1
|
Huang X, Bai X, Yi J, Hu T, An L, Gao H. The activation of P38MAPK Signaling Pathway Impedes the Delivery of the Cx43 to the Intercalated Discs During Cardiac Ischemia-Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1140-1154. [PMID: 38696081 DOI: 10.1007/s12265-024-10515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 10/29/2024]
Abstract
Ischemic heart disease is caused by coronary artery occlusion. Despite the increasing number and success of interventions for restoring coronary artery perfusion, myocardial ischemia-reperfusion (I/R) injury remains a significant cause of morbidity and mortality worldwide. Inspired by the impact of I/R on the Cx43 trafficking to the intercalated discs (ICDs), we aim to explore the potential mechanisms underlying the downregulation of Cx43 in ICDs after myocardial I/R. Gene set enrichment analysis (GSEA), Western blotting, and immunofluorescence experiments showed that Myocardial I/R activated the P38MAPK signaling pathway and promoted microtubule depolymerization. Inhibition of P38MAPK signaling pathway activation attenuated I/R-induced microtubule depolymerization. The ability of SB203580 to recover the distribution of Cx43 and electrophysiological parameters in I/R myocardium depended on microtubule stability. Our study suggests that microtubule depolymerization caused by the activation of the P38MAPK signaling pathway is an important mechanism underlying the downregulation of Cx43 in ICDs after myocardial I/R.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xue Bai
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jing Yi
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tingju Hu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Li An
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Gao
- Guizhou Hospital, Branch of the First Affiliated Hospital of Sun Yat-Sen University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
2
|
Pikwong F, Phutiyothin C, Chouyratchakarn W, Baipaywad P, Mongkolpathumrat P, Kumphune S. Gelatin-coated silicon oxide nanoparticles encapsulated recombinant human secretory leukocyte protease inhibitor (rhSLPI) reduced cardiac cell death against an in vitro simulated ischaemia/reperfusion injury. Heliyon 2023; 9:e20150. [PMID: 37809945 PMCID: PMC10559932 DOI: 10.1016/j.heliyon.2023.e20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Ischemic Heart Disease (IHD) is the main global cause of death. Previous studies indicated that recombinant human secretory leukocyte protease inhibitor (rhSLPI) exhibits a cardioprotective effect against myocardial ischaemia/reperfusion (I/R) injury. However, SLPI has a short half-life in vivo due to digestion by protease enzymes in circulation. The application of nanoparticle encapsulation could be beneficial for SLPI delivery. Several types of nanoparticles have been developed to encapsulate SLPI and applied in some disease models. However, silica nanoparticles for rhSLPI delivery, particularly on myocardial I/R injury, have never been studied. In this study, we aimed to fabricate gelatin-covered silica nanoparticles (GSNPs) to encapsulate rhSLPI and cardioprotective effect of GSNP-SLPI against an in vitro simulated ischaemia/reperfusion (sI/R). Silica dioxide nanoparticles (SNPs) were fabricated followed by incubation with 0.33 mg/mL of rhSLPI. Then, SNPs containing rhSLPI were coated with gelatin (GSNPs). The GSNPs and rhSLPI-GSNPs were characterized by particle size, zeta potential, and morphology scanning electron microscope (SEM). The concentration of rhSLPI in rhSLPI-GSNPs and drug release was determined by ELISA. Then, cytotoxicity and cardioprotective effect were determined by incubation of GSNPs or rhSLPI-GSNPs with rat cardiac myoblast cell line (H9c2) subjected to simulated ischaemia/reperfusion (sI/R). The results showed the particle size of SNPs, GSNPs, and rhSLPI-GSNPs was 273, 300, and 301 nm, with a zeta potential of -57.21, -22.40, and -24.50 mV, respectively. One milligram of rhSLPI-GSNPs contains 235 ng of rhSLPI. The rhSLPI-GSNPs showed no cytotoxicity on cardiac cells. Treatment with 10 μg/ml of rhSLPI-GSNPs could significantly reduce sI/R induced cardiac cell injury and death. In conclusion, this is the first study to show successful of fabricating novel rhSLPI-encapsulating gelatin-covered silica nanoparticles (rhSLPI-GSNPs) and the cardioprotective effects of rhSLPI-GSNPs against cardiac cell injury and death from myocardial ischaemia/reperfusion.
