1
|
Shi F, Chen L, Qiao Y, Deng C, Yao Q, Sun N. Cross-Referencing Multifluid Metabolic Profiles on Hollow Dodecahedral Nanocages for Enhanced Disease Status Identification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410638. [PMID: 39905898 DOI: 10.1002/smll.202410638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/15/2025] [Indexed: 02/06/2025]
Abstract
The development of matrices has shown great potential for fluid metabolic analysis in disease detection. However, single-fluid metabolomic analysis has been recognized as insufficient to fully capture the complexities of diseases such as liver disease, which limits detection accuracy. To this end, the hollow dodecahedral nanocages-based analytical tool is developed, featuring four-high characteristics of speed, throughput, efficiency, and patient compliance, to enhance extraction of multifluid metabolic profiles. The cross-referencing of these profiles among different liver diseases, including hepatocellular carcinoma (HCC), chronic liver disease (CLD), and healthy controls, enhances the diagnosis of liver diseases, particularly achieving near-perfect discrimination for HCC with an AUC value of 0.990, significantly outperforming any single fluid analysis. Additionally, the dynamic changes in expression levels of the key biomarkers throughout disease progression are explored, providing insights into their temporal evolution, and highlighting their role in monitoring disease status. This work highlights that multifluid metabolic analysis can comprehensively and sensitively reflect the disease status, enabling precise identification of complex diseases and facilitating personalized treatment.
Collapse
Affiliation(s)
- Fangying Shi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yiming Qiao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Department of Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Gastroenterology and hepatology, Zhongshan hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Shanghai institute of liver diseases, Shanghai, 200032, China
- Shanghai Geriatric Medical center, Shanghai, 201104, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai institute of liver diseases, Shanghai, 200032, China
| |
Collapse
|
2
|
Zhao B, Jin Y, Shi M, Yu L, Li G, Cai W, Lu Z, Wei C. Gut microbial dysbiosis is associated with metabolism and immune factors in liver fibrosis mice. Int J Biol Macromol 2024; 258:129052. [PMID: 38161012 DOI: 10.1016/j.ijbiomac.2023.129052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gut microbial dysbiosis has always served as a potential factor in the occurrence and development of liver fibrosis. Liver and gut microflora can regulate each other through the gut-liver axis. In this study, the 16S rRNA and RNA-seq were chosen to sequence gut microbiota alteration and liver differentially expressed genes (DEGs) in carbon tetrachloride (CCl4) included-liver fibrosis mice, and analyze the correlations between gut microbiota constituents and DEGs. Results indicated that, CCl4 significantly increased the abundance of Desulfobactera in the phylum level, destroyed gut microbiota balance in the genus levels, especially Enterorhabdus and Desulfovibrio. Through analysis, 1416 genes were found differentially expressed in mice liver tissue in the CCl4 Group, compared with the Control Group; and the DEGs were mainly involved in the lipid metabolic process and immune system process. The correlation analysis revealed that the relative abundance of microbiota phylum (Desulfobactera) and genus (Enterorhabdus and Desulfovibrio) was negatively correlated with the metabolism related genes, while positively correlated with immune-related genes and the genes enriched in PI3K-Akt signaling pathway. To sum up, CCl4 can partially regulate gene expression in metabolism, immune response and the PI3K/Akt pathway, and further maintain the stability of the gut environment in liver fibrosis mice.
