1
|
Xie Q, Liao YH, He WJ, Han PP, Wu J. Evaluation of Neonatal Cerebral Circulation Under Hypoxic Ischemic Risk Factors Based on Quantitative Analysis of Cerebral Veins with Magnetic Resonance Susceptibility Weighted Imaging. Clin Neuroradiol 2024; 34:859-869. [PMID: 38922421 PMCID: PMC11564194 DOI: 10.1007/s00062-024-01432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE To observe the regulation of cerebral circulation in vivo based on image segmentation algorithms for deep learning in medical imaging to automatically detect and quantify the neonatal deep medullary veins (DMVs) on susceptibility weighted imaging (SWI) images. To evaluate early cerebral circulation self-rescue for neonates undergoing risk of cerebral hypoxia-ischaemia in vivo. METHODS SWI images and clinical data of 317 neonates with or without risk of cerebral hypoxia-ischaemia were analyzed. Quantitative parameters showing the number, width, and curvature of DMVs were obtained using an image segmentation algorithm. RESULTS The number of DMVs was greater in males than in females (p < 0.01), and in term than in preterm infants (p = 0.001). The width of DMVs was greater in term than in preterm infants (p < 0.01), in low-risk than in high-risk group (p < 0.01), and in neonates without intracranial extracerebral haemorrhage (ICECH) than with ICECH (p < 0.05). The curvature of DMVs was greater in term than in preterm infants (P < 0.05). The width of both bilateral thalamic veins and anterior caudate nucleus veins were positively correlated with the number of DMVs; the width of bilateral thalamic veins was positively correlated with the width of DMVs. CONCLUSION The DMVs quantification based on image segmentation algorithm may provide more detailed and stable quantitative information in neonate. SWI vein quantification may be an observable indicator for in vivo assessment of cerebral circulation self-regulation in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Qi Xie
- Medical Imaging Department of Nansha, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 511457, Guangzhou, China.
| | - Yan-Hui Liao
- Medical Imaging Department of Nansha, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 511457, Guangzhou, China
- Department of Nuclear Medicine, Meizhou, People's Hospital, 514031, Meizhou, China
| | - Wen-Juan He
- Medical Imaging Department of Nansha, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 511457, Guangzhou, China
| | - Peng-Peng Han
- Institute of Software Application Technology, 511458, Guangzhou, China
| | - Jun Wu
- Institute of Software Application Technology, 511458, Guangzhou, China
| |
Collapse
|
2
|
Zuo HJ, Wang PX, Ren XQ, Shi HL, Shi JS, Guo T, Wan C, Li JJ. Gastrodin Regulates PI3K/AKT-Sirt3 Signaling Pathway and Proinflammatory Mediators in Activated Microglia. Mol Neurobiol 2024; 61:2728-2744. [PMID: 37930585 DOI: 10.1007/s12035-023-03743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Activated microglia and their mediated inflammatory responses play an important role in the pathogenesis of hypoxic-ischemic brain damage (HIBD). Therefore, regulating microglia activation is considered a potential therapeutic strategy. The neuroprotective effects of gastrodin were evaluated in HIBD model mice, and in oxygen glucose deprivation (OGD)-treated and lipopolysaccharide (LPS)activated BV-2 microglia cells. The potential molecular mechanism was investigated using western blotting, immunofluorescence labeling, quantitative realtime reverse transcriptase polymerase chain reaction, and flow cytometry. Herein, we found that PI3K/AKT signaling can regulate Sirt3 in activated microglia, but not reciprocally. And gastrodin exerts anti-inflammatory and antiapoptotic effects through the PI3K/AKT-Sirt3 signaling pathway. In addition, gastrodin could promote FOXO3a phosphorylation, and inhibit ROS production in LPSactivated BV-2 microglia. Moreover, the level P-FOXO3a decreased significantly in Sirt3-siRNA group. However, there was no significant change after gastrodin and siRNA combination treatment. Notably, gastrodin might also affect the production of ROS in activated microglia by regulating the level of P-FOXO3a via Sirt3. Together, this study highlighted the neuroprotective role of PI3K/AKT-Sirt3 axis in HIBD, and the anti-inflammatory, anti-apoptotic, and anti-oxidative stress effects of gastrodin on HIBD.
