1
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
2
|
Janssen Daalen JM, Koopman WJH, Saris CGJ, Meinders MJ, Thijssen DHJ, Bloem BR. The Hypoxia Response Pathway: A Potential Intervention Target in Parkinson's Disease? Mov Disord 2024; 39:273-293. [PMID: 38140810 DOI: 10.1002/mds.29688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which only symptomatic treatments are available. Both preclinical and clinical studies suggest that moderate hypoxia induces evolutionarily conserved adaptive mechanisms that enhance neuronal viability and survival. Therefore, targeting the hypoxia response pathway might provide neuroprotection by ameliorating the deleterious effects of mitochondrial dysfunction and oxidative stress, which underlie neurodegeneration in PD. Here, we review experimental studies regarding the link between PD pathophysiology and neurophysiological adaptations to hypoxia. We highlight the mechanistic differences between the rescuing effects of chronic hypoxia in neurodegeneration and short-term moderate hypoxia to improve neuronal resilience, termed "hypoxic conditioning". Moreover, we interpret these preclinical observations regarding the pharmacological targeting of the hypoxia response pathway. Finally, we discuss controversies with respect to the differential effects of hypoxia response pathway activation across the PD spectrum, as well as intervention dosing in hypoxic conditioning and potential harmful effects of such interventions. We recommend that initial clinical studies in PD should focus on the safety, physiological responses, and mechanisms of hypoxic conditioning, as well as on repurposing of existing pharmacological compounds. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jules M Janssen Daalen
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Christiaan G J Saris
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjan J Meinders
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
| | - Dick H J Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bastiaan R Bloem
- Center of Expertise for Parkinson and Movement Disorders, Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Yang F, Xie T, Hu Z, Chu Z, Lu H, Wu Q, Qin D, Sun S, Luo Z, Luo F. Exploration on anti-hypoxia properties of peptides: a review. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 38116946 DOI: 10.1080/10408398.2023.2291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Peptides are important components of human nutrition and health, and considered as safe, nontoxic, and easily absorbed potential drugs. Anti-hypoxia peptides are a kind of peptides that can prevent hypoxia or hypoxia damage. In this paper, the sources, preparations, and molecular mechanisms of anti-hypoxia peptides were systemically reviewed. The combination of bioinformatics, chemical synthesis, enzymatic hydrolysis, and microbial fermentation are recommended for efficient productions of anti-hypoxic peptides. The mechanisms of anti-hypoxic peptides include interference with glycolytic process and HIF-1α pathway, mitochondrial apoptosis, and inflammatory response. In addition, bioinformatics analysis, including virtual screening and molecular docking, provides an alternative or auxiliary method for exploring the potential anti-hypoxic activities and mechanisms of peptides. The potential challenges and prospects of anti-hypoxic peptides are also discussed. This paper can provide references for researchers in this field and promote further research and clinical applications of anti-hypoxic peptides in the future.
Collapse
Affiliation(s)
- Feiyan Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tiantian Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhongxing Chu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Han Lu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qi Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Dandan Qin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuguo Sun
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, China
| | - Feijun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
4
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, Nur Sahin B, Morciano G, Tuncer M, Tremoli E, Pinton P. Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion 2023; 72:33-58. [PMID: 37451353 DOI: 10.1016/j.mito.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Skeletal muscle, which accounts for approximately 40% of total body weight, is one of the most dynamic and plastic tissues in the human body and plays a vital role in movement, posture and force production. More than just a component of the locomotor system, skeletal muscle functions as an endocrine organ capable of producing and secreting hundreds of bioactive molecules. Therefore, maintaining healthy skeletal muscles is crucial for supporting overall body health. Various pathological conditions, such as prolonged immobilization, cachexia, aging, drug-induced toxicity, and cardiovascular diseases (CVDs), can disrupt the balance between muscle protein synthesis and degradation, leading to skeletal muscle atrophy. Mitochondrial dysfunction is a major contributing mechanism to skeletal muscle atrophy, as it plays crucial roles in various biological processes, including energy production, metabolic flexibility, maintenance of redox homeostasis, and regulation of apoptosis. In this review, we critically examine recent knowledge regarding the causes of muscle atrophy (disuse, cachexia, aging, etc.) and its contribution to CVDs. Additionally, we highlight the mitochondrial signaling pathways involvement to skeletal muscle atrophy, such as the ubiquitin-proteasome system, autophagy and mitophagy, mitochondrial fission-fusion, and mitochondrial biogenesis. Furthermore, we discuss current strategies, including exercise, mitochondria-targeted antioxidants, in vivo transfection of PGC-1α, and the potential use of mitochondrial transplantation as a possible therapeutic approach.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey.
| | - Esmaa Bouhamida
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, 06010 Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Gaia Pedriali
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Daniela Ramaccini
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, 06500 Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, 06800 Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Simone Patergnani
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Beyza Nur Sahin
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Giampaolo Morciano
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06230 Ankara, Turkey
| | - Elena Tremoli
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy
| | - Paolo Pinton
- Translational Research Center, Maria Cecilia Hospital GVM Care & Research, 48033 Cotignola, Italy; Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
5
|
Yang F, Chen L, Wen B, Wang X, Wang L, Ji K, Liu H. Golgi Reassembly Stacking Protein 2 Modulates Myometrial Contractility during Labor by Affecting ATP Production. Int J Mol Sci 2023; 24:10116. [PMID: 37373263 DOI: 10.3390/ijms241210116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
The mechanism of maintaining myometrial contractions during labor remains unclear. Autophagy has been reported to be activated in laboring myometrium, along with the high expression of Golgi reassembly stacking protein 2 (GORASP2), a protein capable of regulating autophagy activation. This study aimed to investigate the role and mechanism of GORASP2 in uterine contractions during labor. Western blot confirmed the increased expression of GORASP2 in laboring myometrium. Furthermore, the knockdown of GORASP2 in primary human myometrial smooth muscle cells (hMSMCs) using siRNA resulted in reduced cell contractility. This phenomenon was independent of the contraction-associated protein and autophagy. Differential mRNAs were analyzed using RNA sequencing. Subsequently, KEGG pathway analysis identified that GORASP2 knockdown suppressed several energy metabolism pathways. Furthermore, reduced ATP levels and aerobic respiration impairment were observed in measuring the oxygen consumption rate (OCR). These findings suggest that GORASP2 is up-regulated in the myometrium during labor and modulates myometrial contractility mainly by maintaining ATP production.
Collapse
Affiliation(s)
- Fan Yang
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lina Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lele Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Huishu Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
6
|
Heck-Swain KL, Koeppen M. The Intriguing Role of Hypoxia-Inducible Factor in Myocardial Ischemia and Reperfusion: A Comprehensive Review. J Cardiovasc Dev Dis 2023; 10:jcdd10050215. [PMID: 37233182 DOI: 10.3390/jcdd10050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) play a crucial role in cellular responses to low oxygen levels during myocardial ischemia and reperfusion injury. HIF stabilizers, originally developed for treating renal anemia, may offer cardiac protection in this context. This narrative review examines the molecular mechanisms governing HIF activation and function, as well as the pathways involved in cell protection. Furthermore, we analyze the distinct cellular roles of HIFs in myocardial ischemia and reperfusion. We also explore potential therapies targeting HIFs, emphasizing their possible benefits and limitations. Finally, we discuss the challenges and opportunities in this research area, underscoring the need for continued investigation to fully realize the therapeutic potential of HIF modulation in managing this complex condition.