Collapse
Affiliation(s)
- Bingbing Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Ye Jin
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Meixin Shi
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Ligen Yu
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Guopeng Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Wenjie Cai
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
3
|
Zhang L, Zhou Q, Zhang J, Cao K, Fan C, Chen S, Jiang H, Wu F. Liver transcriptomic and proteomic analyses provide new insight into the pathogenesis of liver fibrosis in mice. Genomics 2023; 115:110738. [PMID: 37918454 DOI: 10.1016/j.ygeno.2023.110738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a kind of progressive liver injury reaction. The goal of this study was to achieve a more detailed understanding of the molecular changes in response to CCl4-induced LF through the identification of a differentially expressed liver transcriptomic and proteomic. RESULTS A total of 1224 differentially expressed genes (DEGs) and 302 differentially expressed proteins (DEPs) were significantly identified at the transcriptomic and proteomic level, respectively, and 69 genes (hereafter "cor-DEGs-DEPs" genes) were detected at both levels. Pathway enrichment analysis showed that these cor-DEGs-DEPs genes were significantly enriched in 133 pathways. Importantly, among the cor-DEGs-DEPs genes, Gstm1, Gstm3, Ephx1 and Gstp1 were shown to be associated with metabolic pathways, and confirmed by RT-qPCR and parallel reaction monitoring (PRM) verification. CONCLUSIONS Through the combined analysis of transcriptomic and proteomic data, this study provides valuable insights into the potential mechanism of the pathogenesis of LF, and lays a theoretical foundation for the further development of targeted therapy for LF.
Collapse
Affiliation(s)
- Lili Zhang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Jiafu Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Kefeng Cao
- Departments of Laboratory Medicine, Traditional Chinese Medical Hospital of Taihe County, Fuyang, China.
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Sen Chen
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.
| | - Furong Wu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Ma ZC, Liu MQ, Liu GQ, Zhou ZY, Ren XL, Sun L, Wang M. A Comprehensive Quality Evaluation of Cimicifugae Rhizoma Using UPLC-Q-Orbitrap-MS/MS Coupled with Multivariate Chemometric Methods. J AOAC Int 2023; 106:1313-1322. [PMID: 37252833 DOI: 10.1093/jaoacint/qsad064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cimicifugae Rhizoma, known in Chinese as Shengma, is a common medicinal material in traditional Chinese medicine (TCM), mainly used for treating wind-heat headaches, sore throat, uterine prolapse, and other diseases. OBJECTIVES An approach using a combination of ultra-performance liquid chromatography (UPLC), MS, and multivariate chemometric methods was designed to assess the quality of Cimicifugae Rhizoma. METHODS All materials were crushed into powder and the powdered sample was dissolved in 70% aqueous methanol for sonication. Chemometric methods, including hierarchical cluster analysis (HCA), principal component analysis (PCA), and orthogonal partial least-squares discriminant analysis (OPLS-DA), were adopted to classify and perform a comprehensive visualization study of Cimicifugae Rhizoma. The unsupervised recognition models of HCA and PCA obtained a preliminary classification and provided a basis for classification. In addition, we constructed a supervised OPLS-DA model and established a prediction set to further validate the explanatory power of the model for the variables and unknown samples. RESULTS Exploratory research found that the samples were divided into two groups, and the differences were related to appearance traits. The correct classification of the prediction set also demonstrated a strong predictive ability of the models for new samples. Subsequently, six chemical makers were characterized by UPLC-Q-Orbitrap-MS/MS, and the content of four components was determined. The results of the content determination revealed the distribution of representative chemical markers caffeic acid, ferulic acid, isoferulic acid, and cimifugin in two classes of samples. CONCLUSIONS This strategy can provide a reference for assessing the quality of Cimicifugae Rhizoma, which is significant for the clinical practice and QC of Cimicifugae Rhizoma. HIGHLIGHTS The HCA, PCA and OPLS-DA models visually classify Cimicifugae Rhizoma by appearance traits and obtain the chemical markers that influence the classification. The training and prediction sets were built to demonstrate the accuracy of the classification. Advanced UPLC-Q-Orbitrap-MS/MS technology provides powerful elucidation of critical chemical markers.