Collapse
Affiliation(s)
- Faprathan Pikwong
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| | - Podsawee Mongkolpathumrat
- Cardio-Thoracic Technology program, Chulabhorn International College of Medicine, Thammasat University (Rangsit Center), Cooperative Learning Center, Piyachart 2, 99 Moo 18 Klong Luang, Rangsit, Pathumthani 12120, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
| |
Collapse
|
3
|
Lin Y, Dai W, Chen Y, He X, Xu Y. Neutrophil-to-platelet ratio predicts mortality following percutaneous coronary intervention in patients with acute ST-elevation myocardial infarction. Front Physiol 2022; 13:1011048. [PMID: 36200052 PMCID: PMC9527305 DOI: 10.3389/fphys.2022.1011048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to evaluate the value of neutrophil-to-platelet ratio (NPR) in predicting all-cause mortality in patients with ST-elevation myocardial infarction (STEMI) after primary percutaneous coronary intervention (PCI). We enrolled 186 patients with STEMI who underwent primary PCI in the Third Affiliated Hospital of Guangzhou Medical University between January 2017 and December 2018. Based on the NPR values, the patients were divided into two groups: the NPR >0.035 group (n = 82) and the NPR ≤0.035 group (n = 104). All-cause mortality of the patients was followed up for 3 years. By the end of 3 years, 109 (58.6%) patients survived, 53 (28.5%) died, and 24 (12.9%) were lost to follow-up. Univariate analyses found that NPR was associated with all-cause mortality (p < 0.05). In COX regression analyses, patients in the high NPR group had a higher risk of all-cause death than those in the low NPR group (HR = 2.296, 95% CI: 1.150–4.582). These results indicate that NPR could predict all-cause death in 3 years after primary PCI in patients STEMI. NPR values may be useful in risk stratification and in specifying individualized treatment in patients with STEMI. In addition, NPR is a low-cost and easily accessible indicator, if its strong predictive value is confirmed in further studies of other large populations, it can be introduced into clinical practice for effective application.
Collapse
Affiliation(s)
| | | | | | | | - Yunhong Xu
- *Correspondence: Xiaoqing He, ; Yunhong Xu,
| |
Collapse
|
4
|
Mongkolpathumrat P, Nernpermpisooth N, Kijtawornrat A, Pikwong F, Chouyratchakarn W, Yodsheewan R, Unajak S, Kumphune S. Adeno-associated virus 9 vector-mediated cardiac-selective expression of human secretory leukocyte protease inhibitor attenuates myocardial ischemia/reperfusion injury. Front Cardiovasc Med 2022; 9:976083. [PMID: 36061560 PMCID: PMC9437585 DOI: 10.3389/fcvm.2022.976083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Protease enzymes contribute to the initiation of cardiac remodeling and heart failure after myocardial ischemic/reperfusion (I/R) injury. Protease inhibitors attenuate protease activity and limit left ventricular dysfunction and remodeling. Previous studies showed the cardioprotective effect of secretory leukocyte protease inhibitor (SLPI) against I/R injury. However, overexpression of SLPI gene in cardiovascular diseases has only been investigated in an in vitro experiment. Here, cardiac-selective expression of the human secretory leukocyte protease inhibitor (hSLPI) gene and its effect on I/R injury were investigated. Adeno-associated virus (AAV) serotype 9 carrying hSLPI under the control of cardiac-selective expression promoter (cardiac troponin, cTn) was intravenously administered to Sprague–Dawley rats for 4 weeks prior to coronary artery ligation. The results showed that myocardial-selective expression of hSLPI significantly reduced infarct size, cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and myoglobin levels that all served to improve cardiac function. Moreover, overexpression of hSLPI showed a reduction in inflammatory cytokines, oxidatively modified protein carbonyl (PC) content, ischemia-modified albumin (IMA), and necrosis and cardiac tissue degeneration. In conclusion, this is the first study to demonstrate cardiac-selective gene delivery of hSLPI providing cardioprotection against myocardial I/R injury in an in vivo model.