Collapse
Affiliation(s)
- Han-Jun Zuo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Peng-Xiang Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Xue-Qi Ren
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Hao-Long Shi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Jin-Sha Shi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Tao Guo
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China
| | - Cheng Wan
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Juan-Juan Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, Yunnan, 650500, China.
| |
Collapse
|
3
|
Cerebral perfusion changes of the basal ganglia and thalami in full-term neonates with hypoxic-ischaemic encephalopathy: a three-dimensional pseudo continuous arterial spin labelling perfusion magnetic resonance imaging study. Pediatr Radiol 2022; 52:1559-1567. [PMID: 35357515 DOI: 10.1007/s00247-022-05344-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the common causes of neurological injury in full-term neonates following perinatal asphyxia. The conventional magnetic resonance technique has low sensitivity in detecting variations in cerebral blood flow in patients with HIE. OBJECTIVE This article evaluates the clinical diagnostic value of three-dimensional pseudo-continuous arterial spin labelling (3-D pcASL) perfusion magnetic resonance imaging (MRI) for early prediction of neurobehavioral outcomes in full-term neonates with HIE. MATERIALS AND METHODS All neonates diagnosed with HIE underwent MRI (conventional and 3-D pcASL perfusion MRI). Cerebral blood flow values were measured in the basal ganglia (caudate nuclei, lenticular nuclei), thalami and white matter regions (frontal lobes, corona radiata). After 1-month follow-up, the Neonatal Behavioral Neurological Assessment scores were used to divide patients into favourable outcome group versus adverse outcome group. RESULTS Twenty-three patients were enrolled in this study. There were no statistical differences between the symmetrical cerebral blood flow values of bilateral basal ganglia, thalami and white matter regions. However, the cerebral blood flow values of grey matter nuclei were higher than the white matter regions. The average value of cerebral blood flow in the basal ganglia and thalami in the adverse outcome group was 37.28±6.42 ml/100 g/min, which is greater than the favourable outcome group (22.55 ± 3.21 ml/100 g/min) (P<0.01). The area under the curve (AUC) of 3-D pcASL perfusion MRI was 0.992 with a cutoff value of 28.75 ml/100 g/min, with a Youden's index of 0.9231. The sensitivity and specificity were 92.3% and 100%, respectively. CONCLUSION The 3-D pcASL demonstrated higher perfusion alteration in the basal ganglia and thalami of neonatal HIE with adverse outcomes. The 3-D pcASL perfusion MRI has the potential to predict neurobehavioral outcomes of neonates with HIE.
Collapse
|
4
|
Sarioglu FC, Sarioglu O, Guleryuz H, Deliloglu B, Tuzun F, Duman N, Ozkan H. The role of MRI-based texture analysis to predict the severity of brain injury in neonates with perinatal asphyxia. Br J Radiol 2022; 95:20210128. [PMID: 34919441 PMCID: PMC9153720 DOI: 10.1259/bjr.20210128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of the MRI-based texture analysis (TA) of the basal ganglia and thalami to distinguish moderate-to-severe hypoxic-ischemic encephalopathy (HIE) from mild HIE in neonates. METHODS This study included 68 neonates (15 with mild, 20 with moderate-to-severe HIE, and 33 control) were born at 37 gestational weeks or later and underwent MRI in first 10 days after birth. The basal ganglia and thalami were delineated for TA on the apparent diffusion coefficient (ADC) maps, T1-, and T2 weighted images. The basal ganglia, thalami, and the posterior limb of the internal capsule (PLIC) were also evaluated visually on diffusion-weighted imaging and T1 weighted sequence. Receiver operating characteristic curve and logistic regression analyses were used. RESULTS Totally, 56 texture features for the basal ganglia and 46 features for the thalami were significantly different between the HIE groups on the ADC maps, T2-, and T2 weighted sequences. Using a Histogram_entropy log-10 value as >1.8 from the basal ganglia on the ADC maps (p < 0.001; OR, 266) and the absence of hyperintensity of the PLIC on T1 weighted images (p = 0.012; OR, 17.11) were found as independent predictors for moderate-to-severe HIE. Using only a Histogram_entropy log-10 value had an equal diagnostic yield when compared to its combination with other texture features and imaging findings. CONCLUSION The Histogram_entropy log-10 value can be used as an indicator to differentiate from moderate-to-severe to mild HIE. ADVANCES IN KNOWLEDGE MRI-based TA may provide quantitative findings to indicate different stages in neonates with perinatal asphyxia.
