1
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
2
|
Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol 2022; 10:942750. [PMID: 36507264 PMCID: PMC9732032 DOI: 10.3389/fbioe.2022.942750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Paulo N. Martins
- Department of Surgery, Transplant Division, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, United States
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Basak E. Uygun
- Massachusetts General Hospital, Shriners Hospitals for Children in Boston and Harvard Medical School, Boston, MA, United States
| | - Vijay S. Gorantla
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
3
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:cells11050826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
- Correspondence: (V.M.); (A.B.); Tel.: +39-091-21-92-430 (V.M.); +39-091-21-92-111 (A.B.)
| |
Collapse
|
4
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Zheng D, Huo M, Li B, Wang W, Piao H, Wang Y, Zhu Z, Li D, Wang T, Liu K. The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:616161. [PMID: 33511124 PMCID: PMC7835482 DOI: 10.3389/fcell.2020.616161] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles (30–150 nm in diameter) enclosed by a lipid membrane bilayer, secreted by most cells in the body. They carry various molecules, including proteins, lipids, mRNA, and other RNA species, such as long non-coding RNA, circular RNA, and microRNA (miRNA). miRNAs are the most numerous cargo molecules in the exosome. They are endogenous non-coding RNA molecules, approximately 19–22-nt-long, and important regulators of protein biosynthesis. Exosomes can be taken up by neighboring or distant cells, where they play a role in post-transcriptional regulation of gene expression by targeting mRNA. Exosomal miRNAs have diverse functions, such as participation in inflammatory reactions, cell migration, proliferation, apoptosis, autophagy, and epithelial–mesenchymal transition. There is increasing evidence that exosomal miRNAs play an important role in cardiovascular health. Exosomal miRNAs are widely involved in the occurrence and development of cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, heart failure (HF), myocardial ischemia reperfusion injury, and pulmonary hypertension. In this review, we present a systematic overview of the research progress into the role of exosomal miRNAs in cardiovascular diseases, and present new ideas for the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ming Huo
- Department of Day Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Tiance Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Oliva J. Therapeutic Properties of Mesenchymal Stem Cell on Organ Ischemia-Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20215511. [PMID: 31694240 PMCID: PMC6862572 DOI: 10.3390/ijms20215511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022] Open
Abstract
The shortage of donor organs is a major global concern. Organ failure requires the transplantation of functional organs. Donor’s organs are preserved for variable periods of warm and cold ischemia time, which requires placing them into a preservation device. Ischemia and reperfusion damage the organs, due to the lack of oxygen during the ischemia step, as well as the oxidative stress during the reperfusion step. Different methodologies are developed to prevent or to diminish the level of injuries. Preservation solutions were first developed to maximize cold static preservation, which includes the addition of several chemical compounds. The next chapter of organ preservation comes with the perfusion machine, where mechanical devices provide continuous flow and oxygenation ex vivo to the organs being preserved. In the addition of inhibitors of mitogen-activated protein kinase and inhibitors of the proteasome, mesenchymal stem cells began being used 13 years ago to prevent or diminish the organ’s injuries. Mesenchymal stem cells (e.g., bone marrow stem cells, adipose derived stem cells and umbilical cord stem cells) have proven to be powerful tools in repairing damaged organs. This review will focus upon the use of some bone marrow stem cells, adipose-derived stem cells and umbilical cord stem cells on preventing or decreasing the injuries due to ischemia-reperfusion.