Collapse
Affiliation(s)
- Zi Cheng Ma
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Mei Qi Liu
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Guo Qiang Liu
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Zhen Yu Zhou
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Xiao Liang Ren
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Lili Sun
- Tianjin University of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin 301617, China
| | - Meng Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
5
|
Zahid S, Dafre AL, Currais A, Yu J, Schubert D, Maher P. The Geroprotective Drug Candidate CMS121 Alleviates Diabetes, Liver Inflammation, and Renal Damage in db/db Leptin Receptor Deficient Mice. Int J Mol Sci 2023; 24:6828. [PMID: 37047807 PMCID: PMC10095029 DOI: 10.3390/ijms24076828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
db/db mice, which lack leptin receptors and exhibit hyperphagia, show disturbances in energy metabolism and are a model of obesity and type 2 diabetes. The geroneuroprotector drug candidate CMS121 has been shown to be effective in animal models of Alzheimer's disease and aging through the modulation of metabolism. Thus, the hypothesis was that CMS121 could protect db/db mice from metabolic defects and thereby reduce liver inflammation and kidney damage. The mice were treated with CMS121 in their diet for 6 months. No changes were observed in food and oxygen consumption, body mass, or locomotor activity compared to control db/db mice, but a 5% reduction in body weight was noted. Improved glucose tolerance and reduced HbA1c and insulin levels were also seen. Blood and liver triglycerides and free fatty acids decreased. Improved metabolism was supported by lower levels of fatty acid metabolites in the urine. Markers of liver inflammation, including NF-κB, IL-18, caspase 3, and C reactive protein, were lowered by the CMS121 treatment. Urine markers of kidney damage were improved, as evidenced by lower urinary levels of NGAL, clusterin, and albumin. Urine metabolomics studies provided further evidence for kidney protection. Mitochondrial protein markers were elevated in db/db mice, but CMS121 restored the renal levels of NDUFB8, UQCRC2, and VDAC. Overall, long-term CMS121 treatment alleviated metabolic imbalances, liver inflammation, and reduced markers of kidney damage. Thus, this study provides promising evidence for the potential therapeutic use of CMS121 in treating metabolic disorders.
Collapse
Affiliation(s)
- Saadia Zahid
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurobiology Research Laboratory, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Alcir L. Dafre
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- The Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
7
|
Rashad WA, Saadawy SF, Refaay NE. Mitigating effect of L-carnitine against atrazine-induced hepatotoxicity: histopathological and biochemical analyses in albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22034-22045. [PMID: 36282381 PMCID: PMC9938065 DOI: 10.1007/s11356-022-23568-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Atrazine (ATR) is an extensively used herbicide that is often found in drinking water and waterways. After metabolization and excretion in the liver, ATR residues or its metabolites were found in tissues causing harmful effects mainly to the endocrine system and liver. This study aimed to elucidate the toxic impact of ATR on the liver and possible ameliorative effects of L-carnitine (LC). It utilized 30 adult male albino rats divided into three equal groups; the control group received 0.5 cc distilled water orally for 14 days, an ATR-treated group received ATR in a dose of 400 mg/kg BW dissolved in distilled water by oral gavage daily for 14 days, and a protected group (ATR + LC) received 400 mg/kg BW of ATR dissolved in distilled water, plus 100 mg/kg LC dissolved in distilled water by oral gavage daily for 14 days. At the end of the experiment, the liver tissue was prepared for histological and biochemical analyses and showed significant elevation of liver enzymes and oxidative parameters, altered expression of apoptotic and antiapoptotic genes, and hepatic degenerative changes in the ATR-treated group. In conclusion, atrazine induces oxidative stress, inflammation, and apoptosis in the liver of rats, and these toxic effects can be alleviated by L-carnitine.
Collapse
Affiliation(s)
- Walaa A Rashad
- Faculty of Medicine, Human Anatomy & Embryology Department, Zagazig University, Zagazig, Egypt.