Collapse
Affiliation(s)
- Fatma Ceren Sarioglu
- Division of Pediatric Radiology, Department of Radiology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| | - Orkun Sarioglu
- Department of Radiology, Izmir Democracy University School of Medicine, Izmir, Turkey
| | - Handan Guleryuz
- Division of Pediatric Radiology, Department of Radiology, Dokuz Eylul University School of Medicine, İzmir, Turkey
| | - Burak Deliloglu
- Division of Neonatology, Department of Pediatrics, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Funda Tuzun
- Division of Neonatology, Department of Pediatrics, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Nuray Duman
- Division of Neonatology, Department of Pediatrics, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Hasan Ozkan
- Division of Neonatology, Department of Pediatrics, Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
5
|
Elshal FIS, Elshehaby WA, Dawoud MAE, Shaban EA. Magnetic resonance imaging and spectroscopy in evaluation of hypoxic ischemic encephalopathy in pediatric age group. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypoxic ischemic encephalopathy is a major cause of pediatric mortality and morbidity, with possible long-term neurologic sequel, such as cerebral palsy. With improvements in care of at-risk neonates, more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. The aim of the study was to assess the additive role of magnetic resonance spectroscopy over conventional MRI in diagnosis and early prediction of pathological motor development in neonates with hypoxic ischemic encephalopathy.
Results
MRS ratios showed significant difference between unfavorable and normal outcome infants. MRS ratios as Lac/Cr, NAA/Cr and NAA/Cho within basal ganglia, thalamus and white matter can significantly differentiate between patients with normal and pathological outcome at 1 year.
Lac/Cr positively correlates with the severity of HIE. Both NAA/Cr and NAA/Cho negatively correlate with the severity of the disease. Ratios cutoff values as Lac/Cr above 0.38 and 0.42 in basal ganglia and white matter, respectively, NAA/Cr below 0.9 and 0.8 in basal ganglia and occipital white matter, respectively, and NAA/Cho below 0.29 and 0.31 in basal ganglia and frontal white matter, respectively, were significantly predictive of pathological outcome.
Conclusion
High Lac/Cr, low NAA/Cr and low NAA/Cho ratios within examined regions of the brain including deep grey matter nuclei as well as white matter are associated with an adverse outcome in infants with perinatal asphyxia. MRS is an accurate quantitative MR biomarker within the neonatal period for prediction of neurodevelopmental outcome after perinatal HIE. MRS may be useful in early clinical management decisions, and counseling parents thereby ensuring appropriate early intervention and rehabilitation.
Collapse
|
6
|
Lakatos A, Kolossváry M, Szabó M, Jermendy Á, Barta H, Gyebnár G, Rudas G, Kozák LR. Neurodevelopmental effect of intracranial hemorrhage observed in hypoxic ischemic brain injury in hypothermia-treated asphyxiated neonates - an MRI study. BMC Pediatr 2019; 19:430. [PMID: 31718607 PMCID: PMC6849254 DOI: 10.1186/s12887-019-1777-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Identification of early signs of hypoxic ischemic encephalopathy (HIE) with magnetic resonance imaging (MRI) has proven of prognostic significance. Yet, the importance of intracranial hemorrhage (ICH), being present concomitantly had not been investigated yet, despite the known influence of hypothermia on hemostasis. We aimed to determine whether presence of ICH on MRI alongside the signs of HIE have an impact on prognosis in neonates with the clinical diagnosis of HIE. METHODS A retrospective study of consecutively sampled 108 asphyxiated term infants admitted to a tertiary neonatal intensive care unit (between 2007 and 2016), treated with whole body hypothermia and having brain MRI within 1 week of life was conducted. Presence or absence of HIE signs on MRI (basal ganglia-thalamus, watershed pattern and total brain injury) and on MR spectroscopy (lactate peak with decreased normal metabolites measured by Lac/NAA ratio) and/or of the five major types of ICH were recorded. Neurodevelopmental outcome was measured with Bayley Scales of Infant Development-II (BSID-II) test. Death or abnormal neurodevelopment (BSID-II score < 85) was defined as poor outcome in Chi-square test. Multivariate logistic regression analysis was performed on survivors. RESULTS MRI and MR-spectroscopy (MRS) signs of HIE were present in 72% (n = 78). 36% (n = 39) of neonates had ICH, being mainly small in size. Chi-square test showed a relationship between neurodevelopmental outcome and initial MRI. Unadjusted logistic regression showed that neonates presenting MRI and MRS signs of HIE have 6.23 times higher odds for delayed mental development (OR = 6.2292; CI95% = [1.2642; 30.6934], p = 0.0246), than infants without imaging alterations; with no ICH effect on outcome. Adjustment for clinical and imaging parameters did not change the pattern of results, i.e. HIE remained an independent risk factor for delayed neurodevelopment (OR = 6.2496; CI95% = [1.2018; 32.4983], p = 0.0294), while ICH remained to have no significant effect. CONCLUSION HIE related MRI abnormalities proved to be important prognostic factors of poor outcome in cooled asphyxiated infants when present, suggesting that early MRI with MRS is beneficial for prognostication. Interestingly, ICHs present in about one third of all cases had no significant effect on neurodevelopmental outcome, despite the known hemostasis altering effects of hypothermia.