Collapse
Affiliation(s)
- Ka-Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
He Y, Zhang D, Zhang Q, Cai Y, Huang C, Xia Z, Wang S. MicroRNA-17-3p protects against excessive posthypoxic autophagy in H9C2 cardiomyocytes via PTEN-Akt-mTOR signaling pathway. Cell Biol Int 2023; 47:943-953. [PMID: 36934412 DOI: 10.1002/cbin.11999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 03/20/2023]
Abstract
The activity of phosphatase and tensin homolog (PTEN) can be inhibited by miR-17-3p, which results in attenuating myocardial ischemia/reperfusion injury (IRI), however, the mechanism behind this phenomenon is still elusive. Suppression of PTEN leads to augmented protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling strength and constrained autophagy activation, which might be the one mechanism for the ameliorated myocardial IRI. Thus, we tested the hypothesis that miR-17-3p attenuated hypoxia/reoxygenation (H/R)-mediated damage in cardiomyocytes by downregulating excessive autophagy via the PTEN-Akt-mTOR axis. The expression of miR-17-3p was remarkably increased after H/R treatment (6-h hypoxia followed by 6-h reoxygenation; H6/R6), which was concomitant with the increase of the release of lactic acid dehydrogenase (cell injury marker) and the enhancement LC3II/I ratio (autophagy markers) in H9C2 cardiomyocytes. Ectoexpression of miR-17-3p agomir led to remarkable augmentation of miR-17-3p expression and evidently attenuated H/R-mediated cell damage and excessive autophagy. Furthermore, an increase in miR-17-3p expression elicited constrained phosphorylation of PTEN (Ser380 ) while enhanced the phosphorylation of Akt (Thr308 , Ser473 ) and mTOR (Ser536 ) after H/R stimulation. In addition, pretreatment with LY-294002 (an Akt selective inhibitor) and rapamycin (an mTOR selective inhibitor) significantly abrogated the protective function of miR-17-3p on H/R-mediated cell damage and autophagy in H9C2 cardiomyocytes. Taken together, these observations indicated that the enhancement of the PTEN/Akt/mTOR axis and the consequent suppression of autophagy overactivation might represent an underlying mechanism by which miR-17-3p attenuated H/R-mediated damage in H9C2 cells.
Collapse
Affiliation(s)
- Yi He
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dengwen Zhang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qingqing Zhang
- Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Yin Cai
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Chongfeng Huang
- Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Sheng Wang
- Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2023; 28:55-80. [PMID: 36369366 DOI: 10.1007/s10495-022-01786-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.
Collapse
Affiliation(s)
- Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Feng Fu
- School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China
| | | | | | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.
| |
Collapse
|
9
|
Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032656. [PMID: 36768975 PMCID: PMC9916860 DOI: 10.3390/ijms24032656] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) holds great promise in cancer eradication due to its target selectivity, non-invasiveness, and low systemic toxicity. However, due to the hypoxic nature of many native tumors, PDT is frequently limited in its therapeutic effect. Additionally, oxygen consumption during PDT may exacerbate the tumor's hypoxic condition, which stimulates tumor proliferation, metastasis, and invasion, resulting in poor treatment outcomes. Therefore, various strategies have been developed to combat hypoxia in PDT, such as oxygen carriers, reactive oxygen supplements, and the modulation of tumor microenvironments. However, most PDT-related studies are still conducted on two-dimensional (2D) cell cultures, which fail to accurately reflect tissue complexity. Thus, three-dimensional (3D) cell cultures are ideal models for drug screening, disease simulation and targeted cancer therapy, since they accurately replicate the tumor tissue architecture and microenvironment. This review summarizes recent advances in the development of strategies to overcome tumor hypoxia for enhanced PDT efficiency, with a particular focus on nanoparticle-based photosensitizer (PS) delivery systems, as well as the advantages of 3D cell cultures.
Collapse
|
10
|
Ma XJ, Tan Y, Chen L, Qu H, Shi DZ. Elucidation of the mechanism of Gualou-Xiebai-Banxia decoction for the treatment of unstable angina based on network pharmacology and molecular docking. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2023. [DOI: 10.4103/2311-8571.364411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
11
|
DJ-1 activates the AMPK/mTOR pathway by binding RACK1 to induce autophagy and protect the myocardium from ischemia/hypoxia injury. Biochem Biophys Res Commun 2022; 637:276-285. [DOI: 10.1016/j.bbrc.2022.10.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
|
12
|
Gentile D, Esposito M, Grumati P. Metabolic adaption of cancer cells toward autophagy: Is there a role for ER-phagy? Front Mol Biosci 2022; 9:930223. [PMID: 35992272 PMCID: PMC9382244 DOI: 10.3389/fmolb.2022.930223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic pathway that uses a unique double-membrane vesicle, called autophagosome, to sequester cytosolic components, deliver them to lysosomes and recycle amino-acids. Essentially, autophagy acts as a cellular cleaning system that maintains metabolic balance under basal conditions and helps to ensure nutrient viability under stress conditions. It is also an important quality control mechanism that removes misfolded or aggregated proteins and mediates the turnover of damaged and obsolete organelles. In this regard, the idea that autophagy is a non-selective bulk process is outdated. It is now widely accepted that forms of selective autophagy are responsible for metabolic rewiring in response to cellular demand. Given its importance, autophagy plays an essential role during tumorigenesis as it sustains malignant cellular growth by acting as a coping-mechanisms for intracellular and environmental stress that occurs during malignant transformation. Cancer development is accompanied by the formation of a peculiar tumor microenvironment that is mainly characterized by hypoxia (oxygen < 2%) and low nutrient availability. Such conditions challenge cancer cells that must adapt their metabolism to survive. Here we review the regulation of autophagy and selective autophagy by hypoxia and the crosstalk with other stress response mechanisms, such as UPR. Finally, we discuss the emerging role of ER-phagy in sustaining cellular remodeling and quality control during stress conditions that drive tumorigenesis.
Collapse
Affiliation(s)
- Debora Gentile
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Marianna Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Scuola Superiore Meridionale, Naples, Italy
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
- *Correspondence: Paolo Grumati,
| |
Collapse
|
13
|
Gillson J, Abd El-Aziz YS, Leck LYW, Jansson PJ, Pavlakis N, Samra JS, Mittal A, Sahni S. Autophagy: A Key Player in Pancreatic Cancer Progression and a Potential Drug Target. Cancers (Basel) 2022; 14:3528. [PMID: 35884592 PMCID: PMC9315706 DOI: 10.3390/cancers14143528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic cancer is known to have the lowest survival outcomes among all major cancers, and unfortunately, this has only been marginally improved over last four decades. The innate characteristics of pancreatic cancer include an aggressive and fast-growing nature from powerful driver mutations, a highly defensive tumor microenvironment and the upregulation of advantageous survival pathways such as autophagy. Autophagy involves targeted degradation of proteins and organelles to provide a secondary source of cellular supplies to maintain cell growth. Elevated autophagic activity in pancreatic cancer is recognized as a major survival pathway as it provides a plethora of support for tumors by supplying vital resources, maintaining tumour survival under the stressful microenvironment and promoting other pathways involved in tumour progression and metastasis. The combination of these features is unique to pancreatic cancer and present significant resistance to chemotherapeutic strategies, thus, indicating a need for further investigation into therapies targeting this crucial pathway. This review will outline the autophagy pathway and its regulation, in addition to the genetic landscape and tumor microenvironment that contribute to pancreatic cancer severity. Moreover, this review will also discuss the mechanisms of novel therapeutic strategies that inhibit autophagy and how they could be used to suppress tumor progression.
Collapse
Affiliation(s)
- Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Yomna S. Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta 31527, Egypt
| | - Lionel Y. W. Leck
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J. Jansson
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Nick Pavlakis
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
| | - Jaswinder S. Samra
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| | - Anubhav Mittal
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
- School of Medicine, University of Notre Dame, Darlinghurst, Sydney, NSW 2010, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia; (J.G.); (Y.S.A.E.-A.); (L.Y.W.L.); (P.J.J.); (N.P.); (J.S.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, St Leonards, Sydney, NSW 2065, Australia
- Australian Pancreatic Centre, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
14
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
15
|
Wu D, Liu Y, Chen W, Shao J, Zhuoma P, Zhao D, Yu Y, Liu T, Yu R, Gan Y, Yuzheng B, Huang Y, Zhang H, Bi X, Tao C, Lai S, Luo Q, Zhang D, Wang H, Zhaxi P, Zhang J, Qiao J, Zeng C. How placenta promotes the successful reproduction in high-altitude populations: a transcriptome comparison between adaptation and acclimatization. Mol Biol Evol 2022; 39:6596365. [PMID: 35642306 PMCID: PMC9206416 DOI: 10.1093/molbev/msac120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.
