1
|
Reddy KTK, Rakesh K, Prathyusha S, Gupta JK, Nagasree K, Lokeshvar R, Elumalai S, Prasad PD, Kolli D. Revolutionizing Diabetes Care: The Role of Marine Bioactive Compounds and Microorganisms. Cell Biochem Biophys 2025; 83:193-213. [PMID: 39254792 DOI: 10.1007/s12013-024-01508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/11/2024]
Abstract
Diabetes is a metabolic condition characterized by high blood glucose levels. Aquatic products like microalgae, bacteria, seagrasses, macroalgae, corals, and sponges have been investigated for potential anti-diabetic properties. We looked at polyphenols, peptides, pigments, and sterols, as well as other bioactive substances found in marine resources, to see if they could help treat or manage diabetes, in addition to describing the several treatment strategies that alter diabetes and its implications, such as inhibition of protein tyrosine phosphatases 1B (PTP1B), α-glucosidase, α-amylase, dipeptidyl peptidase IV (DPP-IV), aldose reductase, lipase, glycogen synthase kinase 3β (GSK-3β), and insulin resistance prevention, promotion of liver antioxidant capacity, natural killer cell stimulant, anti-inflammatory actions, increased AMP-activated protein kinase (AMPK) phosphorylation and sugar and metabolism of the lipid, reducing oxidative stress, and β-pancreatic cell prevention. This study highlights the revolutionary potential of marine bioactive compounds and microorganisms in transforming diabetes care. We believe in a future in which innovative, sustainable, and efficient therapeutic approaches will result in improved quality of life and better outcomes for people with diabetes mellitus by forging a new path for treatment, utilizing the power of the world's oceans, and capitalizing on the symbiotic relationship between humans and the marine ecosystem. This study area offers optimism and promising opportunities for transforming diabetes care.
Collapse
Affiliation(s)
- Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Amberpet, Hyderabad, Telangana, India
| | - Kamsali Rakesh
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Segu Prathyusha
- Department of Pharmacognosy, School of Pharmacy, Guru Nanak Institutions Technical Campus, Hyderabad, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Chaumuhan, Uttar Pradesh, India
| | - Kasturi Nagasree
- Department of Regulatory Affairs, Samskruthi College of Pharmacy Samskruti College of Pharmacy, Ghatkesar, Telangana, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Selvaraja Elumalai
- Department of Quality Control, Ambiopharm Inc, Dittman Ct, Beach Island, South Carolina, 29842, USA
| | - P Dharani Prasad
- Department of Pharmacology, Mohan Babu University, MB School of Pharmaceutical Sciences, (Erstwhile, Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Deepti Kolli
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur, Andhra Pradesh, India.
| |
Collapse
|
2
|
Ribas-Taberner MDM, Mir-Rossello PM, Gil L, Sureda A, Capó X. Potential Use of Marine Plants as a Source of Bioactive Compounds. Molecules 2025; 30:485. [PMID: 39942590 PMCID: PMC11821081 DOI: 10.3390/molecules30030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The search for bioactive natural compounds, traditionally focused on terrestrial environments, has increasingly expanded to the seas and oceans, opening new frontiers for exploration. Among the diverse organisms inhabiting these ecosystems, marine phanerogams have emerged as a promising source of health-promoting bioactive compounds. This review highlights the distinctive chemical diversity of seagrasses including species such as Posidonia oceanica, Zostera marina, and Cymodocea nodosa, among others, and focusses on the growing interest in natural therapies as alternatives to conventional pharmaceuticals. Compounds such as polysaccharides or secondary metabolites such as polyphenol and flavonoids produced by marine plants exhibit a broad range of beneficial properties, including anti-inflammatory, antibacterial, antioxidant, and antidiabetic qualities. This review describes how these compounds can mitigate inflammation, promote skin health, and combat oxidative stress. Moreover, certain marine extracts have demonstrated potential to inhibit cancer cell growth and improve metabolic disorders like obesity and diabetes. The manuscript also discusses the potential of marine plant extracts in the development of novel therapeutic agents to address various illnesses, including infections, chronic diseases, and metabolic disorders. It emphasizes the need for further research to fully elucidate the mechanisms underlying the activity of these bioactive compounds and their potential therapeutic applications. In summary, this study highlights marine plants as a valuable reservoir for identifying organic molecules, paving the way for innovative advancements in medical and healthcare interventions.