Collapse
Affiliation(s)
| | - Nitirut Nernpermpisooth
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
| | | | - Rungrueang Yodsheewan
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- *Correspondence: Sarawut Kumphune
| |
Collapse
|
5
|
Mongkolpathumrat P, Kijtawornrat A, Suwan E, Unajak S, Panya A, Pusadee T, Kumphune S. Anti-Protease Activity Deficient Secretory Leukocyte Protease Inhibitor (SLPI) Exerts Cardioprotective Effect against Myocardial Ischaemia/Reperfusion. Biomedicines 2022; 10:biomedicines10050988. [PMID: 35625725 PMCID: PMC9138276 DOI: 10.3390/biomedicines10050988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/02/2022] Open
Abstract
Inhibition of proteases shows therapeutic potential. Our previous studies demonstrated the cardioprotection by the Secretory Leukocyte Protease Inhibitor (SLPI) against myocardial ischaemia/reperfusion (I/R) injury. However, it is unclear whether the cardioprotective effect of SLPI seen in our previous works is due to the inhibition of protease enzymes. Several studies demonstrate that the anti-protease independent activity of SLPI could provide therapeutic benefits. Here, we show for the first time that recombinant protein of anti-protease deficient mutant SLPI (L72K, M73G, L74G) (mt-SLPI) could significantly reduce cell death and intracellular reactive oxygen species (ROS) production against an in vitro simulated I/R injury. Furthermore, post-ischaemic treatment of mt-SLPI is found to significantly reduce infarct size and cardiac biomarkers lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) activity, improve cardiac functions, attenuate I/R induced-p38 MAPK phosphorylation, and reduce apoptotic regulatory protein levels, including Bax, cleaved-Caspase-3 and total Capase-8, in rats subjected to an in vivo I/R injury. Additionally, the beneficial effect of mt-SLPI was not significantly different from the wildtype (wt-SLPI). In summary, SLPI could provide cardioprotection without anti-protease activity, which could be more clinically beneficial in terms of providing cardioprotection without interfering with basal serine protease activity.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Graduate Programs in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Eukote Suwan
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tonapha Pusadee
- Department of Plant and Soil Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarawut Kumphune
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-624-693-987
| |
Collapse
|
6
|
Hao P, Li H, Zhou L, Sun H, Han J, Zhang Z. Serum Metal Ion-Induced Cross-Linking of Photoelectrochemical Peptides and Circulating Proteins for Evaluating Cardiac Ischemia/Reperfusion. ACS Sens 2022; 7:775-783. [PMID: 35293731 DOI: 10.1021/acssensors.1c02305] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Patients having experienced the ischemia-reperfusion process are particularly vulnerable to subsequent heart attacks because this process can induce myocardial fibrosis, hallmarked by the release of reactive oxygen species and some proteases, such as cathepsin G, into the circulating blood. If these risk indicators can be monitored from the peripheral serum, early diagnosis and intervention may become a reality. For this purpose, we have designed an assay of free copper ions and cathepsin G in serum using only synthetic small molecules as the biosensing elements. No antibodies are needed to recognize the target protein, and no enzymes are needed to generate and amplify the biosensing signal. In this design, a short peptide can target-specifically recognize protease, while the copper ion in the serum can stimulate the photoelectrochemical activity of the probe, resulting in cross-linking of the serum proteins in a target protein-specific manner. Using this method, serum cathepsin G and free copper ion are found to be significantly elevated in the blood samples collected from patients with acute myocardial infarction and successful percutaneous coronary intervention in comparison with healthy controls, indicating a higher risk of subsequent myocardial injury and cardiovascular events. These results may point to the possible application of the proposed assay to evaluate the severity and prognosis of cardiac ischemia/reperfusion in the near future.
Collapse
Affiliation(s)
- Panpan Hao
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, P. R. China
| | - Hao Li
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong, P. R. China
| | - Lei Zhou
- School of Biological Science and Technology, University of Jinan, Jinan 250024, Shandong, P. R. China
| | - Helin Sun
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China
| | - Jinxiang Han
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong, PR China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, PR China
| |
Collapse
|
7
|
Hatami S, Hefler J, Freed DH. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front Immunol 2022; 13:831930. [PMID: 35309362 PMCID: PMC8931031 DOI: 10.3389/fimmu.2022.831930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal circulation (ECC) systems, including cardiopulmonary bypass, and extracorporeal membrane oxygenation have been an irreplaceable part of the cardiothoracic surgeries, and treatment of critically ill patients with respiratory and/or cardiac failure for more than half a century. During the recent decades, the concept of extracorporeal circulation has been extended to isolated machine perfusion of the donor organ including thoracic organs (ex-situ organ perfusion, ESOP) as a method for dynamic, semi-physiologic preservation, and potential improvement of the donor organs. The extracorporeal life support systems (ECLS) have been lifesaving and facilitating complex cardiothoracic surgeries, and the ESOP technology has the potential to increase the number of the transplantable donor organs, and to improve the outcomes of transplantation. However, these artificial circulation systems in general have been associated with activation of the inflammatory and oxidative stress responses in patients and/or in the exposed tissues and organs. The activation of these responses can negatively affect patient outcomes in ECLS, and may as well jeopardize the reliability of the organ viability assessment, and the outcomes of thoracic organ preservation and transplantation in ESOP. Both ECLS and ESOP consist of artificial circuit materials and components, which play a key role in the induction of these responses. However, while ECLS can lead to systemic inflammatory and oxidative stress responses negatively affecting various organs/systems of the body, in ESOP, the absence of the organs that play an important role in oxidant scavenging/antioxidative replenishment of the body, such as liver, may make the perfused organ more susceptible to inflammation and oxidative stress during extracorporeal circulation. In the present manuscript, we will review the activation of the inflammatory and oxidative stress responses during ECLP and ESOP, mechanisms involved, clinical implications, and the interventions for attenuating these responses in ECC.