Collapse
Affiliation(s)
- Deng Wu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Yunao Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jianming Shao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Pubu Zhuoma
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dexiong Zhao
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianzi Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongna Gan
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Baima Yuzheng
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Yongshu Huang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Haikun Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Bi
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Tao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Lai
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxia Luo
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dake Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pingcuo Zhaxi
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jianqing Zhang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Changqing Zeng
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Lestón Pinilla L, Ugun-Klusek A, Rutella S, De Girolamo LA. Hypoxia Signaling in Parkinson's Disease: There Is Use in Asking "What HIF?". BIOLOGY 2021; 10:723. [PMID: 34439955 PMCID: PMC8389254 DOI: 10.3390/biology10080723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/23/2022]
Abstract
Hypoxia is a condition characterized by insufficient tissue oxygenation, which results in impaired oxidative energy production. A reduction in cellular oxygen levels induces the stabilization of hypoxia inducible factor α (HIF-1α), master regulator of the molecular response to hypoxia, involved in maintaining cellular homeostasis and driving hypoxic adaptation through the control of gene expression. Due to its high energy requirement, the brain is particularly vulnerable to oxygen shortage. Thus, hypoxic injury can cause significant metabolic changes in neural cell populations, which are associated with neurodegeneration. Recent evidence suggests that regulating HIF-1α may ameliorate the cellular damage in neurodegenerative diseases. Indeed, the hypoxia/HIF-1α signaling pathway has been associated to several processes linked to Parkinson's disease (PD) including gene mutations, risk factors and molecular pathways such as mitochondrial dysfunction, oxidative stress and protein degradation impairment. This review will explore the impact of hypoxia and HIF-1α signaling on these specific molecular pathways that influence PD development and will evaluate different novel neuroprotective strategies involving HIF-1α stabilization.
Collapse
Affiliation(s)
- Laura Lestón Pinilla
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Aslihan Ugun-Klusek
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Sergio Rutella
- John van Geest Cancer Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Luigi A. De Girolamo
- Interdisciplinary Biomedical Research Centre, Centre for Health, Ageing and Understanding Disease, School of Science & Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
17
|
Tsai KF, Chen YL, Chiou TTY, Chu TH, Li LC, Ng HY, Lee WC, Lee CT. Emergence of SGLT2 Inhibitors as Powerful Antioxidants in Human Diseases. Antioxidants (Basel) 2021; 10:1166. [PMID: 34439414 PMCID: PMC8388972 DOI: 10.3390/antiox10081166] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral glucose-lowering agents. Apart from their glucose-lowering effects, large clinical trials assessing certain SGLT2 inhibitors have revealed cardiac and renal protective effects in non-diabetic patients. These excellent outcomes motivated scientists and clinical professionals to revisit their underlying mechanisms. In addition to the heart and kidney, redox homeostasis is crucial in several human diseases, including liver diseases, neural disorders, and cancers, with accumulating preclinical studies demonstrating the therapeutic benefits of SGLT2 inhibitors. In the present review, we aimed to update recent advances in the antioxidant roles of SGLT2 inhibitors in common but debilitating human diseases. We anticipate that this review will guide new research directions and novel therapeutic strategies for diabetes, cardiovascular diseases, nephropathies, liver diseases, neural disorders, and cancers in the era of SGLT2 inhibitors.
Collapse
Affiliation(s)
- Kai-Fan Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Yung-Lung Chen
- Section of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Terry Ting-Yu Chiou
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Tian-Huei Chu
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Biobank and Tissue Bank, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Lung-Chih Li
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Hwee-Yeong Ng
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Wen-Chin Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (K.-F.T.); (T.T.-Y.C.); (L.-C.L.); (H.-Y.N.)
| |
Collapse
|
18
|
Schuman ML, Peres Diaz LS, Aisicovich M, Ingallina F, Toblli JE, Landa MS, García SI. Cardiac Thyrotropin-releasing Hormone Inhibition Improves Ventricular Function and Reduces Hypertrophy and Fibrosis After Myocardial Infarction in Rats. J Card Fail 2021; 27:796-807. [PMID: 33865967 DOI: 10.1016/j.cardfail.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cardiac thyrotropin-releasing hormone (TRH) is a tripeptide with still unknown functions. We demonstrated that the left ventricle (LV) TRH system is hyperactivated in spontaneously hypertensive rats and its inhibition prevented cardiac hypertrophy and fibrosis. Therefore, we evaluated whether in vivo cardiac TRH inhibition could improve myocardial function and attenuate ventricular remodeling in a rat model of myocardial infarction (MI). METHODS AND RESULTS In Wistar rats, MI was induced by a permanent left anterior descending coronary artery ligation. A coronary injection of a specific small interfering RNA against TRH was applied simultaneously. The control group received a scrambled small interfering RNA. Cardiac remodeling variables were evaluated one week later. In MI rats, TRH inhibition decreased LV end-diastolic (1.049 ± 0.102 mL vs 1.339 ± 0.102 mL, P < .05), and end-systolic volumes (0.282 ± 0.043 mL vs 0.515 ± 0.037 mL, P < .001), and increased LV ejection fraction (71.89 ± 2.80% vs 65.69 ± 2.85%, P < .05). Although both MI groups presented similar infarct size, small interfering RNA against TRH treatment attenuated the cardiac hypertrophy index and myocardial interstitial collagen deposition in the peri-infarct myocardium. These effects were accompanied by attenuation in the rise of transforming growth factor-β, collagen I, and collagen III, as well as the fetal genes (atrial natriuretic peptide, B-type natriuretic peptide, and beta myosin heavy chain) expression in the peri-infarct region. In addition, the expression of Hif1α and vascular endothelial growth factor significantly increased compared with all groups. CONCLUSIONS Cardiac TRH inhibition improves LV systolic function and attenuates ventricular remodeling after MI. These novel findings support the idea that TRH inhibition may serve as a new therapeutic strategy against the progression of heart failure.
Collapse
Affiliation(s)
- Mariano L Schuman
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ludmila S Peres Diaz
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maia Aisicovich
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Ingallina
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; University of Buenos Aires (UBA), School of Medicine, Institute of Medical Research "Alfredo Lanari," Department of Cardiology, Ciudad Autonoma de Buenos Aires, Argentina
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autonoma de Buenos Aires, Argentina
| | - Maria S Landa
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autonoma de Buenos Aires, Argentina
| | - Silvia I García
- University of Buenos Aires, School of Medicine, Institute of Medical Research A. Lanari, Ciudad Autónoma de Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), University of Buenos Aires (UBA), Institute of Medical Research (IDIM), Department of Molecular Cardiology, Ciudad Autónoma de Buenos Aires, Argentina; Laboratory of Experimental Medicine, Hospital Alemán, Ciudad Autonoma de Buenos Aires, Argentina.
| |
Collapse
|
19
|
Hyperbaric Oxygen Improves Cerebral Ischemia/Reperfusion Injury in Rats Probably via Inhibition of Autophagy Triggered by the Downregulation of Hypoxia-Inducing Factor-1 Alpha. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6615685. [PMID: 33816617 PMCID: PMC7987430 DOI: 10.1155/2021/6615685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Ischemic stroke, accompanied with high mortality and morbidity, may produce heavy economic burden to societies and families. Therefore, it is of great significance to explore effective therapies. Hyperbaric oxygen (HBO) is a noninvasive, nondrug treatment method that has been proved able to save ischemic penumbra by improving hypoxia, microcirculation, and metabolism and applied in various ischemic diseases. Herewith, we fully evaluated the effect of HBO on ischemic stroke and investigated its potential mechanism in the rat ischemia/reperfusion(I/R) model. Sixty Sprague-Dawley male rats were randomly divided into three groups—sham group, MCAO group, and MCAO+HBO group. In the latter two groups, the middle cerebral artery occlusion was performed (MCAO) for 2 hours, and then the occlusion was removed in order to establish the ischemic/reperfusion model. Subsequently, HBO was performed immediately after I/R (2 hours per day for 3 days). 72 hours after MCAO, the brain was dissected for our experiment. Finally, the data from three groups were analyzed by one-way analysis of variance (ANOVA) and followed by a Bonferroni test. In this article, we reported that HBO effectively reduced the infarction and edema and improved neurological functions to a certain extent. As shown by western blot analysis, HBO significantly reduced autophagy by regulating autophagy-related proteins (mTOR, p-mTOR, Atg13, LC3B II and LC3B II) in the hippocampus 72 hours after I/R, which was accompanied by inhibiting the expression of hypoxia inducible factor-1α (HIF-1α) in hippocampus. The results suggest that HBO may improve cerebral I/R injury, possibly via inhibiting HIF-1α, the upstream molecule of autophagy, and therefore, subsequently inhibiting autophagy in the rat model of ischemic stroke.