Collapse
Affiliation(s)
- Maria del Mar Ribas-Taberner
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Mallorca, Spain; (M.d.M.R.-T.); (A.S.)
| | - Pere Miquel Mir-Rossello
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122 Palma, Balearic Islands, Spain;
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)-Agro-Environmental and Water Economics Institute (INAGEA), E-07122 Palma, Balearic Islands, Spain;
| | - Lorenzo Gil
- Research Group on Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB)-Agro-Environmental and Water Economics Institute (INAGEA), E-07122 Palma, Balearic Islands, Spain;
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Mallorca, Spain; (M.d.M.R.-T.); (A.S.)
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Community Nutrition & Oxidative Stress, Research Group, Health Research Institute of Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Mallorca, Spain
| | - Xavier Capó
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, E-07122 Palma de Mallorca, Mallorca, Spain; (M.d.M.R.-T.); (A.S.)
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), E-07120 Palma de Mallorca, Mallorca, Spain
| |
Collapse
|
3
|
Abdel-Malek AR, Moustafa AY, Salem SH. Antimicrobial and cytotoxic activities of flavonoid and phenolics extracted from Sepia pharaonis ink (Mollusca: Cephalopoda). BMC Biotechnol 2024; 24:54. [PMID: 39135187 PMCID: PMC11318128 DOI: 10.1186/s12896-024-00880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Several studies have been reported previously on the bioactivities of different extracts of marine molluscs. Therefore, we decided to evaluate the cytotoxic and antimicrobial activities of S. pharaonis ink as a highly populated species in the Red Sea. We extracted the flavonoids from the ink and analyzed their composition. Then we evaluated systematically the cytotoxic and antimicrobial properties of this extract. A pharmacokinetic study was also conducted using SwissADME to assess the potential of the identified flavonoids and phenolic compounds from the ink extract to be orally active drug candidates. RESULTS Cytotoxic activity was evaluated against 5 cell lines (MCF7, Hep G2, A549, and Caco2) at different concentrations (0.4 µg/mL, 1.6 µg/mL, 6.3 µg/mL, 25 µg/mL, 100 µg/mL). The viability of examined cells was reduced by the extract in a concentration-dependent manner. The highest cytotoxic effect of the extract was recorded against A549 and Hep G2 cancer cell lines cells with IC50 = 2.873 and 7.1 µg/mL respectively. The mechanistic analysis by flow cytometry of this extract on cell cycle progression and apoptosis induction indicated that the extract arrests the cell cycle at the S phase in Hep G2 and MCF7, while in A549 cell arrest was recorded at G1 phase. However, it causes G1 and S phase arrest in Caco2 cancer cell line. Our data showed that the extract has significant antimicrobial activity against all tested human microbial pathogens. However, the best inhibitory effect was observed against Candida albicans ATCC 10,221 with a minimum inhibitory concentration (MIC) of 1.95 µg/mL. Pharmacokinetic analysis using SwissADME showed that most flavonoids and phenolics compounds have high drug similarity as they satisfy Lipinski's criteria and have WLOGP values below 5.88 and TPSA below 131.6 Å2. CONCLUSION S. pharaonis ink ethanolic extract showed a promising cytotoxic potency against various cell lines and a remarkable antimicrobial action against different pathogenic microbial strains. S. pharaonis ink is a novel source of important flavonoids that could be used in the future in different applications as a naturally safe and feasible alternative of synthetic drugs.
