin signaling pathway.
Collapse
|
13
|
Panariti A, Baglole CJ, Sanchez V, Eidelman DH, Hussain S, Olivenstein R, Martin JG, Hamid Q. Interleukin-17A and vascular remodelling in severe asthma; lack of evidence for a direct role. Clin Exp Allergy 2018; 48:365-378. [PMID: 29337379 DOI: 10.1111/cea.13093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Bronchial vascular remodelling may contribute to the severity of airway narrowing through mucosal congestion. Interleukin (IL)-17A is associated with the most severe asthmatic phenotype but whether it might contribute to vascular remodelling is uncertain. OBJECTIVE To assess vascular remodelling in severe asthma and whether IL-17A directly or indirectly may cause endothelial cell activation and angiogenesis. METHODS Bronchial vascularization was quantified in asthmatic subjects, COPD and healthy subjects together with the number of IL-17A+ cells as well as the concentration of angiogenic factors in the sputum. The effect of IL-17A on in vitro angiogenesis, cell migration and endothelial permeability was assessed directly on primary human lung microvascular endothelial cells (HMVEC-L) or indirectly with conditioned medium derived from normal bronchial epithelial cells (NHBEC), fibroblasts (NHBF) and airway smooth muscle cells (ASMC) after IL-17A stimulation. RESULTS Severe asthmatics have increased vascularity compared to the other groups, which correlates positively with the concentrations of angiogenic factors in sputum. Interestingly, we demonstrated that increased bronchial vascularity correlates positively with the number of subepithelial IL-17A+ cells. However IL-17A had no direct effect on HMVEC-L function but it enhanced endothelial tube formation and cell migration through the production of angiogenic factors by NHBE and ASMC. CONCLUSIONS & CLINICAL RELEVANCE Our results shed light on the role of IL-17A in vascular remodelling, most likely through stimulating the synthesis of other angiogenic factors. Knowledge of these pathways may aid in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- A Panariti
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - C J Baglole
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - V Sanchez
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - D H Eidelman
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - S Hussain
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - R Olivenstein
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - J G Martin
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| | - Q Hamid
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, QC, Canada
| |
Collapse
|
14
|
Yu Z, Wang Y, Qin L, Chen H. Functional Cooperation between KCa3.1 and TRPV4 Channels in Bronchial Smooth Muscle Cell Proliferation Associated with Chronic Asthma. Front Pharmacol 2017; 8:559. [PMID: 28970794 PMCID: PMC5609593 DOI: 10.3389/fphar.2017.00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/08/2017] [Indexed: 12/12/2022] Open
Abstract
Airway smooth muscle cells (SMC) proliferation contributes to the airways remodeling and irreversible airway obstruction during severe asthma, but the mechanisms of airway SMC proliferation are poorly understood. Intracellular Ca2+ levels play an important role in regulating cell proliferation. We have previously reported KCa3.1 channels regulated human bronchial smooth muscle (HBSM) cells proliferation via the Ca2+ influx as a consequence of membrane hyperpolarization. However, the role of potassium channels KCa3.1 in airway remodeling as well as the mechanism for extracellular Ca2+ influx induced by the activation of KCa3.1 remains unknown. Here we demonstrated that KCa3.1 channels deficiency attenuated airway remodeling, airway inflammation, and airway hyperresponsiveness (AHR) in a mouse model of chronic asthma. The gene expressions of repressor element 1-silencing transcription factor (REST) and c-Jun, two transcriptional regulators of KCa3.1 channels, were correlated negatively or positively with KCa3.1 channels expressions both in vivo and in vitro using real-time PCR and Western blot analyses. RNAi-mediated knockdown or pharmacological blockade of KCa3.1 and TRPV4 significantly attenuated HBSM cells proliferation. Using confocal imaging and custom data analysis software, blockade of TRPV4 decreased the Ca2+ influx induced by 1-EBIO-mediated KCa3.1 activation. Double-labeled staining showed that KCa3.1 and TRPV4 channels colocalized in HBSM cells. These results demonstrate that KCa3.1 channels regulate the proliferation phenotype of HBSM cells via TRPV4 channels in the process of chronic asthma, making it a potential therapeutic target to treat chronic asthma.
Collapse
Affiliation(s)
- Zhihua Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yanxia Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Lu Qin
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
15
|
Lee HY, Min KH, Lee SM, Lee JE, Rhee CK. Clinical significance of serum vascular endothelial growth factor in young male asthma patients. Korean J Intern Med 2017; 32:295-301. [PMID: 26996348 PMCID: PMC5339454 DOI: 10.3904/kjim.2014.242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 04/04/2015] [Accepted: 05/22/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. However, little is known about the potential use of serum levels of VEGF as a biomarker for asthma. We investigated the differences in VEGF levels among normal controls, stable asthma patients, and those with exacerbation of acute asthma. All subjects were young males. METHODS We measured VEGF levels in each patient group, and examined any serial changes in those with acute exacerbation. RESULTS VEGF levels were significantly higher in stable asthmatic patients and even more so in acute asthmatic patients, compared to healthy controls. However, there was no correlation between VEGF levels and forced expiratory volume in 1 second in patients with stable asthma. In addition, there were no correlations between VEGF levels and asthma control test scores. In patients with acute exacerbation, VEGF levels significantly increased during the acute period; their levels decreased gradually at 7 and 14 days after treatment. CONCLUSIONS Compared to normal control patients, the serum levels of VEGF were elevated in stable asthma patients and even more elevated in patients with acute exacerbation. However, the role of VEGF as a biomarker in stable asthma is limited. In patients with acute exacerbation, VEGF levels were associated with clinical improvements.