Collapse
Affiliation(s)
- Joan Oliva
- Emmaus Medical, Inc., 21250 Hawthorne Blvd, Suite 800, Torrance, CA 90503, USA
| |
Collapse
|
7
|
Kshitiz, Ellison DD, Suhail Y, Afzal J, Woo L, Kilic O, Spees J, Levchenko A. Dynamic secretome of bone marrow-derived stromal cells reveals a cardioprotective biochemical cocktail. Proc Natl Acad Sci U S A 2019; 116:14374-14383. [PMID: 31239339 PMCID: PMC6628676 DOI: 10.1073/pnas.1902598116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transplanted stromal cells have demonstrated considerable promise as therapeutic agents in diverse disease settings. Paracrine signaling can be an important mediator of these therapeutic effects at the sites of acute or persistent injury and inflammation. As many stromal cell types, including bone marrow-derived stromal cells (BMSCs), display tissue-specific responses, there is a need to explore their secretory dynamics in the context of tissue and injury type. Paracrine signals are not static, and could encode contextual dynamics in the kinetic changes of the concentrations of the secreted ligands. However, precise measurement of dynamic and context-specific cellular secretory signatures, particularly in adherent cells, remains challenging. Here, by creating an experimental and computational analysis platform, we reconstructed dynamic secretory signatures of cells based on a very limited number of time points. By using this approach, we demonstrate that the secretory signatures of CD133-positive BMSCs are uniquely defined by distinct biological contexts, including signals from injured cardiac cells undergoing oxidative stress, characteristic of cardiac infarction. Furthermore, we show that the mixture of recombinant factors reproducing the dynamics of BMSC-generated secretion can mediate a highly effective rescue of cells injured by oxidative stress and an improved cardiac output. These results support the importance of the dynamic multifactorial paracrine signals in mediating remedial effects of stromal stem cells, and pave the way for stem cell-inspired cell-free treatments of cardiac and other injuries.
Collapse
Affiliation(s)
- Kshitiz
- Yale Institute of Systems Biology, Yale University, West Haven, CT 06516;
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030
| | - David D Ellison
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030
| | - Junaid Afzal
- Department of Cardiology, University of California, San Francisco, CA 94115
| | - Laura Woo
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205
| | - Onur Kilic
- Yale Institute of Systems Biology, Yale University, West Haven, CT 06516
| | - Jeffrey Spees
- Department of Cellular Molecular and Biomedical Sciences, University of Vermont, Burlington, VT 05405
| | - Andre Levchenko
- Yale Institute of Systems Biology, Yale University, West Haven, CT 06516;
| |
Collapse
|
8
|
Wolf DA, Beeson W, Rachel JD, Keller GS, Hanke CW, Waibel J, Leavitt M, Sacopulos M. Mesothelial Stem Cells and Stromal Vascular Fraction for Skin Rejuvenation. Facial Plast Surg Clin North Am 2018; 26:513-532. [PMID: 30213431 DOI: 10.1016/j.fsc.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The use of stem cells in regenerative medicine and specifically facial rejuvenation is thought provoking and controversial. Today there is increased emphasis on tissue engineering and regenerative medicine, which translates into a need for a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue is currently recognized as an accessible and abundant source for adult stem cells. Cellular therapies and tissue engineering are still in their infancy, and additional basic science and preclinical studies are needed before cosmetic and reconstructive surgical applications can be routinely undertaken and satisfactory levels of patient safety achieved.
Collapse
Affiliation(s)
- David A Wolf
- Johnson Space Center, Houston, TX, USA; EarthTomorrow, Inc, 1714 Neptune Lane, Houston, TX 77062, USA; Purdue University, West Lafayette, IN, USA
| | - William Beeson
- Facial Plastics, Indianapolis, IN, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | - Gregory S Keller
- Facial Plastics, Santa Barbara, CA, USA; Facial Plastics, Los Angeles, CA, USA
| | - C William Hanke
- Dermatology, Indianapolis, IN, USA; Laser and Skin Center of Indiana, 13400 North Meridian Street, Suite 290, Carmel, IN 46032, USA; ACGME Micrographic Surgery, Dermatologic Oncology Fellowship Training Program, St. Vincent Hospital, Indianapolis, IN, USA; University of Iowa-Carver College of Medicine, Iowa City, IA, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jill Waibel
- Dermatology, Miami Dermatology and Laser Institute, 7800 Southwest 87th Avenue, Suite B200, Miami, FL 33173, USA; Baptist Hospital of Miami, Miami, FL, USA; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Matt Leavitt
- Dermatology, Orlando, FL, USA; Advanced Dermatology and Cosmetic Surgery, The Hair Foundation, 260 Lookout Place Suite 103, Maitland, FL 32751, USA; University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827, USA; Nova Southeastern University, 4850 Millenium Boulevard, Orlando, FL 32839, USA
| | - Michael Sacopulos
- Medical Risk Management, Medical Risk Institute, 676 Ohio Street, Terre Haute, IN 47807, USA
| |
Collapse
|
9
|
Wang X, Wang S, Zhou Y, Obulkasim H, Zhang ZH, Dai B, Zhu W, Shi XL. BM‑MSCs protect against liver ischemia/reperfusion injury via HO‑1 mediated autophagy. Mol Med Rep 2018; 18:2253-2262. [PMID: 29956785 DOI: 10.3892/mmr.2018.9207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is considered to be a contributing factor in liver injury following major hepatic resection or liver transplantation. Bone marrow mesenchymal stem cells (BM‑MSCs) have the potential to protect against liver I/R injury; however, the precise mechanisms have not been completely elucidated. Autophagy serves an important role in protecting against various injuries, including I/R injury. The present study aimed to determine the role of autophagy and its potential regulatory mechanism in BM‑MSC‑mediated protection against liver I/R injury in rats. The results demonstrated that BM‑MSCs mitigated I/R injury and enhanced autophagy in vivo. In addition, inhibition of autophagy by 3‑methyladenine reversed the positive effects of BM‑MSCs. Furthermore, heme oxygenase‑1 (HO‑1) expression was promoted by BM‑MSCs. Using zinc protoporphyrin IX to inhibit HO‑1 demonstrated that HO‑1 was important for the promotion of autophagy. In conclusion, the present study revealed that BM‑MSCs protected against liver I/R injury via the promotion of HO‑1‑mediated autophagy.