Collapse
Affiliation(s)
- Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H. Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren H. Freed,
| |
Collapse
|
8
|
Digestive Enzyme Activity and Protein Degradation in Plasma of Heart Failure Patients. Cell Mol Bioeng 2021; 14:583-596. [PMID: 34900012 PMCID: PMC8630255 DOI: 10.1007/s12195-021-00693-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/20/2021] [Indexed: 11/11/2022] Open
Abstract
Introduction Heart failure is associated with degradation of cell functions and extracellular matrix proteins, but the trigger mechanisms are uncertain. Our recent evidence shows that active digestive enzymes can leak out of the small intestine into the systemic circulation and cause cell dysfunctions and organ failure. Methods Accordingly, we investigated in morning fasting plasma of heart failure (HF) patients the presence of pancreatic trypsin, a major enzyme responsible for digestion. Results Western analysis shows that trypsin in plasma is significantly elevated in HF compared to matched controls and their concentrations correlate with the cardiac dysfunction biomarker BNP and inflammatory biomarkers CRP and TNF-α. The plasma trypsin levels in HF are accompanied by elevated pancreatic lipase concentrations. The trypsin has a significantly elevated activity as determined by substrate cleavage. Mass spectrometry shows that the number of plasma proteins in the HF patients is similar to controls while the number of peptides was increased about 20% in HF patients. The peptides are derived from extracellular and intracellular protein sources and exhibit cleavage sites by trypsin as well as other degrading proteases (data are available via ProteomeXchange with identifier PXD026332). Connclusions These results provide the first evidence that active digestive enzymes leak into the systemic circulation and may participate in myocardial cell dysfunctions and tissue destruction in HF patients. Conclusions These results provide the first evidence that active digestive enzymes leak into the systemic circulation and may participate in myocardial cell dysfunctions and tissue destruction in HF patients. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00693-w.
Collapse
|
9
|
Chen XY, Wang JQ, Cheng SJ, Wang Y, Deng MY, Yu T, Wang HY, Zhou WJ. Diazoxide Post-conditioning Activates the HIF-1/HRE Pathway to Induce Myocardial Protection in Hypoxic/Reoxygenated Cardiomyocytes. Front Cardiovasc Med 2021; 8:711465. [PMID: 34938777 PMCID: PMC8687117 DOI: 10.3389/fcvm.2021.711465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Previous studies have shown that diazoxide can protect against myocardial ischemia-reperfusion injury (MIRI). The intranuclear hypoxia-inducible factor-1 (HIF-1)/hypoxia-response element (HRE) pathway has been shown to withstand cellular damage caused by MIRI. It remains unclear whether diazoxide post-conditioning is correlated with the HIF-1/HRE pathway in protective effect on cardiomyocytes. Methods: An isolated cardiomyocyte model of hypoxia-reoxygenation injury was established. Prior to reoxygenation, cardiomyocytes underwent post-conditioning treatment by diazoxide, and 5-hydroxydecanoate (5-HD), N-(2-mercaptopropionyl)-glycine (MPG), or dimethyloxallyl glycine (DMOG) followed by diazoxide. At the end of reoxygenation, ultrastructural morphology; mitochondrial membrane potential; interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS), and HIF-1α levels; and downstream gene mRNA and protein levels were analyzed to elucidate the protective mechanism of diazoxide post-conditioning. Results: Diazoxide post-conditioning enabled activation of the HIF-1/HRE pathway to induce myocardial protection. When the mitoKATP channel was inhibited and ROS cleared, the diazoxide effect was eliminated. DMOG was able to reverse the effect of ROS absence to restore the diazoxide effect. MitoKATP and ROS in the early reoxygenation phase were key to activation of the HIF-1/HRE pathway. Conclusion: Diazoxide post-conditioning promotes opening of the mitoKATP channel to generate a moderate ROS level that activates the HIF-1/HRE pathway and subsequently induces myocardial protection.