Collapse
Affiliation(s)
- Asmaa R Abdel-Malek
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt
| | - Alaa Y Moustafa
- Zoology Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Shimaa H Salem
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
4
|
Perry MJ, Curic M, Scott AL, Ritmejerytė E, Rahayu DUC, Keller PA, Oelgemöller M, Yeshi K, Wangchuk P. The In Vitro Antioxidant and Anti-Inflammatory Activities of Selected Australian Seagrasses. Life (Basel) 2024; 14:710. [PMID: 38929693 PMCID: PMC11205046 DOI: 10.3390/life14060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies have shown that seagrasses could possess potential applications in the treatment of inflammatory disorders. Five seagrass species (Zostera muelleri, Halodule uninervis, Cymodocea rotundata, Syringodium isoetifolium, and Thalassia hemprichii) from the Great Barrier Reef (QLD, Australia) were thus collected, and their preliminary antioxidant and anti-inflammatory activities were evaluated. From the acetone extracts of five seagrass species subjected to 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging antioxidant assay, the extract of Z. muelleri had the highest activity (half minimal concentration of inhibition (IC50) = 138 µg/mL), with the aerial parts (IC50 = 119 µg/mL) possessing significantly higher antioxidant activity than the roots (IC50 ≥ 500 µg/mL). A human peripheral blood mononuclear cells (PBMCs) assay with bacterial lipopolysaccharide (LPS) activation and LEGENDplex cytokine analysis showed that the aerial extract of Z. muelleri significantly reduced the levels of inflammatory cytokines tumour necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 by 29%, 74%, and 90%, respectively, relative to the LPS treatment group. The aerial extract was thus fractionated with methanol (MeOH) and hexane fraction, and purification of the MeOH fraction by HPLC led to the isolation of 4-hydroxybenzoic acid (1), luteolin (2), and apigenin (3) as its major constituents. These compounds have been previously shown to reduce levels of TNF-α, IL-1β, and IL-6 and represent some of the major bioactive components of Z. muelleri aerial parts. This investigation represents the first study of the antioxidant and anti-inflammatory properties of Z. muelleri and the first isolation of small molecules from this species. These results highlight the potential for using seagrasses in treating inflammation and the need for further investigation.
Collapse
Affiliation(s)
- Matthew J. Perry
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia (K.Y.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Mara Curic
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia (K.Y.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
- Hochschule Fresenius, Faculty of Chemistry & Biology, University of Applied Sciences, Limburger Strasse 2, 65510 Idstein, Germany
| | - Abigail L. Scott
- Centre of Tropical Water & Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4878, Australia;
| | - Edita Ritmejerytė
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia (K.Y.)
| | - Dyah U. C. Rahayu
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Paul A. Keller
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Michael Oelgemöller
- Hochschule Fresenius, Faculty of Chemistry & Biology, University of Applied Sciences, Limburger Strasse 2, 65510 Idstein, Germany
| | - Karma Yeshi
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia (K.Y.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Phurpa Wangchuk
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD 4878, Australia (K.Y.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| |
Collapse
|
5
|
Elekofehinti OO. Computer-aided identification of bioactive compounds from Gongronema latifolium leaf with therapeutic potential against GSK3β, PTB1B and SGLT2. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
6
|
Grignon-Dubois M, Rezzonico B, Blanchet H. Phenolic fingerprints of the Pacific seagrass Phyllospadixtorreyi - Structural characterization and quantification of undescribed flavonoid sulfates. PHYTOCHEMISTRY 2022; 201:113256. [PMID: 35690121 DOI: 10.1016/j.phytochem.2022.113256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Four undescribed flavonoid sulfates were isolated from Phyllospadix torreyi S. Watson foliar tissue. In addition, nine known flavonoid sulfates and three phenolic acids were isolated from the same extract, of which seven had never been reported for the genus Phyllospadix. Structural elucidation of individual phenolics was assigned using complementary informations from their spectral evidence (HPLC-DAD, LC-MS, NMR, and UV) and chemical behavior. The inter-annual variation in phenolic concentrations was determined by quantitative HPLC-DAD over a three-year period. The results showed a relative constancy of phenolic content over time and the high prevalence of flavonoid disulfates (70-90% of the total flavonoids detected). All samples were found dominated by the unreported nepetin 7, 3'-disulfate and 5-methoxyluteolin 7, 3'-disulfate, followed by luteolin 7, 3'-disulfate. Considering the economic potential of flavonoid sulfates in the pharmaceutical and nutraceutical segments, a sample of detrital leaves was also analyzed. The same phenolic pattern was found and the concentration of the individuals, although lower than in fresh material, makes this abundant biomass of interest for dietary and pharmaceutical applications.