Collapse
|
20
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021; 11:603224. [PMID: 33763351 PMCID: PMC7982729 DOI: 10.3389/fonc.2021.603224] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
Affiliation(s)
- Alejandra Suares
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Victoria Medina
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Omar Coso
- Departamento de Fisiología y Biología Molecular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Suares A, Medina MV, Coso O. Autophagy in Viral Development and Progression of Cancer. Front Oncol 2021. [DOI: 10.3389/fonc.2021.603224
expr 816899697 + 824303767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Autophagy is a complex degradative process by which eukaryotic cells capture cytoplasmic components for subsequent degradation through lysosomal hydrolases. Although this catabolic process can be triggered by a great variety of stimuli, action in cells varies according to cellular context. Autophagy has been previously linked to disease development modulation, including cancer. Autophagy helps suppress cancer cell advancement in tumor transformation early stages, while promoting proliferation and metastasis in advanced settings. Oncoviruses are a particular type of virus that directly contribute to cell transformation and tumor development. Extensive molecular studies have revealed complex ways in which autophagy can suppress or improve oncovirus fitness while still regulating viral replication and determining host cell fate. This review includes recent advances in autophagic cellular function and emphasizes its antagonistic role in cancer cells.
Collapse
|
22
|
King KE, Losier TT, Russell RC. Regulation of Autophagy Enzymes by Nutrient Signaling. Trends Biochem Sci 2021; 46:687-700. [PMID: 33593593 DOI: 10.1016/j.tibs.2021.01.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is the primary catabolic program of the cell that promotes survival in response to metabolic stress. It is tightly regulated by a suite of kinases responsive to nutrient status, including mammalian target of rapamycin complex 1 (mTORC1), AMP-activated protein kinase (AMPK), protein kinase C-α (PKCα), MAPK-activated protein kinases 2/3 (MAPKAPK2/3), Rho kinase 1 (ROCK1), c-Jun N-terminal kinase 1 (JNK), and Casein kinase 2 (CSNK2). Here, we highlight recently uncovered mechanisms linking amino acid, glucose, and oxygen levels to autophagy regulation through mTORC1 and AMPK. In addition, we describe new pathways governing the autophagic machinery, including the Unc-51-like (ULK1), vacuolar protein sorting 34 (VPS34), and autophagy related 16 like 1 (ATG16L1) enzyme complexes. Novel downstream targets of ULK1 protein kinase are also discussed, such as the ATG16L1 subunit of the microtubule-associated protein 1 light chain 3 (LC3)-lipidating enzyme and the ATG14 subunit of the VPS34 complex. Collectively, we describe the complexities of the autophagy pathway and its role in maintaining cellular nutrient homeostasis during times of starvation.
Collapse
Affiliation(s)
- Karyn E King
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONT, Canada
| | - Truc T Losier
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONT, Canada
| | - Ryan C Russell
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ONT, Canada; Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ONT, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ONT, Canada.
| |
Collapse
|
23
|
Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers (Basel) 2021; 13:cancers13030533. [PMID: 33573362 PMCID: PMC7866864 DOI: 10.3390/cancers13030533] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.
Collapse
|
24
|
Liu TJ, Yeh YC, Lee WL, Wang LC, Lee HW, Shiu MT, Su CS, Lai HC. Insulin ameliorates hypoxia-induced autophagy, endoplasmic reticular stress and apoptosis of myocardial cells: In vitro and ex vivo models. Eur J Pharmacol 2020; 880:173125. [DOI: 10.1016/j.ejphar.2020.173125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
|
25
|
Moccia F, Gerbino A, Lionetti V, Miragoli M, Munaron LM, Pagliaro P, Pasqua T, Penna C, Rocca C, Samaja M, Angelone T. COVID-19-associated cardiovascular morbidity in older adults: a position paper from the Italian Society of Cardiovascular Researches. GeroScience 2020; 42:1021-1049. [PMID: 32430627 PMCID: PMC7237344 DOI: 10.1007/s11357-020-00198-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/28/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells following binding with the cell surface ACE2 receptors, thereby leading to coronavirus disease 2019 (COVID-19). SARS-CoV-2 causes viral pneumonia with additional extrapulmonary manifestations and major complications, including acute myocardial injury, arrhythmia, and shock mainly in elderly patients. Furthermore, patients with existing cardiovascular comorbidities, such as hypertension and coronary heart disease, have a worse clinical outcome following contraction of the viral illness. A striking feature of COVID-19 pandemics is the high incidence of fatalities in advanced aged patients: this might be due to the prevalence of frailty and cardiovascular disease increase with age due to endothelial dysfunction and loss of endogenous cardioprotective mechanisms. Although experimental evidence on this topic is still at its infancy, the aim of this position paper is to hypothesize and discuss more suggestive cellular and molecular mechanisms whereby SARS-CoV-2 may lead to detrimental consequences to the cardiovascular system. We will focus on aging, cytokine storm, NLRP3/inflammasome, hypoxemia, and air pollution, which is an emerging cardiovascular risk factor associated with rapid urbanization and globalization. We will finally discuss the impact of clinically available CV drugs on the clinical course of COVID-19 patients. Understanding the role played by SARS-CoV2 on the CV system is indeed mandatory to get further insights into COVID-19 pathogenesis and to design a therapeutic strategy of cardio-protection for frail patients.
Collapse
Affiliation(s)
- F Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - A Gerbino
- CNR-Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| | - V Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy.
| | - M Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - L M Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - P Pagliaro
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy.
| | - T Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - C Penna
- Clinical and Biological Sciences Department, University of Turin, Orbassano, Turin, Italy
| | - C Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| | - M Samaja
- Department of Health Science, University of Milano, Milan, Italy
| | - T Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-physiology, Department of Biology, E. and E.S., University of Calabria, Arcavacata di Rende, CS, Italy
| |
Collapse
|
26
|
Packer M. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs. Cardiovasc Diabetol 2020; 19:62. [PMID: 32404204 PMCID: PMC7222526 DOI: 10.1186/s12933-020-01041-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a lysosome-dependent intracellular degradative pathway, which mediates the cellular adaptation to nutrient and oxygen depletion as well as to oxidative and endoplasmic reticulum stress. The molecular mechanisms that stimulate autophagy include the activation of energy deprivation sensors, sirtuin-1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK). These enzymes not only promote organellar integrity directly, but they also enhance autophagic flux, which leads to the removal of dysfunctional mitochondria and peroxisomes. Type 2 diabetes is characterized by suppression of SIRT1 and AMPK signaling as well as an impairment of autophagy; these derangements contribute to an increase in oxidative stress and the development of cardiomyopathy. Antihyperglycemic drugs that signal through insulin may further suppress autophagy and worsen heart failure. In contrast, metformin and SGLT2 inhibitors activate SIRT1 and/or AMPK and promote autophagic flux to varying degrees in cardiomyocytes, which may explain their benefits in experimental cardiomyopathy. However, metformin and SGLT2 inhibitors differ meaningfully in the molecular mechanisms that underlie their effects on the heart. Whereas metformin primarily acts as an agonist of AMPK, SGLT2 inhibitors induce a fasting-like state that is accompanied by ketogenesis, a biomarker of enhanced SIRT1 signaling. Preferential SIRT1 activation may also explain the ability of SGLT2 inhibitors to stimulate erythropoiesis and reduce uric acid (a biomarker of oxidative stress)—effects that are not seen with metformin. Changes in both hematocrit and serum urate are the most important predictors of the ability of SGLT2 inhibitors to reduce the risk of cardiovascular death and hospitalization for heart failure in large-scale trials. Metformin and SGLT2 inhibitors may also differ in their ability to mitigate diabetes-related increases in intracellular sodium concentration and its adverse effects on mitochondrial functional integrity. Differences in the actions of SGLT2 inhibitors and metformin may reflect the distinctive molecular pathways that explain differences in the cardioprotective effects of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX, 75226, USA. .,Imperial College, London, UK.