Collapse
Affiliation(s)
- Xi-Yuan Chen
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Department of Anesthesiology, The Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jia-Qi Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Si-Jing Cheng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Meng-Yuan Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Hai-Ying Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Wen-Jing Zhou
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
10
|
Demeekul K, Sukumolanan P, Bootcha R, Panprom C, Petchdee S. A Cardiac Protection of Germinated Brown Rice During Cardiopulmonary Bypass Surgery and Simulated Myocardial Ischemia. J Inflamm Res 2021; 14:3307-3319. [PMID: 34290516 PMCID: PMC8289443 DOI: 10.2147/jir.s321241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The potential cardio-protective property of germinated brown rice (GBR) has been revealed by ameliorating risk factors related to cardiovascular diseases. This study hypothesized that the combination of GBR and cardioplegic solution could protect the cardiomyocytes exposed to simulated ischemic reperfusion injury in vitro study and preserve cardiac function during cardiopulmonary bypass surgery in animal models. Methods Primary porcine cardiomyocytes were isolated and experimented cell viability against simulated ischemic reperfusion injury. In a cardiac surgical animal model, six pigs were randomly assigned to receive the two types of cardioplegic solution: i) St. Thomas cardioplegic solution (20 cc/kg); and ii) St. Thomas cardioplegic solution plus GBR (1 mg/kg). During open-heart surgery, the aorta was cross-clamped for 20 minutes, followed by reperfusion for 1 hour. Cardiopulmonary bypass parameters were recorded until the end of the procedure. Furthermore, hemodynamic parameters and arterial blood gas characteristics of animals among groups were monitored at different time points, including baseline before cardiopulmonary bypass (T1), during cardiopulmonary bypass (T2), during aortic clamp on (T3), and aortic clamp off (T4). Results Primarily, GBR cotreatment with cardioplegic solution essentially resulted in the improvement of cell viability in primary porcine cardiomyocytes against simulated ischemic reperfusion induction. The findings from cardiac surgery demonstrated that mean arterial pressure and heart rate are constantly stable in cardioplegic solution combined with the GBR group, while the trend of potassium and lactase concentration was decreased in the animals receiving GBR group. Consistently, all parameters from arterial blood gas showed better outcomes in animals receiving GBR; however, there were no statistically significant differences between groups, except hepatic enzymes. Conclusion Therefore, GBR might exert cardio-protective effects against ischemic reperfusion injury in the porcine cardiac surgery model due to anti-inflammatory response. These protective actions of GBR may explain the benefits gained from applying GBR products as a possible therapeutic supplement on cardiac diseases.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Graduate School, Program of Bio-Veterinary Science, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Pratch Sukumolanan
- Veterinary Clinical Study Program, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Ratikorn Bootcha
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Chattida Panprom
- Kasetsart University Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, KamphaengSaen Campus, Kamphaeng Saen, Thailand
| |
Collapse
|
11
|
Mongkolpathumrat P, Kijtawornrat A, Prompunt E, Panya A, Chattipakorn N, Barrère-Lemaire S, Kumphune S. Post-Ischemic Treatment of Recombinant Human Secretory Leukocyte Protease Inhibitor (rhSLPI) Reduced Myocardial Ischemia/Reperfusion Injury. Biomedicines 2021; 9:biomedicines9040422. [PMID: 33924676 PMCID: PMC8070046 DOI: 10.3390/biomedicines9040422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of mortality and morbidity worldwide. Among factors contributing to I/R injury, proteolytic enzymes could also cause cellular injury, expand the injured area and induce inflammation, which then lead to cardiac dysfunction. Therefore, protease inhibition seems to provide therapeutic benefits. Previous studies showed the cardioprotective effect of secretory leukocyte protease inhibitor (SLPI) against myocardial I/R injury. However, the effect of a post-ischemic treatment with SLPI in an in vivo I/R model has never been investigated. In the present study, recombinant human (rh) SLPI (rhSLPI) was systemically injected during coronary artery occlusion or at the onset of reperfusion. The results show that post-ischemic treatment with rhSLPI could significantly reduce infarct size, Lactate Dehydrogenase (LDH) and Creatine kinase-MB (CK-MB) activity, inflammatory cytokines and protein carbonyl levels, as well as improving cardiac function. The cardioprotective effect of rhSLPI is associated with the attenuation of p38 MAPK phosphorylation, Bax, caspase-3 and -8 protein levels and enhancement of pro-survival kinase Akt and ERK1/2 phosphorylation. In summary, this is the first report showing the cardioprotective effects against myocardial I/R injury of post-ischemic treatments with rhSLPI in vivo. Thus, these results suggest that SLPI could be used as a novel therapeutic strategy to reduce myocardial I/R injury.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Graduate Programs in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Anusak Kijtawornrat
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Eakkapote Prompunt
- Unit of Excellence in Infectious Disease, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Centre, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Stephanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, 141, rue de la Cardonille, 34094 Montpellier, France;
| | - Sarawut Kumphune
- Graduate Programs in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-62-4693987