Collapse
|
7
|
Comparative Study of the Pharmacological Properties of Luteolin and Its 7,3′-Disulfate. Mar Drugs 2022; 20:md20070426. [PMID: 35877719 PMCID: PMC9318810 DOI: 10.3390/md20070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
The global spread of the metabolic syndrome, oncological and viral diseases forces researchers to pay increased attention to the secondary metabolites of marine hydrobionts, which often have a high therapeutic potential in the treatment of these pathologies and are effective components of functional food. The flavone luteolin (LT), as one of the most widely distributed and studied plant metabolites, is distinguished by a diverse spectrum of biological activity and a pleiotropic nature of the mechanism of action at the molecular, cellular and organismal levels. However, there is still practically no information on the spectrum of biological activity of its sulfated derivatives, which are widely represented in seagrasses of the genus Zostera. In the present work, a comparative study of the pharmacological properties of LT and its 7,3′-disulfate was carried out with a brief analysis of the special role of sulfation in the pharmacological activity of flavonoids.
Collapse
|
8
|
Khojasteh A, Mirjalili MH, Alcalde MA, Cusido RM, Eibl R, Palazon J. Powerful Plant Antioxidants: A New Biosustainable Approach to the Production of Rosmarinic Acid. Antioxidants (Basel) 2020; 9:E1273. [PMID: 33327619 PMCID: PMC7765155 DOI: 10.3390/antiox9121273] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Modern lifestyle factors, such as physical inactivity, obesity, smoking, and exposure to environmental pollution, induce excessive generation of free radicals and reactive oxygen species (ROS) in the body. These by-products of oxygen metabolism play a key role in the development of various human diseases such as cancer, diabetes, heart failure, brain damage, muscle problems, premature aging, eye injuries, and a weakened immune system. Synthetic and natural antioxidants, which act as free radical scavengers, are widely used in the food and beverage industries. The toxicity and carcinogenic effects of some synthetic antioxidants have generated interest in natural alternatives, especially plant-derived polyphenols (e.g., phenolic acids, flavonoids, stilbenes, tannins, coumarins, lignins, lignans, quinines, curcuminoids, chalcones, and essential oil terpenoids). This review focuses on the well-known phenolic antioxidant rosmarinic acid (RA), an ester of caffeic acid and (R)-(+)-3-(3,4-dihydroxyphenyl) lactic acid, describing its wide distribution in thirty-nine plant families and the potential productivity of plant sources. A botanical and phytochemical description is provided of a new rich source of RA, Satureja khuzistanica Jamzad (Lamiaceae). Recently reported approaches to the biotechnological production of RA are summarized, highlighting the establishment of cell suspension cultures of S. khuzistanica as an RA chemical biofactory.
Collapse
Affiliation(s)
- Abbas Khojasteh
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran;
| | - Miguel Angel Alcalde
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Rosa M. Cusido
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| | - Regine Eibl
- Campus Grüental, Institute of Biotechnology, Biotechnological Engineering and Cell Cultivation Techniques, Zurich University of Applied Sciences, CH-8820 Wädenswill, Switzerland;
| | - Javier Palazon
- Laboratori de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII sn, 08028 Barcelona, Spain; (A.K.); (M.A.A.); (R.M.C.)
| |
Collapse
|
9
|
Mateos R, Pérez-Correa JR, Domínguez H. Bioactive Properties of Marine Phenolics. Mar Drugs 2020; 18:E501. [PMID: 33007997 PMCID: PMC7601137 DOI: 10.3390/md18100501] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds from marine organisms are far less studied than those from terrestrial sources since their structural diversity and variability require powerful analytical tools. However, both their biological relevance and potential properties make them an attractive group deserving increasing scientific interest. The use of efficient extraction and, in some cases, purification techniques can provide novel bioactives useful for food, nutraceutical, cosmeceutical and pharmaceutical applications. The bioactivity of marine phenolics is the consequence of their enzyme inhibitory effect and antimicrobial, antiviral, anticancer, antidiabetic, antioxidant, or anti-inflammatory activities. This review presents a survey of the major types of phenolic compounds found in marine sources, as well as their reputed effect in relation to the occurrence of dietary and lifestyle-related diseases, notably type 2 diabetes mellitus, obesity, metabolic syndrome, cancer and Alzheimer's disease. In addition, the influence of marine phenolics on gut microbiota and other pathologies is also addressed.