Collapse
Affiliation(s)
- Hea Yon Lee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyung Hoon Min
- Division of Respiratory Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Sang Min Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Ji Eun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Armed Forces Capital Hospital, Seongnam, Korea
| | - Chin Kook Rhee
- Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
- Correspondence to Chin Kook Rhee, M.D. Division of Allergy and Pulmonary Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea Tel: +82-2-2258-6067 Fax: +82-2-599-3589 E-mail:
| |
Collapse
|
16
|
Kim JH. Serum vascular endothelial growth factor as a marker of asthma exacerbation. Korean J Intern Med 2017; 32:258-260. [PMID: 28264541 PMCID: PMC5339477 DOI: 10.3904/kjim.2017.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Joo-Hee Kim
- Correspondence to Joo-Hee Kim, M.D. Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, 22 Gwanpyeong-ro 170beon-gil, Dongan-gu, Anyang 14068, Korea Tel: +82-31-380-3719 Fax: +82-31-380-3973 E-mail:
| |
Collapse
|
17
|
Abstract
Tremendous efforts have been invested in research to (1) discover risk factors, biomarkers, and clinical characteristics; (2) understand the pathophysiology and treatment response variability in severe asthma; and (3) design new therapies. However, to combat severe asthma, many questions concerning the pathogenesis of severe asthma, including its natural history, genetic and environmental risk factors, and disease mechanisms, must be answered. In this article we highlight some of the major discoveries concerning the pathogenesis of severe asthma and its therapeutic development. We conclude that discoveries on numerous fronts of severe asthma, from disease heterogeneity, features of airway remodeling, cytokine mediators and signaling pathways underlying disease pathogenesis, disease mechanisms, potential biomarkers, to new therapeutic targets, demonstrate that progress has been made in understanding and developing more effective treatments for this difficult-to-treat disease.
Collapse
|
18
|
Zhang R, Dong H, Zhao H, Zhou L, Zou F, Cai S. 1,25-Dihydroxyvitamin D 3 targeting VEGF pathway alleviates house dust mite (HDM)-induced airway epithelial barrier dysfunction. Cell Immunol 2016; 312:15-24. [PMID: 27884393 DOI: 10.1016/j.cellimm.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/12/2016] [Accepted: 11/06/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND In our previous studies, we have indentified that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) can alleviate toluene diisocyanate-induced airway epithelial barrier disruption and we also found that vascular endothelial growth factor (VEGF) derived from airway epithelials cells could disrupt epithelial barrier. OBJECTIVE The study aimed to investigate whether 1,25(OH)2D3 can inhibit house dust mite (HDM) induced airway epithelial barrier dysfunction by regulating the VEGF pathway. METHOD The 16HBE and BEAS-2B cells were cultured and treated according to the experiment requirement. Trans Epithelial Electric Resistance (TEER), permeability of epithelial layer, and distribution and expression of junction proteins were used to evaluate the cell layer barrier function, Western Blot was used to evaluate the expression of junction proteins and phosphorylated Akt in the cells, RT-PCR and ELISA were used to evaluate the VEGF gene expression and protein release in the cells. Recombinant VEGF165 was used to determine the role of the VEGF pathway in the epithelial barrier function. RESULTS HDM resulted in a decline in TEER and increase of cell permeability, following abnormal distribution and expression of junction proteins (E-Cadherin and zona occludens (ZO)-1), accompanied by a significant upregulation of VEGF and phosphorylated Akt, which were all partly recovered by treatment with either 1,25(OH)2D3 or PI3K inhibitor LY294002. VEGF165-induced barrier dysfunction was accompanied by disruption of the epithelial E-cadherin and β-catenin, pretreatment of 1,25(OH)2D3 and LY294002 markedly attenuated VEGF-induced airway barrier disruption in 16HBE cells. CONCLUSION 1,25(OH)2D3 can alleviate HDM-induced airway epithelial barrier dysfunction by inhibiting PI3K pathway-dependent VEGF release.