Collapse
Affiliation(s)
- Andrea Lakatos
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa u. 6, Budapest, 1083, Hungary
| | - Márton Kolossváry
- MTA-SE "Lendület" Cardiovascular Imaging Research Group, Semmelweis University, Városmajor u. 68, Budapest, 1122, Hungary
| | - Miklós Szabó
- First Department of Paediatrics, Semmelweis University, Bókay u. 53-54, Budapest, 1083, Hungary
| | - Ágnes Jermendy
- First Department of Paediatrics, Semmelweis University, Bókay u. 53-54, Budapest, 1083, Hungary
| | - Hajnalka Barta
- First Department of Paediatrics, Semmelweis University, Bókay u. 53-54, Budapest, 1083, Hungary
| | - Gyula Gyebnár
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa u. 6, Budapest, 1083, Hungary
| | - Gábor Rudas
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa u. 6, Budapest, 1083, Hungary
| | - Lajos R Kozák
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Balassa u. 6, Budapest, 1083, Hungary.
| |
Collapse
|
7
|
Chen S, Liu X, Mei Y, Li C, Ren D, Zhong M, Xu Y. Early identification of neonatal mild hypoxic-ischemic encephalopathy by amide proton transfer magnetic resonance imaging: A pilot study. Eur J Radiol 2019; 119:108620. [PMID: 31422164 DOI: 10.1016/j.ejrad.2019.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE This study aimed to evaluate the amide proton transfer (APT) values in neonates with mild hypoxic-ischemic encephalopathy (HIE) using APT imaging. METHOD A total of 30 full-term neonates with mild HIE (16 males and 14 females; mean postnatal age 4.2 days, age range 2-7 days) and 12 normal neonates (six males and six females; mean postnatal age 3.3 days, age range 2-5 days) underwent conventional magnetic resonance imaging and APT imaging. APT measurements were performed in multiple regions of interest (ROIs) in the brain. APT values were statistically analyzed to assess for significant differences between the mild HIE and normal neonates in different regions of the brain, and correlation with neonatal gestational age. RESULTS In 30 neonates with mild HIE, 10% (3/30) of the HIE patients had normal conventional MRI. There were significant differences in APT values of the HIE group in bilateral caudate, bilateral thalamus, bilateral centrum semiovale and left globus pallidus/putamen (p < 0.05), and no statistical difference was observed in right globus pallidus/putamen (p = 0.051) and brainstem (p = 0.073) between the two groups. Furthermore, APT values in bilateral caudate, bilateral globus pallidus/putamen, bilateral thalamus, and brainstem regions (p < 0.05) exhibited positive linear correlations with gestational age in the control group, except for bilateral centrum semiovale (right: Pearson's r = 0.554, p = 0.062; left: Pearson's r = 0.561, p = 0.058). In the mild HIE groups, no significant correlation with gestational age was found in all regions. CONCLUSIONS APT imaging is a feasible and useful technique with diagnostic capability for neonatal HIE.