Collapse
Affiliation(s)
- Raquel Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain;
| | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Macul, Santiago 7810000, Chile;
| | - Herminia Domínguez
- CINBIO, Department of Chemical Engineering, Faculty of Sciences, Campus Ourense, Universidade de Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
10
|
Impact of improving eating habits and rosmarinic acid supplementation on rat vascular and neuronal system in the metabolic syndrome model. Br J Nutr 2020; 125:757-767. [PMID: 32814604 DOI: 10.1017/s000711452000327x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Decreasing high fat and high carbohydrate intake, together with the administration of natural bioactive drugs, is assumed to have a protective effect in the prevention and amelioration of the metabolic syndrome (MetS). The aim of the study was to evaluate effects of diet improvement and/or a phenolic compound (rosmarinic acid; RA) administration (100 mg/kg per d) on metabolic as well as functional changes of vessels and hippocampus caused by the MetS-like conditions. The MetS-like conditions were induced by a high-fat-fructose diet (HFFD) in Prague hereditary hypertriacylglycerolaemic (HTG) rats. The effect of diet improvement and RA administration was studied using biochemical and functional measurements. Consumption of HFFD by HTG rats resulted in the development of conditions like the MetS. The fat and fructose restriction from the diet led to amelioration of basic indicators of metabolic state in rats fed HFFD and to amendment parameters of glucose tolerance test and reduction of the IL-1β serum levels. Moreover, aortic endothelial function was improved with an impact on blood pressure. The functional measurement of electrophysiology of the hippocampus showed that long-term potentiation of neuronal transmission course deteriorated after HFFD was improved by energy restriction. Oral administration of RA had a supporting effect not only on lipid and glucose metabolism but also on the vascular endothelium. Combination of both types of therapy induced beneficial effect on glucose tolerance and lipid peroxidation. Thus, combined improvement of diet habits and treatment with natural bioactive drugs is assumed to have protective effect in prevention and amelioration of the MetS.
Collapse
|
11
|
Nasab SB, Homaei A, Pletschke BI, Salinas-Salazar C, Castillo-Zacarias C, Parra-Saldívar R. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Bunte K, Hensel A, Beikler T. Polyphenols in the prevention and treatment of periodontal disease: A systematic review of in vivo, ex vivo and in vitro studies. Fitoterapia 2018; 132:30-39. [PMID: 30496806 DOI: 10.1016/j.fitote.2018.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/13/2018] [Accepted: 11/24/2018] [Indexed: 12/18/2022]
Abstract
Plant-derived polyphenols with antimicrobial and immunomodulatory characteristics appear to provide a variety of oral health benefits. Thus, the aim of the present study was to review the scientific literature to identify these effects of polyphenols on periodontal pathogens and inflammation. A MEDLINE search from 1st January 2013 to 18th January 2018 was performed to identify studies reporting polyphenol-containing plant extracts. Reports regarding pure compounds and essential oils, as well as effects on bacteria that are not defined as periodontal pathogens, were excluded. Thirty-eight studies matched the selection criteria. Studies on immunomodulatory effects included in vitro, ex vivo, and in vivo studies (n = 23), whereas studies reporting antibacterial effects against periodontal pathogens included only in vitro studies (n = 18). Three studies were included in both groups. The antibacterial effects were characterised by inhibition of bacterial growth, adhesion to oral cells, and enzymatic activity. Decreased secretion of pro-inflammatory and increased secretion of anti-inflammatory cytokines were demonstrated. Higher attachment levels, lower inflammation, and bone loss were reported by in vivo studies. Due to the high heterogeneity, it is difficult to draw clear conclusions for applicability; nevertheless, polyphenols have great potential as antimicrobial and immunomodulatory substances in the treatment and prevention of periodontal disease.
Collapse
Affiliation(s)
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstr. 48, 48149 Münster, Germany.
| | - Thomas Beikler
- University Medical Centre Hamburg-Eppendorf, Department of Periodontics, Preventive and Restorative Dentistry, Building O58, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
13
|
Honari N, Pouraboli I, Gharbi S. Antihyperglycemic property and insulin secreting activity of hydroalcoholic shoot extract of Thymus caramanicus Jalas: A wild predominant source of food additive in folk medicine. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|