| |
Collapse
|
27
|
Packer M. Critical examination of mechanisms underlying the reduction in heart failure events with SGLT2 inhibitors: identification of a molecular link between their actions to stimulate erythrocytosis and to alleviate cellular stress. Cardiovasc Res 2020; 117:74-84. [PMID: 32243505 DOI: 10.1093/cvr/cvaa064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of serious heart failure events, even though SGLT2 is not expressed in the myocardium. This cardioprotective benefit is not related to an effect of these drugs to lower blood glucose, promote ketone body utilization or enhance natriuresis, but it is linked statistically with their action to increase haematocrit. SGLT2 inhibitors increase both erythropoietin and erythropoiesis, but the increase in red blood cell mass does not directly prevent heart failure events. Instead, erythrocytosis is a biomarker of a state of hypoxia mimicry, which is induced by SGLT2 inhibitors in manner akin to cobalt chloride. The primary mediators of the cellular response to states of energy depletion are sirtuin-1 and hypoxia-inducible factors (HIF-1α/HIF-2α). These master regulators promote the cellular adaptation to states of nutrient and oxygen deprivation, promoting mitochondrial capacity and minimizing the generation of oxidative stress. Activation of sirtuin-1 and HIF-1α/HIF-2α also stimulates autophagy, a lysosome-mediated degradative pathway that maintains cellular homoeostasis by removing dangerous constituents (particularly unhealthy mitochondria and peroxisomes), which are a major source of oxidative stress and cardiomyocyte dysfunction and demise. SGLT2 inhibitors can activate SIRT-1 and stimulate autophagy in the heart, and thereby, favourably influence the course of cardiomyopathy. Therefore, the linkage between erythrocytosis and the reduction in heart failure events with SGLT2 inhibitors may be related to a shared underlying molecular mechanism that is triggered by the action of these drugs to induce a perceived state of oxygen and nutrient deprivation.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 N. Hall Street, Dallas, TX 75226, USA.,Imperial College, London, UK
| |
Collapse
|
28
|
Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprogramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mechanism of Action. Diabetes Care 2020; 43:508-511. [PMID: 32079684 DOI: 10.2337/dci19-0074] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Milton Packer
- Baylor Scott & White Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX .,Imperial College, London, U.K
| |
Collapse
|
29
|
Yang L, Xie P, Wu J, Yu J, Li X, Ma H, Yu T, Wang H, Ye J, Wang J, Zheng H. Deferoxamine Treatment Combined With Sevoflurane Postconditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Restoring HIF-1/BNIP3-Mediated Mitochondrial Autophagy in GK Rats. Front Pharmacol 2020; 11:6. [PMID: 32140105 PMCID: PMC7042377 DOI: 10.3389/fphar.2020.00006] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial autophagy is involved in myocardial protection of sevoflurane postconditioning (SPostC) and in diabetic state this protective effect is weakened due to impaired HIF-1 signaling pathway. Previous studies have proved that deferoxamine (DFO) could activate impaired HIF-1α in diabetic state to restore the cardioprotective of sevoflurane, while the specific mechanism is unclear. This study aims to investigate whether HIF-1/BNIP3-mediated mitochondrial autophagy is involved in the restoration of sevoflurane postconditioning cardioprotection in diabetic state. Ischemia/reperfusion (I/R) model was established by ligating the anterior descending coronary artery and sevoflurane was administered at the first 15 min of reperfusion. Myocardial infarct size, mitochondrial ultrastructure and autophagosome, ATP content, mitochondrial membrane potential, ROS production, HIF-1α, BNIP3, LC3B-II, Beclin-1, P62, LAMP2 protein expression were detected 2 h after reperfusion, and cardiac function was evaluated by ultrasound at 24 h after reperfusion. Our results showed that with DFO treatment, SPostC up-regulated the expression of HIF-1α and BNIP3, thus reduced the expression of key autophagy proteins LC3B-II, Beclin-1, p62, and increased the expression of LAMP2. Furthermore, it reduced the accumulation of autophagosomes and ROS production, increased the content of ATP, and stabilized the membrane potential. Finally, the myocardial infarction size was reduced and cardiac function was improved. Taken together, DFO treatment combined with SPostC could alleviate myocardial ischemia reperfusion injury in diabetic rats by restoring and promoting HIF-1/BNIP3-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peng Xie
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jin Yu
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Haiying Wang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Jianrong Ye
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
30
|
Packer M. Autophagy stimulation and intracellular sodium reduction as mediators of the cardioprotective effect of sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail 2020; 22:618-628. [PMID: 32037659 DOI: 10.1002/ejhf.1732] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
In five large-scale trials involving >40 000 patients, sodium-glucose cotransporter 2 (SGLT2) inhibitors decreased the risk of serious heart failure events by 25-40%. This effect cannot be explained by control of hyperglycaemia, since it is not observed with antidiabetic drugs with greater glucose-lowering effects. It cannot be attributed to ketogenesis, since it is not causally linked to ketone body production, and the benefit is not enhanced in patients with diabetes. The effect cannot be ascribed to a natriuretic action, since SGLT2 inhibitors decrease natriuretic peptides only modestly, and they reduce cardiovascular death, a benefit that diuretics do not possess. Although SGLT2 inhibitors increase red blood cell mass, enhanced erythropoiesis does not favourably influence the course of heart failure. By contrast, experimental studies suggest that SGLT2 inhibitors may reduce intracellular sodium, thereby preventing oxidative stress and cardiomyocyte death. Additionally, SGLT2 inhibitors induce a transcriptional paradigm that mimics nutrient and oxygen deprivation, which includes activation of adenosine monophosphate-activated protein kinase, sirtuin-1, and/or hypoxia-inducible factors-1α/2α. The interplay of these mediators stimulates autophagy, a lysosomally-mediated degradative pathway that maintains cellular homeostasis. Autophagy-mediated clearance of damaged organelles reduces inflammasome activation, thus mitigating cardiomyocyte dysfunction and coronary microvascular injury. Interestingly, the action of hypoxia-inducible factors-1α/2α to both stimulate erythropoietin and induce autophagy may explain why erythrocytosis is strongly correlated with the reduction in heart failure events. Therefore, the benefits of SGLT2 inhibitors on heart failure may be mediated by a direct cardioprotective action related to modulation of pathways responsible for cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX, USA.,Imperial College, London, UK
| |
Collapse
|
31
|
Chang JC, Hu WF, Lee WS, Lin JH, Ting PC, Chang HR, Shieh KR, Chen TI, Yang KT. Intermittent Hypoxia Induces Autophagy to Protect Cardiomyocytes From Endoplasmic Reticulum Stress and Apoptosis. Front Physiol 2019; 10:995. [PMID: 31447690 PMCID: PMC6692635 DOI: 10.3389/fphys.2019.00995] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Intermittent hypoxia (IH), characterized as cyclic episodes of short-period hypoxia followed by normoxia, occurs in many physiological and pathophysiological conditions such as pregnancy, athlete, obstructive sleep apnea, and asthma. Hypoxia can induce autophagy, which is activated in response to protein aggregates, in the proteotoxic forms of cardiac diseases. Previous studies suggested that autophagy can protect cells by avoiding accumulation of misfolded proteins, which can be generated in response to ischemia/reperfusion (I/R) injury. The objective of the present study was to determine whether IH-induced autophagy can attenuate endoplasmic reticulum (ER) stress and cell death. In this study, H9c2 cell line, rat primary cultured cardiomyocytes, and C57BL/6 male mice underwent IH with an oscillating O2 concentration between 4 and 20% every 30 min for 1-4 days in an incubator. The levels of LC3, an autophagy indicator protein and CHOP and GRP78 (ER stress-related proteins) were measured by Western blotting analyses. Our data demonstrated that the autophagy-related proteins were upregulated in days 1-3, while the ER stress-related proteins were downregulated on the second day after IH. Treatment with H2O2 (100 μM) for 24 h caused ER stress and increased the level of ER stress-related proteins, and these effects were abolished by pre-treatment with IH condition. In response to the autophagy inhibitor, the level of ER stress-related proteins was upregulated again. Taken together, our data suggested that IH could increase myocardial autophagy as an adaptive response to prevent the ER stress and apoptosis.
