1
|
Cao M, Duan Z, Wang X, Gong P, Zhang L, Ruan B. Curcumin Promotes Diabetic Foot Ulcer Wound Healing by Inhibiting miR-152-3p and Activating the FBN1/TGF-β Pathway. Mol Biotechnol 2024; 66:1266-1278. [PMID: 38206528 PMCID: PMC11087368 DOI: 10.1007/s12033-023-01027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The objective of this study was to investigate the mechanism of curcumin in diabetic foot ulcer (DFU) wound healing. A DFU rat model was established, and fibroblasts were cultured in a high-glucose (HG) environment to create a cell model. Various techniques, including Western blot, RT‒qPCR, flow cytometry, Transwell, cell scratch test and H&E staining, were employed to measure the levels of relevant genes and proteins, as well as to assess cell proliferation, apoptosis, migration, and pathological changes. The results showed that miR-152-3p was overexpressed in DFU patients, while FBN1 was underexpressed. Curcumin was found to inhibit fibroblast apoptosis, promote proliferation, migration, and angiogenesis in DFU rats, and accelerate wound healing in DFU rats. In addition, overexpression of miR-152-3p weakened the therapeutic effect of curcumin, while overexpression of FBN1 reversed the effects of the miR-152-3p mimic. Further investigations into the underlying mechanisms revealed that curcumin expedited wound healing in DFU rats by restoring the FBN1/TGF-β pathway through the inhibition of miR-152-3p. In conclusion, curcumin can suppress the activity of miR-152-3p, which, in turn, leads to the rejuvenation of the FBN1/TGF-β pathway and accelerates DFU wound healing.
Collapse
Affiliation(s)
- Mei Cao
- Endocrinology Department, The Third People's Hospital of Yunnan Province, Kunming, 650011, Yunnan, China
| | - Zhisheng Duan
- Endocrinology Department, The Third People's Hospital of Yunnan Province, Kunming, 650011, Yunnan, China
| | - Xianting Wang
- Endocrinology Department, Clinical Medical College of Dali University, Dali, 671000, Yunnan, China
| | - Pan Gong
- Endocrinology Department, Clinical Medical College of Dali University, Dali, 671000, Yunnan, China
| | - Limei Zhang
- Endocrinology Department, Clinical Medical College of Dali University, Dali, 671000, Yunnan, China
| | - Bin Ruan
- Occupational Diseases Department, The Third People's Hospital of Yunnan Province, No. 292 Beijing Road, Guandu District, Kunming, 650011, Yunnan, China.
| |
Collapse
|
2
|
Liu F, Zhao L, Wu T, Yu W, Li J, Wang W, Huang C, Diao Z, Xu Y. Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Front Pharmacol 2024; 15:1364616. [PMID: 38659578 PMCID: PMC11039818 DOI: 10.3389/fphar.2024.1364616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
As the quality of life improves, the incidence of diabetes mellitus and its microvascular complications (DMC) continues to increase, posing a threat to people's health and wellbeing. Given the limitations of existing treatment, there is an urgent need for novel approaches to prevent and treat DMC. Autophagy, a pivotal mechanism governing metabolic regulation in organisms, facilitates the removal of dysfunctional proteins and organelles, thereby sustaining cellular homeostasis and energy generation. Anomalous states in pancreatic β-cells, podocytes, Müller cells, cardiomyocytes, and Schwann cells in DMC are closely linked to autophagic dysregulation. Natural products have the property of being multi-targeted and can affect autophagy and hence DMC progression in terms of nutrient perception, oxidative stress, endoplasmic reticulum stress, inflammation, and apoptosis. This review consolidates recent advancements in understanding DMC pathogenesis via autophagy and proposes novel perspectives on treating DMC by either stimulating or inhibiting autophagy using natural products.
