1
|
Chen J, Gao Y, Liu N, Hai D, Wei W, Liu Y, Lan X, Jin X, Yu J, Ma L. Mechanism of NLRP3 Inflammasome in Epilepsy and Related Therapeutic Agents. Neuroscience 2024; 546:157-177. [PMID: 38574797 DOI: 10.1016/j.neuroscience.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1β and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Juan Chen
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Gao
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Dongmei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Wei Wei
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Yue Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | - Xueqin Jin
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Abdulsahib WK, Al-Radeef MY. Effect of quercetin against pilocarpine-induced epilepsy in mice. J Adv Pharm Technol Res 2024; 15:63-69. [PMID: 38903552 PMCID: PMC11186541 DOI: 10.4103/japtr.japtr_496_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
Globally, an estimated 50 million people are affected by epilepsy, a persistent, noncommunicable neurological ailment. Quercetin (QR) is a prevalent flavonoid substance extensively dispersed throughout agricultural life. In a pilocarpine (PILO)-induced epilepsy model in mice, this investigation aimed to determine whether QR has an antiepileptic effect and explore its putative mechanism of action. Fifty mice were allocated into seven groups, with six in every group. The first group received physiological saline, the second group was given diazepam (1 mg/kg), and four groups were administered QR at 50, 100, 150, and 200 mg/kg, respectively. The seventh group (the induction group) received normal saline. After 30 min, all groups were injected intraperitoneally with PILO. The impact of QR on motor coordination was assessed using the rotarod test, while measures such as latency to first seizure, generalized tonic-clonic seizures (GTCS), number of convulsions, and mortality were recorded. Serum samples were collected through the retro-orbital route to measure prostaglandin E2 (PGE2) and interleukin 1 beta (IL-1β) levels. QR showed no significant difference in motor impairment, but increased duration until the initial seizure occurred and declined the mortality rate, duration of GTCS, and incidence of convulsions. All doses of QR significantly reduced PGE2 levels (P ≤ 0.05). However, QR's effect on IL-1β reduction was statistically insignificant (P > 0.05). QR's capacity to inhibit PILO-induced epilepsy by decreasing IL-1 and PGE2 levels is supported by this study. The results of this work indicate that QR could have a function to treat acute epilepsy.
Collapse
Affiliation(s)
- Waleed K. Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Mohanad Y. Al-Radeef
- Department of Clinical Pharmacy, College of Pharmacy, Tikrit University, Tikrit, Iraq
| |
Collapse
|
3
|
Kızılaslan N, Aydın D, Sumbul O, Koroglu R, Aygun H. The effect of quercetin on absence epilepsy in WAG/Rij rats. Neurol Res 2023:1-7. [PMID: 36972421 DOI: 10.1080/01616412.2023.2194182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
AIM In the present study, the effect of quercetin, a powerful antioxidant flavonoid, on genetic absence epilepsy was studied in WAG/Rij rats. MATERIAL AND METHOD Tripolar electrodes were implanted into WAG/Rij rats. Basal electrocorticography (ECoG) was recorded following a recovery period. After basal ECoG recording, different doses of quercetin (QRC) (25, 50 and 100 mg/kg) were injected intraperitoneally (i.p.) for 30 days. ECoG recording was continued for 31 days, three hours a day. After recording, the rats were anesthetized and euthanized through cervical dislocation and their brains were excised. Biochemically, TNF-alpha, IL-6 and NO were studied in whole rat brains. RESULTS In WAG/Rij rats, low-dose quercetin (25 mg/kg) reduced the number and duration of spike-wave discharges (SWDs) compared to the control group. However, 50 and 100 mg/kg quercetin doses increased SWDs. Duration of SWDs was prolonged only with 100 mg/kg dose. None of the quercetin doses had any effect on average amplitude of SWDs. In addition, it was observed in biochemical analyses that 25 mg/kg quercetin reduced TNF-alpha, IL-6 and NO levels compared to the control group. While TNF-alpha and IL-6 levels in rat brains were not affected by 50 or 100 mg/kg doses, both doses were found to increase NO levels in rat brains. CONCLUSION Based on the results of the present study, 25 mg/kg low-dose quercetin may have reduced absence seizures by reducing proinflammatory cytokines and NO, but high-dose quercetin may have increased absence seizures through increasing the NO level. This contrasting effect of quercetin on absence seizures needs to be investigated by advanced mechanisms.