Collapse
Affiliation(s)
- Jui-Chih Chang
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Fen Hu
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Sen Lee
- Graduate Institute of Medical Sciences, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jian-Hong Lin
- PhD Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Ching Ting
- Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huai-Ren Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Division of Cardiology, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Kun-Ruey Shieh
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-I Chen
- Center for Physical Education, College of Education and Communication, Tzu Chi University, Hualien, Taiwan.,Institute of Education, College of Education and Communication, Tzu Chi University, Hualien, Taiwan
| | - Kun-Ta Yang
- Master Program in Medical Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Physiology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
32
|
Dai SN, Hou AJ, Zhao SM, Chen XM, Huang HT, Chen BH, Kong HL. Ginsenoside Rb1 Ameliorates Autophagy of Hypoxia Cardiomyocytes from Neonatal Rats via AMP-Activated Protein Kinase Pathway. Chin J Integr Med 2019; 25:521-528. [PMID: 30088211 DOI: 10.1007/s11655-018-3018-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate whether ginsenoside-Rb1 (Gs-Rb1) improves the CoCl-induced autophagy of cardiomyocytes via upregulation of adenosine 5'-monophosphate-activated protein kinase (AMPK) pathway. METHODS Ventricles from 1- to 3-day-old Wistar rats were sequentially digested, separated and incubated in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum for 3 days followed by synchronization. Neonatal rat cardiomyocytes were randomly divided into 7 groups: control group (normal level oxygen), hypoxia group (500 μmol/L CoCl2), Gs-Rb1 group (200 μmol/L Gs-Rb1 + 500 μmol/L CoCl2), Ara A group (500 μmol/L Ara A + 500 μmol/L CoCl2), Ara A+ Gs-Rb1 group (500 μmol/L Ara A + 200 μmol/L Gs-Rb1 + 500 μmol/L CoCl2), AICAR group [1 mmol/L 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) + 500 μmol/L CoCl2], and AICAR+Gs-Rb1 group (1 mmol/L AICAR + 200 μmol/L Gs-Rb1 + 500 μmol/L CoCl2). Cells were treated for 12 h and cell viability was determined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay and cardiac troponin I (cTnI) levels were detected by enzyme-linked immunosorbent assay (ELISA). AMPK activity was assessed by 2',7'-dichlorofluorescein diacetate (DCFH-DA) ELISA assay. The protein expressions of Atg4B, Atg5, Atg6, Atg7, microtubule-associated protein 1A/1B-light chain 3 (LC3), P62, and active-cathepsin B were measured by Western blot. RESULTS Gs-Rb1 significantly improved the cell viability of hypoxia cardiomyocytes (P<0.01). However, the viability of hypoxia-treated cardiomyocytes was significantly inhibited by Ara A (P<0.01). Gs-Rb1 increased the AMPK activity of hypoxia-treated cardiomyocytes. The AMPK activity of hypoxia-treated cadiomyocytes was inhibited by Ara A (P<0.01) and was not affected by AICAR =0.983). Gs-Rb1 up-regulated Atg4B, Atg5, Beclin-1, Atg7, LC3B II, the LC3B II/I ratio and cathepsin B activity of hypoxia cardiomyocytes (P<0.05), each of these protein levels was significantly enhanced by Ara A (all P<0.01), but was not affected by AICAR (all P>0.05). Gs-Rb1 significantly down-regulated P62 levels of hypoxic cardiomyocytes (P<0.05). The P62 levels of hypoxic cardiomyocytes were inhibited by Ara A (P<0.05) and were not affected by AICAR (P=0.871). CONCLUSION Gs-Rb1 may improve the viability of hypoxia cardiomyocytes by ameliorating cell autophagy via the upregulation of AMPK pathway.
Collapse
Affiliation(s)
- Sheng-Nan Dai
- Department of Cardiology, the People's Hospital of China Medical University, the People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Ai-Jie Hou
- Department of Cardiology, the People's Hospital of China Medical University, the People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Shu-Mei Zhao
- International Education College, Shenyang Normal University, Shenyang, 110034, China
| | - Xiao-Ming Chen
- Department of Cardiology, the People's Hospital of China Medical University, the People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Hua-Ting Huang
- Department of Cardiology, the People's Hospital of China Medical University, the People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Bo-Han Chen
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian, 116044, China
| | - Hong-Liang Kong
- Department of Cardiology, the People's Hospital of China Medical University, the People's Hospital of Liaoning Province, Shenyang, 110016, China.
| |
Collapse
|
33
|
Yang L, Wu J, Xie P, Yu J, Li X, Wang J, Zheng H. Sevoflurane postconditioning alleviates hypoxia-reoxygenation injury of cardiomyocytes by promoting mitochondrial autophagy through the HIF-1/BNIP3 signaling pathway. PeerJ 2019; 7:e7165. [PMID: 31275755 PMCID: PMC6596409 DOI: 10.7717/peerj.7165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background Sevoflurane postconditioning (SpostC) can alleviate hypoxia-reoxygenation injury of cardiomyocytes; however, the specific mechanism remains unclear. This study aimed to investigate whether SpostC promotes mitochondrial autophagy through the hypoxia-inducible factor-1 (HIF-1)/BCL2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) signaling pathway to attenuate hypoxia-reoxygenation injury in cardiomyocytes. Methods The H9C2 cardiomyocyte hypoxia/reoxygenation model was established and treated with 2.4% sevoflurane at the beginning of reoxygenation. Cell damage was determined by measuring cell viability, lactate dehydrogenase activity, and apoptosis. Mitochondrial ultrastructural and autophagosomes were observed by transmission electron microscope. Western blotting was used to examine the expression of HIF-1, BNIP3, and Beclin-1 proteins. The effects of BNIP3 on promoting autophagy were determined using interfering RNA technology to silence BNIP3. Results Hypoxia-reoxygenation injury led to accumulation of autophagosomes in cardiomyocytes, and cell viability was significantly reduced, which seriously damaged cells. Sevoflurane postconditioning could upregulate HIF-1α and BNIP3 protein expression, promote autophagosome clearance, and reduce cell damage. However, these protective effects were inhibited by 2-methoxyestradiol or sinBNIP3. Conclusion Sevoflurane postconditioning can alleviate hypoxia-reoxygenation injury in cardiomyocytes, and this effect may be achieved by promoting mitochondrial autophagy through the HIF-1/BNIP3 signaling pathway.
Collapse
Affiliation(s)
- Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Peng Xie
- Department of Anesthesiology, Zunyi Medical College, Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, Guizhou, China
| | - Jin Yu
- Chongqing Health Center for Women and Children, Department of Anesthesiology, Chongqing, Chongqing, China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
34
|
Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochem Biophys Res Commun 2019; 514:323-328. [PMID: 31036323 DOI: 10.1016/j.bbrc.2019.04.138] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the protective effects of miR-301 in exosomes secreted by bone mesenchymal stem cells (BMSCs) on rats' myocardial infarction (MI). METHODS After isolation and culture, BMSCs were identified using flow cytometry. Then exosomes were then isolated. Rats MI models were established and they were divided into 4 groups: Sham group, Model group (injected with PBS), BMSC-Exos group (injected with exosomes secreted by BMSCs), BMSC-301-Exos group (injected with exosomes secreted by BMSCs transfected with miR-301 mimics). Cardiac function was assessed by cardiac echocardiography. Myocardial infarct area was measured by Masson trichrome staining mRNA and proteins expression were measured by qRT-PCR and western blot. Exosome morphology and myocardial cells autophagy were observed by transmission electron microscopy. RESULTS BMSCs were obtained. Rat MI models were successfully established. After rats were injected with exosomes secreted by BMSCs transfected with miR-301 mimics, MI tissues were found to have much higher miR-301 expression, LVEF, LVFS, P62 expression, and remarkably lower LVESD, LVEDD, MI area, LC3-II/LC3-I ratio and autophagosomes numbers compared with BMSC-Exos group (all P < 0.05). CONCLUSION miR-301 in exosomes secreted by BMSCs protected MI by inhibiting myocardial autophagy.