Collapse
Affiliation(s)
- Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou 510515, China
| | - Xilong Liu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingjie Mei
- Philips Healthcare, Guangzhou, Guangdong 510055, China
| | - Caixia Li
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Daokun Ren
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University Guangzhou 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Application of a 3D pseudocontinuous arterial spin-labeled perfusion MRI scan combined with a postlabeling delay value in the diagnosis of neonatal hypoxic-ischemic encephalopathy. PLoS One 2019; 14:e0219284. [PMID: 31283776 PMCID: PMC6613698 DOI: 10.1371/journal.pone.0219284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 06/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Currently, there are many studies on the application of the 3D pseudocontinuous arterial spin-labeled (3D-pcASL) perfusion MRI technique for adult brain examinations, but few studies exist on the application of the technique for child brain examinations. PURPOSE To explore the application of a 3D-pcASL perfusion MRI scan combined with postlabeling delay (PLD) for assessing neonatal hypoxic-ischemic encephalopathy (HIE). MATERIALS AND METHODS Two-hundred neonates diagnosed with neonatal HIE were equally divided into five groups (40/group): 0- to <24-hour-old HIE group, 1- to <3-day-old HIE group, 3- to <7-day-old HIE group, 7- to <15-day-old HIE group and 15- to 28-day-old HIE group; 200 healthy neonates were equivalently divided. All 10 groups received a conventional and a 3D-pcASL perfusion MRI scan. For groups <3 days old, PLD values for the 3D-pcASL cerebral perfusion MRI scan were preset at 1025 ms; in all other groups, PLD values were preset at 1525 ms. CBF values for the 3D-pcASL cerebral perfusion MRI were compared between the HIE and corresponding control groups to determine the distinguishing characteristics of CBF values in HIE neonates. RESULTS On the 3D-pcASL cerebral perfusion MRI scan, in the 1- to <3-day-old groups, HIE neonate CBF values were higher than those of controls in all brain regions (excluding the frontal lobe); in the 0- to <24-hour-old and 3- to <7-day-old groups, HIE neonate CBF values were lower than those of corresponding controls in all brain regions; in the 7- to <15-day-old and 15- to 28-day-old groups, there were no significant differences in the CBF values between groups in any brain regions. CONCLUSIONS The 3D-pcASL perfusion MRI scan combined with a PLD can assist in the early diagnosis of neonatal HIE, as this method more comprehensively reflects the HIE pathological process.
Collapse
|
9
|
Lucke AM, Shetty AN, Hagan JL, Walton A, Stafford TD, Chu ZD, Rhee CJ, Kaiser JR, Sanz Cortes M. Early proton magnetic resonance spectroscopy during and after therapeutic hypothermia in perinatal hypoxic-ischemic encephalopathy. Pediatr Radiol 2019; 49:941-950. [PMID: 30918993 DOI: 10.1007/s00247-019-04383-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/04/2019] [Accepted: 03/08/2019] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) remains a significant cause of mortality and neurodevelopmental impairment despite treatment with therapeutic hypothermia. Magnetic resonance H1-spectroscopy measures concentrations of cerebral metabolites to detect derangements in aerobic metabolism. OBJECTIVE We assessed MR spectroscopy in neonates with HIE within 18-24 h of initiating therapeutic hypothermia and at 5-6 days post therapeutic hypothermia. MATERIALS AND METHODS Eleven neonates with HIE underwent MR spectroscopy of the basal ganglia and white matter. We compared metabolite concentrations during therapeutic hypothermia and post-therapeutic hypothermia and between moderate and severe HIE. RESULTS During therapeutic hypothermia, neonates with severe HIE had decreased basal ganglia N-acetylaspartate (NAA; 0.62±0.08 vs. 0.72±0.05; P=0.02), NAA + N-acetylaspartylglutamate (NAAG; 0.66±0.11 vs. 0.77±0.06; P=0.05), glycerophosphorylcholine + phosphatidylcholine (GPC+PCh; 0.28±0.05 vs. 0.38±0.06; P=0.02) and decreased white matter GPC+PCh (0.35±0.13 vs. 0.48±0.04; P=0.02) compared to neonates with moderate HIE. For all subjects, basal ganglia NAA decreased (-0.08±0.07; P=0.01), whereas white matter GPC+PCh increased (0.03±0.04; P=0.04) from therapeutic hypothermia MRI to post-therapeutic-hypothermia MRI. All metabolite values are expressed in mmol/L. CONCLUSION Decreased NAA and GPC+PCh were associated with greater HIE severity and could distinguish neonates who might benefit most from targeted additional neuroprotective therapies.