Collapse
Affiliation(s)
- Fengzhao Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lijuan Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Yu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jixin Li
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenru Wang
- Xi yuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chengcheng Huang
- Department of Endocrinology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Zhihao Diao
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Liu P, Zhu W, Wang Y, Ma G, Zhao H, Li P. Chinese herbal medicine and its active compounds in attenuating renal injury via regulating autophagy in diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1142805. [PMID: 36942026 PMCID: PMC10023817 DOI: 10.3389/fendo.2023.1142805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease worldwide, and there is a lack of effective treatment strategies. Autophagy is a highly conserved lysosomal degradation process that maintains homeostasis and energy balance by removing protein aggregates and damaged organelles. Increasing evidence suggests that dysregulated autophagy may contribute to glomerular and tubulointerstitial lesions in the kidney under diabetic conditions. Emerging studies have shown that Chinese herbal medicine and its active compounds may ameliorate diabetic kidney injury by regulating autophagy. In this review, we summarize that dysregulation or insufficiency of autophagy in renal cells, including podocytes, glomerular mesangial cells, and proximal tubular epithelial cells, is a key mechanism for the development of DKD, and focus on the protective effects of Chinese herbal medicine and its active compounds. Moreover, we systematically reviewed the mechanism of autophagy in DKD regulated by Chinese herb compound preparations, single herb and active compounds, so as to provide new drug candidates for clinical treatment of DKD. Finally, we also reviewed the candidate targets of Chinese herbal medicine regulating autophagy for DKD. Therefore, further research on Chinese herbal medicine with autophagy regulation and their targets is of great significance for the realization of new targeted therapies for DKD.
Collapse
Affiliation(s)
- Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yang Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Guijie Ma
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Hailing Zhao, ; Ping Li,
| |
Collapse
|
5
|
Jin QH, Hu XJ, Zhao HY. Curcumin activates autophagy and attenuates high glucose‑induced apoptosis in HUVECs through the ROS/NF‑κB signaling pathway. Exp Ther Med 2022; 24:596. [PMID: 35949325 PMCID: PMC9353459 DOI: 10.3892/etm.2022.11533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Qi-Hui Jin
- Department of Geriatric Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xu-Jun Hu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Hai-Yan Zhao
- Department of Internal Medicina, Shangcheng District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
6
|
Yaribeygi H, Maleki M, Majeed M, Jamialahmadi T, Sahebkar A. Renoprotective Roles of Curcumin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:531-544. [PMID: 34981504 DOI: 10.1007/978-3-030-73234-9_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of herb-based therapies is increasing over the past decades. These agents have been reported to provide many beneficial effects in many experimental and clinical studies. Curcumin is one of these agents which has potent pharmacological effects enabling it for the prevent and treatment of many diseases and pathologies such as renal disorders, hyperglycemia, oxidative stress, hypertension, and dyslipidemia. However, the exact molecular mechanisms mediating these renoprotective effects of curcumin are not well established. So, in the current study, we surveyed for possible renoprotective roles of curcumin and concluded how curcumin protects against renal injuries.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Mei Y, Shen X, Wang X, Zhang M, Li Q, Yan J, Xu J, Xu Y. Expression of autophagy and apoptosis-related factors in the periodontal tissue of experimental diabetic rats: a histomorphometric, microtomographic and immunohistochemical study. PeerJ 2021; 9:e11577. [PMID: 34178461 PMCID: PMC8197035 DOI: 10.7717/peerj.11577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/18/2021] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to investigate the expression of autophagy-related factors microtubule-associated protein l light chain 3 (LC3) and the apoptosis-related factors BCL2-associated X protein (Bax) and B cell lymphoma-2 (Bcl-2) in the periodontal tissue of experimental diabetic rats. These data were used to explore the potential mechanism in diabetes-induced periodontal tissue lesions. Methods A total of 32 Sprague Dawley (SD) rats were randomly assigned into diabetes (group D, n = 16) and control groups (group N, n = 16). The diabetic group was induced by intraperitoneal injection of 1% streptozotocin (STZ, 60 mg/kg) and the control group was injected with citrate buffer (0.1mol/L). Rats were sacrificed after 4 and 8 weeks of feeding and collected as D1, N1 groups and D2, N2 groups, and the maxilla were retained for analysis. The changes in periodontal tissue structure were observed by hematoxylin-eosin (HE) staining. The expression and distribution of LC3, Bax and Bcl-2 in the periodontium of the rats was detected by immunohistochemical (SP) staining. Results Diabetic rats showed several changes compared to control animals including sparse alveolar bone trabecular structure, loss of the lamina dura and absorption of the local alveolar bone. The positive expression level of LC3 in the gingival epithelial, periodontal ligament and alveolar bone of group D1 was significantly higher than in the N1, N2 and D2 groups (P < 0.05). The level of Bax expression in the group D2 rats was significantly higher than those in the N1, N2 and D1 groups (P < 0.05), while the positive degree of Bcl-2 was significantly lower than those of other groups (P < 0.001). LC3 was negatively correlated with Bax and was irrelevant with Bcl-2; Bcl-2 was not correlated with Bax. Conclusions The expression of LC3, Bax and Bcl-2 changes in the periodontal tissue of diabetic rats may indicate that autophagy and apoptotic are involved in the process of periodontal tissue damage in diabetic rats. These changes may be one of the mechanisms of periodontal tissue lesions.