| | - Sara F Saadawy
- Faculty of Medicine, Medical Biochemistry Department, Zagazig University, Zagazig, Egypt
| | - Nehal E Refaay
- Faculty of Medicine, Human Anatomy & Embryology Department, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Wan C, Gu T, Ling J, Qin Y, Luo J, Sun L, Hua L, Zhao J, Jiang S. Perfluorooctane sulfonate aggravates CCl4-induced hepatic fibrosis via HMGB1/TLR4/Smad signaling. ENVIRONMENTAL TOXICOLOGY 2022; 37:983-994. [PMID: 34990082 DOI: 10.1002/tox.23458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread environmental pollutant and may cause a variety of adverse health effects. The hepatotoxicity of PFOS has attracted particular attention, given the fact that the liver has one of the highest PFOS accumulations among human tissues. In this study, we revealed that subchronic PFOS exposure may exacerbate carbon tetrachloride (CCl4 )-induced liver fibrosis in animal models. Administration with 1 mg/kg PFOS every other day for 56 days dramatically enhanced CCl4 -mediated liver injury and hepatic stellate cell (HSC) activation. Furthermore, PFOS exposure may promote the activation of high-mobility group box 1 (HMGB1)/toll-like receptor 4 (TLR4) signaling pathway through inducing the secretion of HMGB1 from hepatocytes. PFOS exposure induced the translocation of HMGB1 from the nucleus into the cytoplasm of hepatocytes and cultured BRL-3A cells at a starting concentration of 50 μM. This process is accompanied with concurrent flux of calcium, suggesting a link between calcium signaling and HMGB1 release following PFOS exposure. Finally, we showed that PFOS-exposed conditional medium (PFOS-CM) of hepatocytes may induce the translocation of Smad2/3 in HSCs in a TLR4-dependent manner. Taken together, subchronic PFOS exposure might play a pro-fibrotic role via a HMGB1/TLR4-dependent Smad signaling in HSCs. Our findings for the first time uncovered an involvement of PFOS exposure in liver fibrosis via HMGB1/TLR4/Smad signaling.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Tianye Gu
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Junyi Ling
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Yi Qin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- Haimen District Center for Disease Control and Prevention, Haimen, Nantong, People's Republic of China
| | - Jiashan Luo
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lingli Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Lu Hua
- Department of Oncology, Taizhou People's Hospital, Taizhou, China
| | - Jianya Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Shengyang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
9
|
Ammar NM, Hassan HA, Abdallah HMI, Afifi SM, Elgamal AM, Farrag ARH, El-Gendy AENG, Farag MA, Elshamy AI. Protective Effects of Naringenin from Citrus sinensis (var. Valencia) Peels against CCl 4-Induced Hepatic and Renal Injuries in Rats Assessed by Metabolomics, Histological and Biochemical Analyses. Nutrients 2022; 14:841. [PMID: 35215494 PMCID: PMC8924893 DOI: 10.3390/nu14040841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Citrus fruits are grown worldwide for their special nutritive and several health benefits. Among citrus bioactives, naringenin, a major flavanone, exhibits a potential hepatoprotective effect that is not fully elucidated. Herein, serum biochemical parameters and histopathological assays were used to estimate the hepatoprotective activity of naringenin, isolated from Citrus sinensis (var. Valencia) peels, in CCl4-induced injury in a rat model. Further, GC-MS-based untargeted metabolomics was used to characterize the potential metabolite biomarkers associated with its activity. Present results revealed that naringenin could ameliorate the increases in liver enzymes (ALT and AST) induced by CCl4 and attenuate the pathological changes in liver tissue. Naringenin decreased urea, creatinine and uric acid levels and improved the kidney tissue architecture, suggesting its role in treating renal disorders. In addition, naringenin increased the expression of the antiapoptoic cell marker, Bcl-2. Significant changes in serum metabolic profiling were noticed in the naringenin-treated group compared to the CCl4 group, exemplified by increases in palmitic acid, stearic acid, myristic acid and lauric acids and decrease levels of alanine, tryptophan, lactic acid, glucosamine and glucose in CCl4 model rats. The results suggested that naringenin's potential hepato- and renoprotective effects could be related to its ability to regulate fatty acids (FAs), amino acids and energy metabolism, which may become effective targets for liver and kidney toxicity management. In conclusion, the current study presents new insights into the hepato- and renoprotective mechanisms of naringenin against CCl4-induced toxicity.