| |
Collapse
|
12
|
Palou-Márquez G, Subirana I, Nonell L, Fernández-Sanlés A, Elosua R. DNA methylation and gene expression integration in cardiovascular disease. Clin Epigenetics 2021; 13:75. [PMID: 33836805 PMCID: PMC8034168 DOI: 10.1186/s13148-021-01064-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The integration of different layers of omics information is an opportunity to tackle the complexity of cardiovascular diseases (CVD) and to identify new predictive biomarkers and potential therapeutic targets. Our aim was to integrate DNA methylation and gene expression data in an effort to identify biomarkers related to cardiovascular disease risk in a community-based population. We accessed data from the Framingham Offspring Study, a cohort study with data on DNA methylation (Infinium HumanMethylation450 BeadChip; Illumina) and gene expression (Human Exon 1.0 ST Array; Affymetrix). Using the MOFA2 R package, we integrated these data to identify biomarkers related to the risk of presenting a cardiovascular event. RESULTS Four independent latent factors (9, 19, 21-only in women-and 27), driven by DNA methylation, were associated with cardiovascular disease independently of classical risk factors and cell-type counts. In a sensitivity analysis, we also identified factor 21 as associated with CVD in women. Factors 9, 21 and 27 were also associated with coronary heart disease risk. Moreover, in a replication effort in an independent study three of the genes included in factor 27 were also present in a factor identified to be associated with myocardial infarction (CDC42BPB, MAN2A2 and RPTOR). Factor 9 was related to age and cell-type proportions; factor 19 was related to age and B cells count; factor 21 pointed to human immunodeficiency virus infection-related pathways and inflammation; and factor 27 was related to lifestyle factors such as alcohol consumption, smoking and body mass index. Inclusion of factor 21 (only in women) improved the discriminative and reclassification capacity of the Framingham classical risk function and factor 27 improved its discrimination. CONCLUSIONS Unsupervised multi-omics data integration methods have the potential to provide insights into the pathogenesis of cardiovascular diseases. We identified four independent factors (one only in women) pointing to inflammation, endothelium homeostasis, visceral fat, cardiac remodeling and lifestyles as key players in the determination of cardiovascular risk. Moreover, two of these factors improved the predictive capacity of a classical risk function.
Collapse
Affiliation(s)
- Guillermo Palou-Márquez
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain
- Pompeu Fabra University (UPF), Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Isaac Subirana
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Lara Nonell
- MARGenomics, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Alba Fernández-Sanlés
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Research Group, Hospital del Mar Medical Research Institute (IMIM), Dr Aiguader 88, 08003, Barcelona, Spain.
- CIBER Cardiovascular Diseases (CIBERCV), Barcelona, Spain.
- Medicine Department, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|
13
|
Demeekul K, Suthammarak W, Petchdee S. Bioactive Compounds from Germinated Brown Rice Protect Cardiomyocytes Against Simulated Ischemic/Reperfusion Injury by Ameliorating Mitochondrial Dysfunction. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1055-1066. [PMID: 33727794 PMCID: PMC7955705 DOI: 10.2147/dddt.s294779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 01/11/2023]
Abstract
Purpose Ischemic/reperfusion (I/R) injury is the principal mechanism during Ischemic Heart Disease (IHD). The key modulator of I/R injury is dysregulation of mitochondria function. Germinated Brown Rice (GBR) has been recommended as a bio-functional food and has clarified the potential properties in several effects. However, the effect of GBR mediated cardioprotective properties, focusing on mitochondrial function’s role, remains unexplored. Thus, this study aims to investigate the cardioprotective effects of GBR pretreatment against simulated I/R injury. Methods H9c2 cardiomyocytes were incubated with GBR at a five ƞg/mL concentration for 24 hours and simulated I/R (sI/R) for 40 minutes. Cell viability and cell apoptosis were assessed by 7-AAD staining and Annexin V/PI staining, respectively. The mitochondrial membrane potential was determined by JC-1 staining and mitochondrial respiration represented by oxygen consumption rate (OCR) using Seahorse Flux analyzer. Results The results revealed that the administration of GBR before sI/R significantly decreased the percentage of cell death and total cell apoptosis in H9c2 during stimulation of ischemic/reperfusion. Besides, pretreatment of cardiomyocytes with GBR remarkably stabilized mitochondrial membrane potential and improved impaired mitochondrial respiration in simulated-H9c2 injury. Conclusion The present research is the first study to report the effective cardioprotection of GBR. Pretreatment of GBR potentially protects H9c2 cardiomyocytes against sI/R injury through mitochondrial function. The underlying therapeutic activities are possibly associated with its bio-functional compounds. However, the underlying mechanism on the cardioprotective effects of GBR needs further studies.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Graduate School, Program of Bio-Veterinary Science, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Wichit Suthammarak
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakorn Pathom, Thailand
| |
Collapse
|
14
|
Khalfin B, Lichtenstein A, Albeck A, Nathan I. Targeting Necrosis: Elastase-like Protease Inhibitors Curtail Necrotic Cell Death Both In Vitro and in Three In Vivo Disease Models. J Med Chem 2021; 64:1510-1523. [PMID: 33522230 DOI: 10.1021/acs.jmedchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.