Collapse
Affiliation(s)
- Youmin Mei
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Xiang Shen
- Department of Stomatology, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoqian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Qiao Li
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Junyi Yan
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Jiali Xu
- Department of Periodontology, Nantong Stomatological Hospital, The Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Chang J, Yan J, Li X, Liu N, Zheng R, Zhong Y. Update on the Mechanisms of Tubular Cell Injury in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:661076. [PMID: 33859992 PMCID: PMC8042139 DOI: 10.3389/fmed.2021.661076] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence supports a role of proximal tubular (PT) injury in the progression of diabetic kidney disease (DKD), in patients with or without proteinuria. Research on the mechanisms of the PT injury in DKD could help us to identify potential new biomarkers and drug targets for DKD. A high glucose transport state and mismatched local hypoxia in the PT of diabetes patients may be the initiating factors causing PT injury. Other mechanism such as mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, ER stress, and deficiency of autophagy interact with each other leading to more PT injury by forming a vicious circle. PT injury eventually leads to the development of tubulointerstitial inflammation and fibrosis in DKD. Many downstream signaling pathways have been demonstrated to mediate these diseased processes. This review focuses mostly on the novel mechanisms of proximal renal tubular injury in DKD and we believe such review could help us to better understand the pathogenesis of DKD and identify potential new therapies for this disease.
Collapse
Affiliation(s)
- Jingsheng Chang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Yan
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ni Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Dragoș D, Manea MM, Timofte D, Ionescu D. Mechanisms of Herbal Nephroprotection in diabetes mellitus. J Diabetes Res 2020; 2020:5710513. [PMID: 32695828 PMCID: PMC7362309 DOI: 10.1155/2020/5710513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of kidney morbidity. Despite the multilayered complexity of the mechanisms involved in the pathogenesis of DN, the conventional treatment is limited to just a few drug classes fraught with the risk of adverse events, including the progression of renal dysfunction. Phytoceuticals offer a promising alternative as they act on the many-sidedness of DN pathophysiology, multitargeting its intricacies. This paper offers a review of the mechanisms underlying the protective action of these phytoagents, including boosting the antioxidant capabilities, suppression of inflammation, averting the proliferative and sclerosing/fibrosing events. The pathogenesis of DN is viewed as a continuum going from the original offense, high glucose, through the noxious products it generates (advanced glycation end-products, products of oxidative and nitrosative stress) and the signaling chains consequently brought into action, to the harmful mediators of inflammation, sclerosis, and proliferation that eventually lead to DN, despite the countervailing attempts of the protective mechanisms. Special attention was given to the various pathways involved, pointing out the ability of the phytoagents to hinder the deleterious ones (especially those leading to, driven by, or associated with TGF-β activation, SREBP, Smad, MAPK, PKC, NF-κB, NLRP3 inflammasome, and caspase), to promote the protective ones (PPAR-α, PPAR-γ, EP4/Gs/AC/cAMP, Nrf2, AMPK, and SIRT1), and to favorably modulate those with potentially dual effect (PI3K/Akt). Many phytomedicines have emerged as potentially useful out of in vitro and in vivo studies, but the scarcity of human trials seriously undermines their usage in the current clinical practice-an issue that stringently needs to be addressed.