Collapse
Affiliation(s)
- Ashley M Lucke
- Fetal Medicine Institute, Children's National Health System, 111 Michigan Ave. NW, Washington, DC, 20010, USA.
- Department of Pediatrics (Neonatology), Baylor College of Medicine, Houston, TX, USA.
| | - Anil N Shetty
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Texas Children's Hospital Pavilion for Women, Houston, TX, USA
| | - Joseph L Hagan
- Department of Pediatrics (Neonatology), Baylor College of Medicine, Houston, TX, USA
| | - Allison Walton
- Department of Pediatrics (Neonatology), Baylor College of Medicine, Houston, TX, USA
| | - Tiffany D Stafford
- Department of Pediatrics (Neonatology), Baylor College of Medicine, Houston, TX, USA
| | - Zili D Chu
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher J Rhee
- Department of Pediatrics (Neonatology), Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey R Kaiser
- Departments of Pediatrics (Neonatal-Perinatal Medicine) and Obstetrics and Gynecology, Penn State Health Children's Hospital, Hershey, PA, USA
| | - Magdalena Sanz Cortes
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Texas Children's Hospital Pavilion for Women, Houston, TX, USA
| |
Collapse
|
10
|
Cakir M, Senyuva S, Kul S, Sag E, Cansu A, Yucesan FB, Yaman SO, Orem A. Neurocognitive Functions in Infants with Malnutrition; Relation with Long-chain Polyunsaturated Fatty Acids, Micronutrients Levels and Magnetic Resonance Spectroscopy. Pediatr Gastroenterol Hepatol Nutr 2019; 22:171-180. [PMID: 30899693 PMCID: PMC6416383 DOI: 10.5223/pghn.2019.22.2.171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/08/2018] [Accepted: 09/01/2018] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Malnutrition may influence neurocognitive development in children by directly affecting the brain structural development, or indirectly by affecting the children's cognition experience. Malnutrition alters the cell numbers, cell migration, synaptogenesis, and neurotransmission due to inadequate availability of necessary micronutrients to support cell growth. We aimed to analyze neurocognitive development in infants with malnutrition and its association with long chain polyunsaturated fatty acids (LC-PUFA), micronutrients levels and magnetic resonance spectroscopy (MRS) findings. METHODS The study included two groups; group 1, infants with malnutrition (n=24), group 2; healthy infants (n=21). Peripheral blood was obtained from the participants for studying micronutrients and LC-PUFA levels. The neurocognitive development was analyzed by the use of an Ankara Developmental Screening Inventory test. MRS were performed on all infants. RESULTS All parameters of neurocognitive development and serum calcium (9.6±0.9 mg/dL vs. 10.4±0.3 mg/dL, p<0.05) and magnesium (2.02±0.27 mg/dL vs. 2.2±0.14 mg/dL, p<0.05) levels were noted as being low in infants with marked malnutrition. No difference was found in LC-PUFA levels between healthy and malnourished infants. Thalamic choline/creatine levels were significantly high in infants with malnutrition (1.33±0.22 vs. 1.18±0.22, p<0.05). Total neurocognitive development in infants was positively correlated with serum calcium levels (p<0.05, r=0.381). CONCLUSION Calcium supplementation may improve neurocognitive development in malnourished infants.
Collapse
Affiliation(s)
- Murat Cakir
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sukran Senyuva
- Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sibel Kul
- Department of Radiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Sag
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Cansu
- Department of Pediatric Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Fulya Balaban Yucesan
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Serap Ozer Yaman
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Asim Orem
- Department of Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
11
|
Application of Postlabeling Delay Time in 3-Dimensional Pseudocontinuous Arterial Spin-Labeled Perfusion Imaging in Normal Children. J Comput Assist Tomogr 2019; 43:697-707. [DOI: 10.1097/rct.0000000000000911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
A Controversial Medicolegal Issue: Timing the Onset of Perinatal Hypoxic-Ischemic Brain Injury. Mediators Inflamm 2017; 2017:6024959. [PMID: 28883688 PMCID: PMC5572618 DOI: 10.1155/2017/6024959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic brain injury, as a result of chronic, subacute, and acute insults, represents the pathological consequence of fetal distress and birth or perinatal asphyxia, that is, “nonreassuring fetal status.” Hypoxic-ischemic injury (HII) is typically characterized by an early phase of damage, followed by a delayed inflammatory local response, in an apoptosis-necrosis continuum. In the early phase, the cytotoxic edema and eventual acute lysis take place; with reperfusion, additional damage should be assigned to excitotoxicity and oxidative stress. Finally, a later phase involves all the inflammatory activity and long-term neural tissue repairing and remodeling. In this model mechanism, loss of mitochondrial function is supposed to be the hallmark of secondary injury progression, and autophagy which is lysosome-mediated play a role in enhancing brain injury. Early-induced molecules driven by hypoxia, as chaperonins HSPs and ORP150, besides common markers for inflammatory responses, have predictive value in timing the onset of neonatal HII; on the other hand, clinical biomarkers for HII diagnosis, as CK-BB, LDH, S-100beta, and NSE, could be useful to predict outcomes.