Collapse
Affiliation(s)
- Xun Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Halmurat Obulkasim
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhi-Heng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
10
|
Yabuki H, Wakao S, Kushida Y, Dezawa M, Okada Y. Human Multilineage-differentiating Stress-Enduring Cells Exert Pleiotropic Effects to Ameliorate Acute Lung Ischemia-Reperfusion Injury in a Rat Model. Cell Transplant 2018; 27:979-993. [PMID: 29707971 PMCID: PMC6050908 DOI: 10.1177/0963689718761657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022] Open
Abstract
Posttransplantation lung ischemia-reperfusion (IR) injuries affect both patient survival and graft function. In this study, we evaluated the protective effects of infused human multilineage-differentiating stress-enduring (Muse) cells, a novel, easily harvested type of nontumorigenic endogenous reparative stem cell, against acute IR lung injury in a rat model. After a 2-h warm IR injury induction in a left rat lung, human Muse cells, human mesenchymal stem cells (MSCs), and vehicle were injected via the left pulmonary artery after reperfusion. Functionality, histological findings, and protein expression were subsequently assessed in the injured lung. In vitro, we also compared human Muse cells with human MSCs in terms of migration abilities and the secretory properties of protective substances. The arterial oxygen partial pressure to fractional inspired oxygen ratio, alveolar-arterial oxygen gradient, left lung compliance, and histological injury score on hematoxylin-eosin sections were significantly better in the Muse group relative to the MSC and vehicle groups. Compared to MSCs, human Muse cells homed more efficiently to the injured lung, where they suppressed the apoptosis and stimulated proliferation of host alveolar cells. Human Muse cells also migrated to serum from lung-injured model rats and produced beneficial substances (keratinocyte growth factor [KGF], hepatocyte growth factor, angiopoietin-1, and prostaglandin E2) in vitro. Western blot of lung tissue confirmed high expression of KGF and their target molecules (interleukin-6, protein kinase B, and B-cell lymphoma-2) in the Muse group. Thus, Muse cells efficiently ameliorated lung IR injury via pleiotropic effects in a rat model. These findings support further investigation on the use of human Muse cells for lung IR injury.
Collapse
Affiliation(s)
- Hiroshi Yabuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer,
Tohoku University, Sendai, Miyagi, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate
School of Medicine, Sendai, Miyagi, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate
School of Medicine, Sendai, Miyagi, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate
School of Medicine, Sendai, Miyagi, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer,
Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
11
|
Abstract
Primary graft dysfunction is a form of acute injury after lung transplantation that is associated with significant short- and long-term morbidity and mortality. Multiple mechanisms contribute to the pathogenesis of primary graft dysfunction, including ischemia reperfusion injury, epithelial cell death, endothelial cell dysfunction, innate immune activation, oxidative stress, and release of inflammatory cytokines and chemokines. This article reviews the epidemiology, pathogenesis, risk factors, prevention, and treatment of primary graft dysfunction.