Collapse
Affiliation(s)
- Naglaa M. Ammar
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba A. Hassan
- Therapeutic Chemistry Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt; (N.M.A.); (H.A.H.)
| | - Heba M. I. Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt;
| | - Abdelbaset M. Elgamal
- Chemistry of Microbial and Natural Products Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt;
| | - Abdel Razik H. Farrag
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza 12622, Egypt;
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Cairo 12622, Egypt;
| | - Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo 11562, Egypt;
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Abdelsamed I. Elshamy
- Chemistry of Natural Compounds Department, Pharmaceutical and Drugs Research Institute, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
10
|
Kim M, Hur S, Kim KH, Cho Y, Kim K, Kim HR, Nam KT, Lim KM. A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate. Biomol Ther (Seoul) 2021; 30:126-136. [PMID: 34580237 PMCID: PMC8902451 DOI: 10.4062/biomolther.2021.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/05/2022] Open
Abstract
Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sumin Hur
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Yejin Cho
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Keunyoung Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Daegu 38430, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
11
|
Karabulut D, Akin AT, Unsal M, Lekesizcan A, Ozyazgan TM, Keti DB, Yakan B, Ekebas G. L-Carnitine ameliorates the liver by regulating alpha-SMA, iNOS, HSP90, HIF-1alpha, and RIP1 expressions of CCL4-toxic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:184-190. [PMID: 33953857 PMCID: PMC8061326 DOI: 10.22038/ijbms.2020.47711.10990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/05/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Carbon tetrachloride (CCL4) toxicity triggers fibrosis, activating various mechanisms within the cell. We aimed to create damage with CCL4 and investigate the effectiveness of L-carnitine on the mechanisms we identified. MATERIALS AND METHODS Forty rats were divided into 5 groups with equal number of rats in each group. Group I: Control group, Group II: L-carnitine group, 200 mg/kg L-carnitine twice a week, Group III: CCL4 group, 0.2 ml/100 gr CCL4, IP, dissolved in olive oil 2 times a week during 6 weeks; Group IV: L-carnitine + CCL4 group, 200 mg/kg L-carnitine 24 hr before 0.2 ml/100 g CCL4 application twice a week; Group V: CCL4 + L-carnitine, 200 mg/kg L-carnitine half an hour after 0.2 ml/100 g CCL4 application. The liver was evaluated histologically. Immunohistochemically stained with α-SMA, iNOS, HSP90, HIF-1α, and RIP1. TNF-α, TGF-β, AST, ALT, ALP, and GGT measurements were evaluated. RESULTS In the classical lobule periphery, an increase in lipid accumulation and a decrease in glycogen accumulation were observed. After immunohistochemical measurements and biochemical analyzes, an increase in the expression density of all proteins was observed in group III. In group IV and V, an improvement in tissue and a decrease in protein expression densities were observed. CONCLUSION iNOS serves as a free radical scavenger in response to damage caused by increased toxicity of α-SMA, HSP90, and HIF-1α. Especially, increased RIP1 level in the tissue indicates the presence of necrosis in the tissue after CCL4-toxicity. Supplementing the amount of endogenous L-carnitine with supplementation provides a significant improvement in the tissue.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Tugrul Akin
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Murat Unsal
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayça Lekesizcan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tuğçe Merve Ozyazgan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Didem Barlak Keti
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Görkem Ekebas
- Department of Pathology, Faculty of Veterinary, Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
Sun L, Zhao M, Zhao Y, Wang M, Man J, Zhao C. Investigation of the therapeutic effect of Shaoyao Gancao decoction on CCL 4 -induced liver injury in rats by metabolomic analysis. Biomed Chromatogr 2020; 34:e4940. [PMID: 32634249 DOI: 10.1002/bmc.4940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Shaoyao Gancao decoction (SGD) is a famous Chinese traditional prescription for treating liver injury. In this research, we investigated the therapeutic effects of SGD on liver injury and its metabolic mechanisms using 1 H NMR and UPLC-MS. Serum biochemical indicators and histopathological methods were used to determine the mechanism of action of SGD in treating liver injury. An orthogonal partial least squares discriminant analysis method was used to screen potential metabolic markers, and the MetaboAnalyst and KEGG PATHWAY databases were used to find relevant metabolic pathways. A total of 26 significant metabolites were identified with significant changes in their abundance levels, and these metabolites are involved in many metabolic pathways such as amino acid and lipid metabolism. The changes in biomarker levels reveal the therapeutic effect of SGD on liver injury, which is of great significance to speculate on possible metabolic mechanisms.