Collapse
|
13
|
Zheng Y, Wang XM. Measurement of Lactate Content and Amide Proton Transfer Values in the Basal Ganglia of a Neonatal Piglet Hypoxic-Ischemic Brain Injury Model Using MRI. AJNR Am J Neuroradiol 2017; 38:827-834. [PMID: 28154122 DOI: 10.3174/ajnr.a5066] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/06/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE As amide proton transfer imaging is sensitive to protein content and intracellular pH, it has been widely used in the nervous system, including brain tumors and stroke. This work aimed to measure the lactate content and amide proton transfer values in the basal ganglia of a neonatal piglet hypoxic-ischemic brain injury model by using MR spectroscopy and amide proton transfer imaging. MATERIALS AND METHODS From 58 healthy neonatal piglets (3-5 days after birth; weight, 1-1.5 kg) selected initially, 9 piglets remained in the control group and 43 piglets, in the hypoxic-ischemic brain injury group. Single-section amide proton transfer imaging was performed at the coronal level of the basal ganglia. Amide proton transfer values of the bilateral basal ganglia were measured in all piglets. The ROI of MR spectroscopy imaging was the right basal ganglia, and the postprocessing was completed with LCModel software. RESULTS After hypoxic-ischemic insult, the amide proton transfer values immediately decreased, and at 0-2 hours, they remained at their lowest level. Thereafter, they gradually increased and finally exceeded those of the control group at 48-72 hours. After hypoxic-ischemic insult, the lactate content increased immediately, was maximal at 2-6 hours, and then gradually decreased to the level of the control group. The amide proton transfer values were negatively correlated with lactate content (r = -0.79, P < .05). CONCLUSIONS This observation suggests that after hypoxic-ischemic insult, the recovery of pH was faster than that of lactate homeostasis.
Collapse
Affiliation(s)
- Y Zheng
- From the Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - X-M Wang
- From the Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
14
|
Li HX, Feng X, Wang Q, Dong X, Yu M, Tu WJ. Diffusion tensor imaging assesses white matter injury in neonates with hypoxic-ischemic encephalopathy. Neural Regen Res 2017; 12:603-609. [PMID: 28553341 PMCID: PMC5436359 DOI: 10.4103/1673-5374.205102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With improvements in care of at-risk neonates, more and more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. Computed tomography, ultrasound, and conventional magnetic resonance imaging are helpful to diagnose brain injury, but cannot quantify white matter damage. In this study, ten full-term infants without brain injury and twenty-two full-term neonates with hypoxic-ischemic encephalopathy (14 moderate cases and 8 severe cases) underwent diffusion tensor imaging to assess its feasibility in evaluating white matter damage in this condition. Results demonstrated that fractional anisotropy, voxel volume, and number of fiber bundles were different in some brain areas between infants with brain injury and those without brain injury. The correlation between fractional anisotropy values and neonatal behavioral neurological assessment scores was closest in the posterior limbs of the internal capsule. We conclude that diffusion tensor imaging can quantify white matter injury in neonates with hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hong-Xin Li
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Department of Neonatology, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Xing Feng
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qian Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Dong
- Department of Children's Health Research Center, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| | - Min Yu
- Nantong University, Nantong, Jiangsu Province, China
| | - Wen-Juan Tu
- Department of Neonatology, Changzhou Children's Hospital, Changzhou, Jiangsu Province, China
| |
Collapse
|