Collapse
Affiliation(s)
- Mary K Porteous
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA.
| | - James C Lee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Lungs are extremely susceptible to injury, and despite advances in surgical management and immunosuppression, outcomes for lung transplantation are the worst of any solid organ transplant. The success of lung transplantation is limited by high rates of primary graft dysfunction because of ischemia-reperfusion injury characterized by robust inflammation, alveolar damage, and vascular permeability. This review will summarize major mechanisms of lung ischemia-reperfusion injury with a focus on the most recent findings in this area. RECENT FINDINGS Over the past 18 months, numerous studies have described strategies to limit lung ischemia-reperfusion injury in experimental settings, which often reveal mechanistic insight. Many of these strategies involved the use of various antioxidants, anti-inflammatory agents, mesenchymal stem cells, and ventilation with gaseous molecules. Further advancements have been achieved in understanding mechanisms of innate immune cell activation, neutrophil infiltration, endothelial barrier dysfunction, and oxidative stress responses. SUMMARY Methods for prevention of primary graft dysfunction after lung transplant are urgently needed, and understanding mechanisms of ischemia-reperfusion injury is critical for the development of novel and effective therapeutic approaches. In doing so, both acute and chronic outcomes of lung transplant recipients will be significantly improved.
Collapse
|
13
|
Wu X, Yan T, Wang Z, Wu X, Cao G, Zhang C, Tian X, Wang J. Micro-vesicles derived from human Wharton's Jelly mesenchymal stromal cells mitigate renal ischemia-reperfusion injury in rats after cardiac death renal transplantation. J Cell Biochem 2017; 119:1879-1888. [PMID: 28815768 DOI: 10.1002/jcb.26348] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
The purpose of the present study was to investigate the possible therapeutic effects of the human Wharton-Jelly mesenchymal stromal cells derived micro-vesicles (hWJMSCs-MVs) on renal ischemia-reperfusion injury (IRI) after cardiac death (CD) renal transplantation in rats. MVs were injected intravenously in rats immediately after renal transplantation. The animals were sacrificed at 24 h, 48 h, 1 and 2 weeks post-transplantation. ELISA was used to determine the von Willebrand Factor (vWF), tumor necrosis factor (TNF)-α, and interleukin (IL)-10 levels in the serum. Tubular cell proliferation and apoptosis were identified by Ki67 immunostaining and TUNEL assay. Renal fibrosis was assessed by Masson's tri-chrome straining and alpha-smooth muscle actin (α-SMA) staining. The infiltration of inflammatory cells was detected by CD68+ staining. The transforming growth factor (TGF)-β, hepatocyte growth factor (HGF), and α-SMA expression in the kidney was measured by Western blot. After renal transplantation, the rats treated with hWJMSCs-MVs improved survival rate and renal function. Moreover, MVs mitigated renal cell apoptosis, enhanced proliferation, and alleviated inflammation at the first 48 h. In the late period, abrogation of renal fibrosis was observed in the MVs group. MVs also could decrease the number of CD68+ macrophages in the kidney. Furthermore, MVs decreased the protein expression levels of α-SMA and TGF-β1 and increased the protein expression level of HGF at any point (24 h, 48 h, 1 or 2 weeks). The administration of MVs immediately after renal transplantation could ameliorate IRI in both the acute and chronic stage.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Shaver CM, Ware LB. Primary graft dysfunction: pathophysiology to guide new preventive therapies. Expert Rev Respir Med 2017; 11:119-128. [PMID: 28074663 DOI: 10.1080/17476348.2017.1280398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Primary graft dysfunction (PGD) is a common complication of lung transplantation characterized by acute pulmonary edema associated with bilateral pulmonary infiltrates and hypoxemia in the first 3 post-operative days. Development of PGD is a predictor of poor short- and long-term outcomes after lung transplantation, but there are currently limited tools to prevent its occurrence. Areas covered: Several potentially modifiable donor, recipient, and operative risk factors for PGD have been identified. In addition, basic and translational studies in animals and ex vivo lung perfusion systems have identified several biomarkers and mechanisms of injury in PGD. In this review, we outline the clinical and genetic risk factors for PGD and summarize experimental data exploring PGD mechanisms, with a focus on strategies to reduce PGD risk and on potential novel molecular targets for PGD prevention. Expert commentary: Because of the clinical importance of PGD, development of new therapies for prevention and treatment is critically important. Improved understanding of the pathophysiology of clinical PGD provides a framework to explore novel agents to prevent or reverse PGD. Ex vivo lung perfusion provides a new opportunity for rapid development of therapeutics that target this devastating complication of lung transplantation.