Collapse
Affiliation(s)
- Dorin Dragoș
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- Nephrology Clinic of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| | - Maria Mirabela Manea
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- National Institute of Neurology and Cerebrovascular Diseases, Şos. Berceni, Nr. 10-12, Sector 4, Bucharest 041914, Romania
| | - Delia Timofte
- Dialysis Department of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| | - Dorin Ionescu
- Faculty of General Medicine, “Carol Davila” University of Medicine and Pharmacy, str. Dionisie Lupu nr. 37, sect 1, Bucharest 020021, Romania
- Nephrology Clinic of University Emergency Hospital, Splaiul Independentei nr. 169, sect. 5, Bucharest 050098, Romania
| |
Collapse
|
10
|
Tu Q, Li Y, Jin J, Jiang X, Ren Y, He Q. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. PHARMACEUTICAL BIOLOGY 2019; 57:778-786. [PMID: 31741405 PMCID: PMC6882478 DOI: 10.1080/13880209.2019.1688843] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/05/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Context: Curcumin could ameliorate diabetic nephropathy (DN), but the mechanism remains unclear.Objective: The efficacy of curcumin on epithelial-to-mesenchymal transition (EMT) of podocyte and autophagy in vivo and in vitro was explored.Materials and methods: Thirty male Sprague-Dawley rats were divided into the normal, model and curcumin (300 mg/kg/d, i.g., for 8 weeks) groups. Rats received streptozotocin (50 mg/kg, i.p.) and high-fat-sugar diet to induce DN. Biochemical indicators and histomorphology of renal tissues were observed. In addition, cultured mouse podocytes (MPC5) was induced to EMT with serum from DN rats, and then exposed to curcumin (40 µM) with or without fumonisin B1, an Akt specific activator or 3BDO, the mTOR inducer. Western blot analysed the levels of EMT and autophagy associated proteins.Results: Administration of curcumin obviously reduced the levels of blood glucose, serum creatinine, urea nitrogen and urine albumen (by 28.4, 37.6, 33.5 and 22.4%, respectively), and attenuated renal histomorphological changes in DN rats. Podocytes were partially fused and autophagic vacuoles were increased in curcumin-treated rats. Furthermore, curcumin upregulated the expression of E-cadherin and LC3 proteins and downregulated the vimentin, TWIST1, p62, p-mTOR, p-Akt and P13K levels in DN rats and MPC5 cells. However, fumonisin B1 or 3BDO reversed the effects of curcumin on the expression of these proteins in cells.Discussion and conclusions: The protection against development of DN by curcumin treatment involved changes in inducing autophagy and alleviating podocyte EMT, through the PI3k/Akt/mTOR pathway, providing the scientific basis for further research and clinical applications of curcumin.
Collapse
Affiliation(s)
- Qiudi Tu
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Xinxin Jiang
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Yan Ren
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People’s Hospital, Hangzhou, China
- People’s Hospital of Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Kidney Disease of Traditional Chinese Medicine in Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Role of Autophagy on Heavy Metal-Induced Renal Damage and the Protective Effects of Curcumin in Autophagy and Kidney Preservation. ACTA ACUST UNITED AC 2019; 55:medicina55070360. [PMID: 31295875 PMCID: PMC6681384 DOI: 10.3390/medicina55070360] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Curcumin is a hydrophobic polyphenol compound extracted from the rhizome of turmeric. The protective effect of curcumin on kidney damage in multiple experimental models has been widely described. Its protective effect is mainly associated with its antioxidant and anti-inflammatory properties, as well as with mitochondrial function maintenance. On the other hand, occupational or environmental exposure to heavy metals is a serious public health problem. For a long time, heavy metals-induced nephrotoxicity was mainly associated with reactive oxygen species overproduction and loss of endogenous antioxidant activity. However, recent studies have shown that in addition to oxidative stress, heavy metals also suppress the autophagy flux, enhancing cell damage. Thus, natural compounds with the ability to modulate and restore autophagy flux represent a promising new therapeutic strategy. Furthermore, it has been reported in other renal damage models that curcumin’s nephroprotective effects are related to its ability to regulate autophagic flow. The data indicate that curcumin modulates autophagy by classic signaling pathways (suppression of protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and/or by stimulation of adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-dependent kinase (ERK) pathways). Moreover, it allows lysosomal function preservation, which is crucial for the later stage of autophagy. However, future studies of autophagy modulation by curcumin in heavy metals-induced autophagy flux impairment are still needed.