Collapse
Affiliation(s)
- Ruhui Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liqin Zhou
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fei Zou
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Zha W, Su M, Huang M, Cai J, Du Q. Administration of Pigment Epithelium-Derived Factor Inhibits Airway Inflammation and Remodeling in Chronic OVA-Induced Mice via VEGF Suppression. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:161-9. [PMID: 26739410 PMCID: PMC4713880 DOI: 10.4168/aair.2016.8.2.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/16/2022]
Abstract
Purpose Pigment epithelium-derived factor (PEDF) is a recently discovered antiangiogenesis protein. PEDF possesses powerful anti-inflammatory, antioxidative, antiangiogenic, and antifibrosis properties. It has been reported that PEDF can regulate vascular endothelial growth factor (VEGF) expression. This study aimed to evaluate whether recombinant PEDF protein could attenuate allergic airway inflammation and airway remodeling via the negative regulation of VEGF using a murine model of chronic ovalbumin (OVA)-induced asthma and BEAS-2B human bronchial epithelial cells. Methods In an in vivo experiment, mice sensitized with OVA were chronically airway challenged with aerosolized 1% OVA solution for 8 weeks. Treated mice were given injections of recombinant PEDF protein (50 or 100 µg/kg body weight) via the tail vein. In an in vitro experiment, we investigated the effects of recombinant PEDF protein on VEGF release levels in BEAS-2B cells stimulated with IL-1β. Results Recombinant PEDF protein significantly inhibited eosinophilic airway inflammation, airway hyperresponsiveness, and airway remodeling, including goblet cell hyperplasia, subepithelial collagen deposition, and airway smooth muscle hypertrophy. In addition, recombinant PEDF protein suppressed the enhanced expression of VEGF protein in lung tissue and bronchoalveolar lavage fluid (BALF) in OVA-challenged chronically allergic mice. In the in vitro experiment, VEGF expression was increased after IL-1β stimulation. Pretreatment with 50 and 100 ng/mL of recombinant PEDF protein significantly attenuated the increase in VEGF release levels in a concentration-dependent manner in BEAS-2B cells stimulated by IL-1β. Conclusions These results suggest that recombinant PEDF protein may abolish the development of characteristic features of chronic allergic asthma via VEGF suppression, providing a potential treatment option for chronic airway inflammation diseases such as asthma.
Collapse
Affiliation(s)
- Wangjian Zha
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mei Su
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiankang Cai
- Department of Respiratory Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Du
- Department of Respiratory Medicine, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Pérez-Losada M, Castro-Nallar E, Bendall ML, Freishtat RJ, Crandall KA. Dual Transcriptomic Profiling of Host and Microbiota during Health and Disease in Pediatric Asthma. PLoS One 2015; 10:e0131819. [PMID: 26125632 PMCID: PMC4488395 DOI: 10.1371/journal.pone.0131819] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/07/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND High-throughput sequencing (HTS) analysis of microbial communities from the respiratory airways has heavily relied on the 16S rRNA gene. Given the intrinsic limitations of this approach, airway microbiome research has focused on assessing bacterial composition during health and disease, and its variation in relation to clinical and environmental factors, or other microbiomes. Consequently, very little effort has been dedicated to describing the functional characteristics of the airway microbiota and even less to explore the microbe-host interactions. Here we present a simultaneous assessment of microbiome and host functional diversity and host-microbe interactions from the same RNA-seq experiment, while accounting for variation in clinical metadata. METHODS Transcriptomic (host) and metatranscriptomic (microbiota) sequences from the nasal epithelium of 8 asthmatics and 6 healthy controls were separated in silico and mapped to available human and NCBI-NR protein reference databases. Human genes differentially expressed in asthmatics and controls were then used to infer upstream regulators involved in immune and inflammatory responses. Concomitantly, microbial genes were mapped to metabolic databases (COG, SEED, and KEGG) to infer microbial functions differentially expressed in asthmatics and controls. Finally, multivariate analysis was applied to find associations between microbiome characteristics and host upstream regulators while accounting for clinical variation. RESULTS AND DISCUSSION Our study showed significant differences in the metabolism of microbiomes from asthmatic and non-asthmatic children for up to 25% of the functional properties tested. Enrichment analysis of 499 differentially expressed host genes for inflammatory and immune responses revealed 43 upstream regulators differentially activated in asthma. Microbial adhesion (virulence) and Proteobacteria abundance were significantly associated with variation in the expression of the upstream regulator IL1A; suggesting that microbiome characteristics modulate host inflammatory and immune systems during asthma.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, United States of America
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
- Universidad Andrés Bello, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Santiago, Chile
| | - Matthew L. Bendall
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
| | - Robert J. Freishtat
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Keith A. Crandall
- Computational Biology Institute, George Washington University, Ashburn, Virginia, United States of America
| |
Collapse
|
21
|
Jang YY, Lee HS, Jeong JE, Lee EJ, Hong SJ, Park HJ, Lee KH, Kim W, Chung HL. Clinical significance of increased vascular endothelial growth factor, transforming growth factor-beta1, and YKL-40 in the serum of children with asthma. ALLERGY ASTHMA & RESPIRATORY DISEASE 2015. [DOI: 10.4168/aard.2015.3.6.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoon Young Jang
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hyun Seok Lee
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Ji Eun Jeong
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Suk Jin Hong
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hye Jin Park
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Kye Hyang Lee
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Wootaek Kim
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Hai Lee Chung
- Department of Pediatrics, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|