Collapse
Affiliation(s)
- Lin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingyi Man
- School of Business Administration, Shenyang Pharmaceutical University, Shenyang, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
13
|
Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019; 8:cells8111423. [PMID: 31726658 PMCID: PMC6912636 DOI: 10.3390/cells8111423] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality worldwide, as it ultimately leads to cirrhosis, which is estimated to affect up to 2% of the global population. Hepatic fibrosis is confirmed by liver biopsy, and the erroneous nature of this technique necessitates the search for noninvasive alternatives. However, current biomarker algorithms for hepatic fibrosis have many limitations. Given that the liver is the largest organ and a major metabolic hub in the body, probing the metabolic signature of hepatic fibrosis holds promise for the discovery of new markers and therapeutic targets. Regarding individual metabolic pathways, accumulating evidence shows that hepatic fibrosis leads to alterations in carbohydrate metabolism, as aerobic glycolysis is aggravated in activated hepatic stellate cells (HSCs) and the whole fibrotic liver; in amino acid metabolism, as Fischer’s ratio (branched-chain amino acids/aromatic amino acids) decreases in patients with hepatic fibrosis; and in lipid metabolism, as HSCs lose vitamin A-containing lipid droplets during transdifferentiation, and cirrhotic patients have decreased serum lipids. The current review also summarizes recent findings of metabolic alterations relevant to hepatic fibrosis based on systems biology approaches, including transcriptomics, proteomics, and metabolomics in vitro, in animal models and in humans.
Collapse
|
14
|
Zhao J, Xie C, Mu X, Krausz KW, Patel DP, Shi X, Gao X, Wang Q, Gonzalez FJ. Metabolic alterations in triptolide-induced acute hepatotoxicity. Biomed Chromatogr 2018; 32:e4299. [PMID: 29799631 DOI: 10.1002/bmc.4299] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/06/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
Triptolide, a major active constitute of Tripterygium wilfordii Hook. F, is prescribed for the treatment of autoimmune diseases in China. One of its most severe adverse effects observed in the clinical use is hepatotoxicity, but the mechanism is still unknown. Therefore, the present study applied an LC/MS-based metabolomic analysis to characterize the metabolomic changes in serum and liver induced by triptolide in mice. Mice were administered triptolide by gavage to establish the acute liver injury model, and serum biochemical and liver histological analyses were applied to assess the degree of toxicity. Multivariate data analyses were performed to investigate the metabolic alterations. Potential metabolites were identified using variable importance in the projection values and Student's t-test. A total of 30 metabolites were observed that were significantly changed by triptolide treatment and the abundance of 29 metabolites was correlated with the severity of toxicity. Pathway analysis indicated that the mechanism of triptolide-induced hepatotoxicity was related to alterations in multiple metabolic pathways, including glutathione metabolism, tricarboxylic acid cycle, purine metabolism, glycerophospholipid metabolism, taurine and hypotaurine metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism and amino acid metabolism. The current study provides new mechanistic insights into the metabolic alterations that lead to triptolide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jie Zhao
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China.,National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Cen Xie
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xiyan Mu
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China
| | - Kristopher W Krausz
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Daxesh P Patel
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Xiaowei Shi
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China
| | - Xiaoxia Gao
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| | - Qiao Wang
- Hebei Medical University, School of Pharmaceutical Science, Shijiazhuang, Hebei, China
| | - Frank J Gonzalez
- National Cancer Institute, National Institutes of Health, Laboratory of Metabolism, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|