Collapse
|
35
|
Seok JY, Jeong YJ, Hwang SK, Kim CH, Magae J, Chang YC. Upregulation of AMPK by 4-O-methylascochlorin promotes autophagy via the HIF-1α expression. J Cell Mol Med 2018; 22:6345-6356. [PMID: 30338933 PMCID: PMC6237564 DOI: 10.1111/jcmm.13933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
4‐O‐methylascochlorin (MAC) is a derivative of ascochlorin, a prenyl‐phenol compound antibiotic isolated from the fungus Ascochyta viciae. MAC induces caspase/poly (ADP‐ribose) polymerase‐mediated apoptosis in leukemia cells. However, the effects of MAC on autophagy in cancer cells and the underlying molecular mechanisms remain unknown. Here, we show that MAC induces autophagy in lung cancer cells. MAC significantly induced the expression of autophagy marker proteins including LC3‐II, Beclin1, and ATG7. MAC promoted AMP‐activated protein kinase (AMPK) phosphorylation and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and its downstream signalling proteins P70S6K and 4EBP1. The AMPK activator AICAR upregulated LC3‐II expression through the AMPK/mTOR pathway similar to the effects of MAC. MAC‐induced LC3‐II protein expression was slightly reduced in AMPK siRNA transfected cells. MAC upregulated hypoxia‐inducible factor‐1α (HIF‐1α) and BNIP3, which are HIF‐1α‐dependent autophagic proteins. Treatment with CoCl2, which mimics hypoxia, induced autophagy similar to the effect of MAC. The HIF‐1α inhibitor YC‐1 and HIF‐1α siRNA inhibited the MAC‐induced upregulation of LC3‐II and BNIP3. These results suggest that MAC induces autophagy via the AMPK/mTOR signalling pathway and by upregulating HIF‐1α and BNIP3 protein expression in lung cancer cells.
Collapse
Affiliation(s)
- Ji-Young Seok
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Yun-Jeong Jeong
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Soon-Kyung Hwang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi, Korea
| | | | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
36
|
Daskalaki I, Gkikas I, Tavernarakis N. Hypoxia and Selective Autophagy in Cancer Development and Therapy. Front Cell Dev Biol 2018; 6:104. [PMID: 30250843 PMCID: PMC6139351 DOI: 10.3389/fcell.2018.00104] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Low oxygen availability, a condition known as hypoxia, is a common feature of various pathologies including stroke, ischemic heart disease, and cancer. Hypoxia adaptation requires coordination of intricate pathways and mechanisms such as hypoxia-inducible factors (HIFs), the unfolded protein response (UPR), mTOR, and autophagy. Recently, great effort has been invested toward elucidating the interplay between hypoxia-induced autophagy and cancer cell metabolism. Although novel types of selective autophagy have been identified, including mitophagy, pexophagy, lipophagy, ERphagy and nucleophagy among others, their potential interface with hypoxia response mechanisms remains poorly understood. Autophagy activation facilitates the removal of damaged cellular compartments and recycles components, thus promoting cell survival. Importantly, tumor cells rely on autophagy to support self-proliferation and metastasis; characteristics related to poor disease prognosis. Therefore, a deeper understanding of the molecular crosstalk between hypoxia response mechanisms and autophagy could provide important insights with relevance to cancer and hypoxia-related pathologies. Here, we survey recent findings implicating selective autophagy in hypoxic responses, and discuss emerging links between these pathways and cancer pathophysiology.
Collapse
Affiliation(s)
- Ioanna Daskalaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
37
|
Zhao Z, Xia G, Li N, Su R, Chen X, Zhong L. Autophagy Inhibition Promotes Bevacizumab-induced Apoptosis and Proliferation Inhibition in Colorectal Cancer Cells. J Cancer 2018; 9:3407-3416. [PMID: 30271503 PMCID: PMC6160673 DOI: 10.7150/jca.24201] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Aim: Anti-VEGF therapy plays an important role in the treatment of malignant tumors, especially metastatic malignant tumors. However, resistance and an inefficient response to anti-VEGF therapy exist. The current study aimed to investigate whether autophagy plays a part in the anti-tumor effect of bevacizumab in colorectal cancer cells. Methods: VEGF-A expression was measured by immunohistochemical methods. Cell viability and cell apoptosis were detected using 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and flow cytometry. Autophagy was assessed by a western blot, fluorescence microscopy and transmission electron microscopy. HIF-1α was measured using a western blot. A xenograft tumor model of colorectal cancer was constructed to determine the efficacy of the treatment of bevacizumab and chloroquine. Results: VEGF-A protein was upregulated in colorectal cancer tissue. Anti-VEGF (bevacizumab) inhibited cell viability and induced apoptosis. Moreover, bevacizumab induced autophagy. The inhibition of autophagy by chloroquine or by small interfering RNA promoted bevacizumab-induced apoptosis and proliferation inhibition. Further study showed that bevacizumab treatment significantly augmented HIF-1α. Furthermore, cells pretreated with YC-1, a HIF-1α inhibitor, displayed significantly attenuated bevacizumab-induced autophagy. Finally, a combinatory treatment of bevacizumab and chloroquine synergistically inhibited tumor growth in a xenograft tumor model of colorectal cancer cells. Conclusions: Our results showed that the inhibition of autophagy promoted the anti-tumor effect of bevacizumab and may offer a promising therapeutic strategy for colorectal cancer.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, China, 541002
| | - Guanggai Xia
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China, 200233
| | - Ni Li
- Health Management Center, People's Hospital of Guilin, Guilin, China, 541002
| | - Ruping Su
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, China, 541002
| | - Xiao Chen
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, China, 541002
| | - Li Zhong
- Department of Gastrointestinal and Hernia Surgery, People's Hospital of Guilin, Guilin, China, 541002
| |
Collapse
|
38
|
The Impact of Moderate Chronic Hypoxia and Hyperoxia on the Level of Apoptotic and Autophagic Proteins in Myocardial Tissue. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5786742. [PMID: 30186545 PMCID: PMC6116398 DOI: 10.1155/2018/5786742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/08/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
The redox imbalance and the consequent oxidative stress have been implicated in many pathological conditions, including cardiovascular diseases. The lack or the excess of O2 supply can alter the redox balance. The aim of the present study was to understand the heart responses to prolonged hypoxia or hyperoxia and how such situations may activate survival mechanisms or trigger cell death. Seven-week-old Foxn1 mice were exposed to hypoxia (10% O2), normoxia (21% O2), or hyperoxia (30% O2) for 28 days, then the heart tissue was excised and analyzed. The alterations in redox balance, housekeeping protein levels, and autophagic and apoptotic process regulation were studied. The D-ROM test demonstrated an increased oxidative stress in the hypoxic group compared to the hyperoxic group. The level of hypoxia inducible factor-1 (HIF-1α) was increased by hypoxia while HIF-2α was not affected by treatments. Chronic hypoxia activated the biochemical markers of autophagy, and we observed elevated levels of Beclin-1 while LC3B-II and p62 were constant. Nevertheless, we measured significantly enhanced number of TUNEL-positive cells and higher Bax/Bcl2 ratio in hyperoxia with respect to hypoxia. Surprisingly, our results revealed alterations in the level of housekeeping proteins. The expression of α-tubulin, total-actin, and GAPDH was increased in the hypoxic group while decreased in the hyperoxic group. These findings suggest that autophagy is induced in the heart under hypoxia, which may serve as a protective mechanism in response to enhanced oxidative stress. While prolonged hypoxia-induced autophagy leads to reduced heart apoptosis, low autophagic level in hyperoxia failed to prevent the excessive DNA fragmentation.