Collapse
Affiliation(s)
- Boris Khalfin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexandra Lichtenstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Soroka University Medical Center, Beer Sheva 8457108, Israel
| |
Collapse
|
15
|
p38 MAPK Pathway in the Heart: New Insights in Health and Disease. Int J Mol Sci 2020; 21:ijms21197412. [PMID: 33049962 PMCID: PMC7582802 DOI: 10.3390/ijms21197412] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The p38 mitogen-activated kinase (MAPK) family controls cell adaptation to stress stimuli. p38 function has been studied in depth in relation to cardiac development and function. The first isoform demonstrated to play an important role in cardiac development was p38α; however, all p38 family members are now known to collaborate in different aspects of cardiomyocyte differentiation and growth. p38 family members have been proposed to have protective and deleterious actions in the stressed myocardium, with the outcome of their action in part dependent on the model system under study and the identity of the activated p38 family member. Most studies to date have been performed with inhibitors that are not isoform-specific, and, consequently, knowledge remains very limited about how the different p38s control cardiac physiology and respond to cardiac stress. In this review, we summarize the current understanding of the role of the p38 pathway in cardiac physiology and discuss recent advances in the field.
Collapse
|
16
|
Liu J, Meng Q, Liang X, Zhuang R, Yuan D, Ge X, Cao H, Lin F, Gong X, Fan H, Wang B, Zhou X, Liu Z. A novel small molecule compound VCP979 improves ventricular remodeling in murine models of myocardial ischemia/reperfusion injury. Int J Mol Med 2019; 45:353-364. [PMID: 31789413 PMCID: PMC6984775 DOI: 10.3892/ijmm.2019.4413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Persistent ventricular remodeling following myocardial ischemia/reperfusion (MI/R) injury results in functional decompensation and eventual progression to heart failure. VCP979, a novel small‑molecule compound developed in‑house, possesses anti‑inflammatory and anti‑fibrotic activities. In the present study, no significant pathological effect was observed following the administration of VCP979 on multiple organs in mice and no difference of aspartate transaminase/alanine aminotransferase/lactate dehydrogenase levels was found in murine serum. Treatment with VCP979 ameliorated cardiac dysfunction, pathological myocardial fibrosis and hypertrophy in murine MI/R injury models. The administration of VCP979 also inhibited the infiltration of inflammatory cells and the pro‑inflammatory cytokine expression in hearts post MI/R injury. Further results revealed that the addition of VCP979 prevented the primary neonatal cardiac fibroblasts (NCFs) from Angiotensin II (Ang II)‑induced collagen synthesis and neonatal cardiac myocytes (NCMs) hypertrophy. In addition, VCP979 attenuated the activation of p38‑mitogen‑activated protein kinase in both Ang II‑induced NCFs and hearts subjected to MI/R injury. These findings indicated that the novel small‑molecule compound VCP979 can improve ventricular remodeling in murine hearts against MI/R injury, suggesting its potential therapeutic function in patients subjected to MI/R injury.
Collapse
Affiliation(s)
- Jing Liu
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Rulin Zhuang
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Dongsheng Yuan
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xinyu Ge
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Hao Cao
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Xin Gong
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Binghui Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Zhongmin Liu
- Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
17
|
Kongpol K, Nernpermpisooth N, Prompunt E, Kumphune S. Endothelial-Cell-Derived Human Secretory Leukocyte Protease Inhibitor (SLPI) Protects Cardiomyocytes against Ischemia/Reperfusion Injury. Biomolecules 2019; 9:biom9110678. [PMID: 31683729 PMCID: PMC6920779 DOI: 10.3390/biom9110678] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial cell (EC)-derived factors play an important role in endothelial-cardiomyocyte crosstalk and could save cardiomyocytes (CMs) from injury. The manipulation of endothelial cells to secrete protective factors could enhance cardioprotection. Secretory leukocyte protease inhibitor (SLPI) has been known to protect the heart. The goal of this study was to evaluate the in vitro paracrine protective effect and mechanisms of EC-derived human SLPI on cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Stable endothelial cells overexpressing human SLPI were generated from an endothelial cell line (EA.hy926). The cytoprotective effect was determined by cell survival assay. The results showed that endothelial-derived recombinant human SLPI (rhSLPI) reduced simulated ischemia/reperfusion (I/R)-(81.75% ± 1.42% vs. 60.27% ± 2.52%, p < 0.05) and hypoxia/reoxygenation (H/R)-induced EC injury (83.57% ± 1.78% vs. 63.07% ± 1.93%, p < 0.05). Moreover, co-culture of ECs overexpressing rhSLPI with CMs at ratios 1:1 and 1:3 or treatment with conditioned medium enhanced cell viability by 10.51-16.7% (co-culture) and 15.25-20.45% (conditioned medium) by reducing intracellular reactive oxygen species (ROS) production, the Bax/Bcl-2 expression ratio, caspase-3, and caspase-8, and in preconditioned CMs by activation of p38 MAPK and Akt survival kinase. In conclusion, this study showed for the first time that EC-derived rhSLPI provided cardio-vasculoprotective effects against I/R injury as a possible alternative therapeutic strategy for cardioprotection.