Collapse
Affiliation(s)
- Ciara M Shaver
- a Department of Medicine , Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Lorraine B Ware
- a Department of Medicine , Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center , Nashville , TN , USA.,b Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
15
|
Luo L, Guo K, Fan W, Lu Y, Chen L, Wang Y, Shao Y, Wu G, Xu J, Lü L. Niche astrocytes promote the survival, proliferation and neuronal differentiation of co-transplanted neural stem cells following ischemic stroke in rats. Exp Ther Med 2016; 13:645-650. [PMID: 28352345 DOI: 10.3892/etm.2016.4016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Niche astrocytes have been reported to promote neuronal differentiation through juxtacrine signaling. However, the effects of astrocytes on neuronal differentiation following ischemic stroke are not fully understood. In the present study, transplanted astrocytes and neural stem cells (NSCs) were transplanted into the ischemic striatum of transient middle cerebral artery occlusion (MCAO) model rats 48 h following surgery. It was observed that the co-transplantation of astrocytes and NSCs resulted in a higher ratio of survival and proliferation of the transplanted NSCs, and neuronal differentiation, in MCAO rats compared with NSC transplantation alone. These results demonstrate that the co-administration of astrocytes promotes the survival and neuronal differentiation of NSCs in the ischemic brain. These results suggest that the co-transplantation of astrocytes and NSCs is more effective than NSCs alone in the production of neurons following ischemic stroke in rats.
Collapse
Affiliation(s)
- Li Luo
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology and Institute of Stomatological Research, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China; Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China; Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenguo Fan
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology and Institute of Stomatological Research, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yinghong Lu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lizhi Chen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yijia Shao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Gongxiong Wu
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lanhai Lü
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology and Institute of Stomatological Research, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
16
|
Mehaffey JH, Charles EJ, Sharma AK, Money DT, Zhao Y, Stoler MH, Lau CL, Tribble CG, Laubach VE, Roeser ME, Kron IL. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury. J Thorac Cardiovasc Surg 2016; 153:197-204. [PMID: 27742245 DOI: 10.1016/j.jtcvs.2016.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/13/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Critical organ shortages have resulted in ex vivo lung perfusion gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of donation after circulatory death organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation during ex vivo lung perfusion improves lung function after transplantation. METHODS Two groups (n = 4 animals/group) of porcine donation after circulatory death donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of ex vivo lung perfusion rehabilitation with standard conventional volume-based ventilation or pressure-based airway pressure release ventilation. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for partial pressure of oxygen/inspired oxygen fraction ratios, airway pressures for calculation of compliance, and percent wet weight gain during ex vivo lung perfusion and reperfusion were measured. RESULTS Airway pressure release ventilation during ex vivo lung perfusion significantly improved left lung oxygenation at 2 hours (561.5 ± 83.9 mm Hg vs 341.1 ± 136.1 mm Hg) and 4 hours (569.1 ± 18.3 mm Hg vs 463.5 ± 78.4 mm Hg). Likewise, compliance was significantly higher at 2 hours (26.0 ± 5.2 mL/cm H2O vs 15.0 ± 4.6 mL/cm H2O) and 4 hours (30.6 ± 1.3 mL/cm H2O vs 17.7 ± 5.9 mL/cm H2O) after transplantation. Finally, airway pressure release ventilation significantly reduced lung edema development on ex vivo lung perfusion on the basis of percentage of weight gain (36.9% ± 14.6% vs 73.9% ± 4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. CONCLUSIONS Pressure-directed airway pressure release ventilation strategy during ex vivo lung perfusion improves the rehabilitation of severely injured donation after circulatory death lungs. After transplant, these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared with lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical ex vivo lung perfusion protocols, could advance the field of donation after circulatory death lung rehabilitation to expand the lung donor pool.
Collapse
Affiliation(s)
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Dustin T Money
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Va
| | - Christine L Lau
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Curtis G Tribble
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Mark E Roeser
- Department of Surgery, University of Virginia, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, Va.
| |
Collapse
|