Collapse
|
39
|
Drevytska T, Gonchar E, Okhai I, Lynnyk O, Mankovska I, Klionsky D, Dosenko V. The protective effect of Hif3a RNA interference and HIF-prolyl hydroxylase inhibition on cardiomyocytes under anoxia-reoxygenation. Life Sci 2018; 202:131-139. [PMID: 29660430 DOI: 10.1016/j.lfs.2018.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to investigate the molecular mechanisms underlying the protective effects of hypoxia-inducible factor (HIF) signaling pathway activation in cardiomyocytes under anoxia-reoxygenation (A/R) injury. In this study, rat neonatal cardiomyocytes were pretreated with anti-Hif3A/Hif-3α siRNA or HIF-prolyl hydroxylase inhibitor prior to A/R injury. Our results showed that both HIF3A silencing and HIF-prolyl hydroxylase inhibition effectively increased the cell viability during A/R, led to changes in mRNA expression of HIF1-target genes, and reduced the loss of mitochondrial membrane potential (Δψm). Furthermore, application of anti-Hif3a siRNA led to an increase in mRNA expression of Epo, Igf1, Slc2a1/Glut-1, and Slc2a4/Glut-4. Similar results were observed with HIF-prolyl hydroxylase inhibition, which additionally upregulated the mRNA expression of Epor, Tert, and Pdk1. Hif3a RNA-interference and application of HIF-prolyl hydroxylase inhibitor during A/R modelling led to an increase of Δψm on 11.5 and 11.9 mV respectively, compared to the control groups. Thus, Hif3a RNA interference and HIF-prolyl hydroxylase inhibition protect cardiomyocytes against A/R injury via the HIF signaling pathway.
Collapse
Affiliation(s)
- T Drevytska
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine.
| | - E Gonchar
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - I Okhai
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - O Lynnyk
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - I Mankovska
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| | - D Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - V Dosenko
- Bogomoletz Institute of Physiology, National Academy of Science, Bogomoletz Street, 4, Kyiv 01024, Ukraine
| |
Collapse
|
40
|
Gerena Y, Lozada JG, Collazo BJ, Méndez-Álvarez J, Méndez-Estrada J, De Mello WC. Losartan counteracts the effects of cardiomyocyte swelling on glucose uptake and insulin receptor substrate-1 levels. Peptides 2017; 96:38-43. [PMID: 28889965 PMCID: PMC5618797 DOI: 10.1016/j.peptides.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
Abstract
A growing body of evidence demonstrates an association between Angiotensin II (Ang II) receptor blockers (ARBs) and enhanced glucose metabolism during ischemic heart disease. Despite these encouraging results, the mechanisms responsible for these effects during ischemia remain poorly understood. In this study we investigated the influence of losartan, an AT1 receptor blocker, and secreted Ang II (sAng II) on glucose uptake and insulin receptor substrate (IRS-1) levels during cardiomyocyte swelling. H9c2 cells were differentiated to cardiac muscle and the levels of myogenin, Myosin Light Chain (MLC), and membrane AT1 receptors were measured using flow cytometry. Intracellular Ang II (iAng II) was overexpressed in differentiated cardiomyocytes and swelling was induced after incubation with hypotonic solution for 40min. Glucose uptake and IRS-1 levels were monitored by flow cytometry using 2-NBDG fluorescent glucose (10μM) or an anti-IRS-1 monoclonal antibody in the presence or absence of losartan (10-7M). Secreted Angiotensin II was quantified from the medium using a specific Ang II-EIA kit. To evaluate the relationship between sAng II and losartan effects on glucose uptake, transfected cells were pretreated with the drug for 24h and then exposed to hypotonic solution in the presence or absence of the secreted peptide. The results indicate that: (1) swelling of transfected cardiomyocytes decreased glucose uptake and induced the secretion of Ang II to the extracellular medium; (2) losartan antagonized the effects of swelling on glucose uptake and IRS-1 levels in transfected cardiomyocytes; (3) the effects of losartan on glucose uptake were observed during swelling only in the presence of sAng II in the culture medium. Our study demonstrates that both losartan and sAng II have essential roles in glucose metabolism during cardiomyocyte swelling.
Collapse
Affiliation(s)
- Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Janice Griselle Lozada
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Bryan Jael Collazo
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Jarold Méndez-Álvarez
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Jennifer Méndez-Estrada
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| | - Walmor C De Mello
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, P.O. Box 365067, San Juan 00936-5067, Puerto Rico.
| |
Collapse
|
41
|
Lv B, Hua T, Li F, Han J, Fang J, Xu L, Sun C, Zhang Z, Feng Z, Jiang X. Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway. Am J Transl Res 2017; 9:2492-2499. [PMID: 28559999 PMCID: PMC5446531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising therapeutic strategy for myocardial infarction. The survival rate of the grafted MSCs is limited by the conditions of hypoxia and low nutrient levels. In this study, we investigated the role of hypoxia-inducible factor 1 alpha (Hif-1α) in oxygen-glucose deprivation (OGD)-induced injury in MSCs. Hif-1α was overexpressed or suppressed in MSCs by transfection with a Hif-1α expressing vector or Hif-1α-specific siRNA, respectively. Then MSCs were exposed to OGD, and the changes in cell viability, cell cycle distribution and apoptosis were respectively monitored by MTT assay and flow cytometry. Additionally, expression levels of Beclin1, LC3 I and LC3 II, as well phosphorylation of PI3K, AKT and mTOR were detected by RT-PCR and Western blotting. The results indicated that Hif-1α overexpression improved cell viability, reduced G1 phase cells accumulation, and suppressed apoptosis under OGD condition (P<0.05). Beclin1 expression and the LC3 II/LC3 I ratio were increased by Hif-1α overexpression, and were decreased by Hif-1α knock-down (P<0.05). In addition, PI3K, AKT and mTOR were inactivated by Hif-1α overexpression, and phosphorylated by Hif-1α knock-down (P<0.05). In conclusion, these data suggest that Hif-1α overexpression protects MSCs from OGD-induced injury via a mechanism in which autophagy and PI3K/AKT/mTOR pathway are implicated.
Collapse
Affiliation(s)
- Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Jie Fang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University; The National Key Clinical Specialty; The Engineering Technology Research Center of Education Ministry of China; Guangdong Provincial Key Laboratory on Brain Function Repair and RegenerationGuangzhou 510280, China
| |
Collapse
|
42
|
Hypoxia mimetic induces lipid accumulation through mitochondrial dysfunction and stimulates autophagy in murine preadipocyte cell line. Biochim Biophys Acta Gen Subj 2017; 1861:673-682. [DOI: 10.1016/j.bbagen.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023]
|
43
|
Chen H, Li J, Liang S, Lin B, Peng Q, Zhao P, Cui J, Rao Y. Effect of hypoxia-inducible factor-1/vascular endothelial growth factor signaling pathway on spinal cord injury in rats. Exp Ther Med 2017; 13:861-866. [PMID: 28450910 PMCID: PMC5403438 DOI: 10.3892/etm.2017.4049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to evaluate the expression of vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 (HIF-1), and to investigate the role of the HIF-1/VEGF signaling pathway following spinal cord injury (SCI). A total of 90 12-week-old Sprague Dawley rats were randomly divided into the following three groups: Sham group (operation without SCI); control group (SCI without ML228 treatment); and treatment group (SCI receiving ML228 treatment). ML228 was administered as it is an activator of HIF-1α. The control and treatment groups were subjected to spinal cord hemisection and motor activity was evaluated using the Basso, Beattie and Bresnahan (BBB) scoring system. Expression of HIF-1α and VEGF in each injured spinal cord section was assessed using immunohistochemistry. Prior to SCI, there were no significant differences in the BBB score among the three groups (P>0.05). However, one day after the operation, the BBB score of the sham group was significantly higher than that of the other two groups (P<0.05) and the BBB scores of the control and treatment groups did not differ significantly (P>0.05). BBB scores 3 and 7 days following surgery were significantly higher in the sham group than the other two groups (P<0.05) and the BBB scores of the treatment group were significantly higher than those of the control group (P<0.05). The expression of HIF-1α and VEGF proteins in all groups were measured 1, 3 and 7 days after the operation, and it was observed that their expression was higher in the treatment group than in the control group (P<0.05). Therefore, the results of the current study suggest that ML228 may effectively activate the HIF-1α/VEGF signaling pathway to promote the expression of HIF-1α and VEGF proteins within the injured segment of the spinal cord, which promotes neural functional recovery following SCI in rats. Therefore, treatment with ML228 may be developed as a novel therapeutic strategy to treat SCI.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Junjie Li
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Shuhan Liang
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Bin Lin
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Qi Peng
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Peng Zhao
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Jiawei Cui
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Yaojian Rao
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| |
Collapse
|