Collapse
Affiliation(s)
- Kantapich Kongpol
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Nitirut Nernpermpisooth
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Eakkapote Prompunt
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Sarawut Kumphune
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
18
|
Liu Y, Zou J, Liu X, Zhang Q. MicroRNA-138 attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis by targeting HIF1-α. Exp Ther Med 2019; 18:3325-3332. [PMID: 31602205 PMCID: PMC6777330 DOI: 10.3892/etm.2019.7976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is considered to have a detrimental role in coronary heart disease, which is considered to be the leading cause of death worldwide. However, the molecular mechanism involved in the progression of myocardial I/R injury is still unclear. The current study aimed to investigate the expression and function of microRNA (miR)-138 in the process of myocardial I/R injury. First, miR-138 expression levels were analyzed both in myocardium with I/R injury and control myocardium using reverse transcription-quantitative polymerase chain reaction analysis. Then, the relationship between the levels of miR-138 and hypoxia-inducible factor (HIF)1-α was also investigated using a luciferase reporter assay. Assessment of myocardial infarct size, measurements of serum myocardial enzymes and electron microscopy analysis were all utilized to analyse the effect of miR-138 on myocardial I/R injury. The authors of current study also used western blotting to examine the expression levels of the mitochondrial fission-related proteins dynamin-1-like protein and mitochondrial fission 1 protein. It was found that miR-138 is downregulated and HIF1-α is upregulated after myocardial ischemia reperfusion injury. Overexpression of miR-138 reduced myocardial I/R injury-induced infarct sizes and myocardial enzyme levels, and it also inhibited the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting HIF1-α. Taken together, these findings provide a novel insight into the molecular mechanism of miR-138 and HIF1-α in the progression of myocardial I/R injury. miR-138 has the potential to become a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Yan Liu
- The First Ward, Department of Cardiology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Jianfeng Zou
- The Third Ward, Department of Cardiology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Xiaoyan Liu
- The First Ward, Department of Cardiology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Quan Zhang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 260141, P.R. China
| |
Collapse
|
19
|
Zakrzewicz A, Richter K, Zakrzewicz D, Siebers K, Damm J, Agné A, Hecker A, McIntosh JM, Chamulitrat W, Krasteva-Christ G, Manzini I, Tikkanen R, Padberg W, Janciauskiene S, Grau V. SLPI Inhibits ATP-Mediated Maturation of IL-1β in Human Monocytic Leukocytes: A Novel Function of an Old Player. Front Immunol 2019; 10:664. [PMID: 31019507 PMCID: PMC6458293 DOI: 10.3389/fimmu.2019.00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a potent, pro-inflammatory cytokine of the innate immune system that plays an essential role in host defense against infection. However, elevated circulating levels of IL-1β can cause life-threatening systemic inflammation. Hence, mechanisms controlling IL-1β maturation and release are of outstanding clinical interest. Secretory leukocyte protease inhibitor (SLPI), in addition to its well-described anti-protease function, controls the expression of several pro-inflammatory cytokines on the transcriptional level. In the present study, we tested the potential involvement of SLPI in the control of ATP-induced, inflammasome-dependent IL-1β maturation and release. We demonstrated that SLPI dose-dependently inhibits the ATP-mediated inflammasome activation and IL-1β release in human monocytic cells, without affecting the induction of pro-IL-1β mRNA by LPS. In contrast, the ATP-independent IL-1β release induced by the pore forming bacterial toxin nigericin is not impaired, and SLPI does not directly modulate the ion channel function of the human P2X7 receptor heterologously expressed in Xenopus laevis oocytes. In human monocytic U937 cells, however, SLPI efficiently inhibits ATP-induced ion-currents. Using specific inhibitors and siRNA, we demonstrate that SLPI activates the calcium-independent phospholipase A2β (iPLA2β) and leads to the release of a low molecular mass factor that mediates the inhibition of IL-1β release. Signaling involves nicotinic acetylcholine receptor subunits α7, α9, α10, and Src kinase activation and results in an inhibition of ATP-induced caspase-1 activation. In conclusion, we propose a novel anti-inflammatory mechanism induced by SLPI, which inhibits the ATP-dependent maturation and secretion of IL-1β. This novel signaling pathway might lead to development of therapies that are urgently needed for the prevention and treatment of systemic inflammation.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dariusz Zakrzewicz
- German Center for Lung Research, Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jelena Damm
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Veterans Affairs, Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| | - Gabriela Krasteva-Christ
- Faculty of Medicine, Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ritva Tikkanen
- Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|