Collapse
|
12
|
Wang Y, Zhao H, Wang Q, Zhou X, Lu X, Liu T, Zhan Y, Li P. Chinese Herbal Medicine in Ameliorating Diabetic Kidney Disease via Activating Autophagy. J Diabetes Res 2019; 2019:9030893. [PMID: 31828168 PMCID: PMC6885296 DOI: 10.1155/2019/9030893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD), a leading cause of end-stage renal disease (ESRD), has become a serious public health problem worldwide and lacks effective therapies due to its complex pathogenesis. Recent studies suggested defective autophagy involved in the pathogenesis and progression of DKD. Chinese herbal medicine, as an emerging option for the treatment of DKD, could improve diabetic kidney injury by activating autophagy. In this review, we briefly summarize underlying mechanisms of autophagy dysregulation in DKD, including AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), and the sirtuin (Sirt) pathways, and we particularly concentrate on the current status of Chinese herbal medicine treating DKD by regulating autophagy. The advances in our understanding regarding the treatment of DKD via regulating autophagy with Chinese herbal medicine will enhance the clinical application of Chinese medicine as well as discovery of novel therapeutic agents for diabetic patients.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hailing Zhao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian Wang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 10029, China
| | - Xuefeng Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Beijing University of Chinese Medicine, Beijing 10029, China
| | - Xiaoguang Lu
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tongtong Liu
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yongli Zhan
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
13
|
Zhang W, Song J, Zhang Y, Ma Y, Yang J, He G, Chen S. Intermittent high glucose-induced oxidative stress modulates retinal pigmented epithelial cell autophagy and promotes cell survival via increased HMGB1. BMC Ophthalmol 2018; 18:192. [PMID: 30081847 PMCID: PMC6091182 DOI: 10.1186/s12886-018-0864-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background In this study, we evaluated the effects of intermittent high glucose on oxidative stress production in retinal pigmented epithelial (RPE) cells and explored whether the mechanisms of autophagy and apoptosis in oxidative stress are associated with high-mobility group box 1 (HMGB1) protein. Methods Cultured human RPE cell line ARPE-19 cells were exposed to intermittent high glucose-induced oxidative stress. Reactive oxygen species (ROS) was determined by 2′, 7′-dichlorofluorescin diacetate (DCFH-DA); and malonyldialdehyde (MDA), superoxide dismutase (SOD) by commercial kits. Transmission electron microscopy was used to observe the generation of autophagosome. And MTT assay was used to examine the effect of autophagy on cell viability. For the inhibition experiments, cells were pre-incubated with lysosomal inhibitors NH4Cl or N-acetyl cysteine (NAC).Western blot was used to measure the expression patterns of autophagic markers, including LC3 and p62. The expression of HMGB1 was detected by immunohistochemistry.Cells were pre-incubated with HMGB1 inhibitor ethyl pyruvate (EP) ,then detected the expression pattern of autophagic markers and level of cellular ROS. Results We found that intermittent high glucose significantly increased oxidative stress levels (as indicated by ROS, MDA, SOD), increased in the generation of autophagosome, decreased the level of p62, induced conversion of LC3 I to LC3 II. We further demonstrated that the NH4Cl/NAC inhibited intermittent high glucose-induced autophage by altered level of LC3 and p62. Intermittent high glucose-induced autophagy is independent of HMGB1 signaling, inhibition of HMGB1 release by EP decreased expression pattern of autophagic markers and level of cellular viability. Conclusions Under intermittent high glucose condition, autophagy may be required for preventing oxidative stress-induced injury in RPE. HMGB1 plays important roles in signaling for both autophagy and oxidative stress.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Jian Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Yue Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Yingxue Ma
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Jing Yang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Guanghui He
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China
| | - Song Chen
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, No. 4, Gansu Road, Tianjin, 300020, China.
| |
Collapse
|