Collapse
Affiliation(s)
- Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Duygu Aydın
- Ankara Metropolitan Municipality, Occupational Physician, Ankara, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Reyhan Koroglu
- Department of Nuclear Medicine, Sultan 2 Abdülhamid Han Training and Research Hospital, Istanbul, Turkey
| | - Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
4
|
Tavakoli Z, Tahmasebi Dehkordi H, Lorigooini Z, Rahimi-Madiseh M, Korani MS, Amini-Khoei H. Anticonvulsant effect of quercetin in pentylenetetrazole (PTZ)-induced seizures in male mice: The role of anti-neuroinflammatory and anti-oxidative stress. Int Immunopharmacol 2023; 116:109772. [PMID: 36731152 DOI: 10.1016/j.intimp.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Epilepsy is one of the major neurological disorders. The inflammatory process and oxidative stress are closely related to seizure progression. Quercetin is a flavonoid with anti-inflammatory and antioxidant properties as well as neuroprotective effects. We aimed to evaluate the effect of quercetin on pentylenetetrazole- (PTZ-) induced seizures in male mice focusing on its possible anti-neuroinflammatory and anti-oxidative stress. METHODS In this study, 50 male NMRI mice were divided into five groups (n = 10) and given the following treatments: normal saline, quercetin at doses of 10, 20, and 40 mg/kg, and diazepam at a dose of 10 mg/kg. In order to induce seizures, PTZ was administered intravenously. Drugs were administered intravenously 60 min before the seizure induction. The seizure threshold was measured, and finally, malondialdehyde (MDA), total antioxidant capacity (TAC), and the gene expression of IL-1β, TNF-α, NLRP3, and iNOS were determined in the prefrontal cortex. RESULTS It was confirmed that quercetin increased the seizure threshold. And quercetin increased TAC, and decreased levels of MDA as well as gene expression of TNF- α, NLRP3, IL-1β, and iNOS in the prefrontal cortex at the time of seizure induction. CONCLUSION It was suggested that the anticonvulsant effect of quercetin in PTZ-induced seizures in mice may be due to the reduction of inflammatory responses and oxidative stress in the prefrontal cortex.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehrdad Shahrani Korani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
5
|
Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel) 2023; 12:antiox12020280. [PMID: 36829840 PMCID: PMC9951959 DOI: 10.3390/antiox12020280] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Neurological and neurodegenerative diseases, particularly those related to aging, are on the rise, but drug therapies are rarely curative. Functional disorders and the organic degeneration of nervous tissue often have complex causes, in which phenomena of oxidative stress, inflammation and cytotoxicity are intertwined. For these reasons, the search for natural substances that can slow down or counteract these pathologies has increased rapidly over the last two decades. In this paper, studies on the neuroprotective effects of flavonoids (especially the two most widely used, hesperidin and quercetin) on animal models of depression, neurotoxicity, Alzheimer's disease (AD) and Parkinson's disease are reviewed. The literature on these topics amounts to a few hundred publications on in vitro and in vivo models (notably in rodents) and provides us with a very detailed picture of the action mechanisms and targets of these substances. These include the decrease in enzymes that produce reactive oxygen and ferroptosis, the inhibition of mono-amine oxidases, the stimulation of the Nrf2/ARE system, the induction of brain-derived neurotrophic factor production and, in the case of AD, the prevention of amyloid-beta aggregation. The inhibition of neuroinflammatory processes has been documented as a decrease in cytokine formation (mainly TNF-alpha and IL-1beta) by microglia and astrocytes, by modulating a number of regulatory proteins such as Nf-kB and NLRP3/inflammasome. Although clinical trials on humans are still scarce, preclinical studies allow us to consider hesperidin, quercetin, and other flavonoids as very interesting and safe dietary molecules to be further investigated as complementary treatments in order to prevent neurodegenerative diseases or to moderate their deleterious effects.
Collapse
|
6
|
A Comprehensive Review on Anti-Inflammatory Response of Flavonoids in Experimentally-Induced Epileptic Seizures. Brain Sci 2023; 13:brainsci13010102. [PMID: 36672083 PMCID: PMC9856497 DOI: 10.3390/brainsci13010102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Flavonoids, a group of natural compounds with phenolic structure, are becoming popular as alternative medicines obtained from plants. These compounds are reported to have various pharmacological properties, including attenuation of inflammatory responses in multiple health issues. Epilepsy is a disorder of the central nervous system implicated with the activation of the inflammatory cascade in the brain. The aim of the present study was to summarize the role of various neuroinflammatory mediators in the onset and progression of epilepsy, and, thereafter, to discuss the flavonoids and their classes, including their biological properties. Further, we highlighted the modulation of anti-inflammatory responses achieved by these substances in different forms of epilepsy, as evident from preclinical studies executed on multiple epilepsy models. Overall, the review summarizes the available evidence of the anti-inflammatory potential of various flavonoids in epilepsy.
Collapse
|
7
|
Shi R, Gao D, Stoika R, Liu K, Sik A, Jin M. Potential implications of polyphenolic compounds in neurodegenerative diseases. Crit Rev Food Sci Nutr 2022; 64:5491-5514. [PMID: 36524397 DOI: 10.1080/10408398.2022.2155106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases are common chronic diseases related to progressive damage to the nervous system. Current neurodegenerative diseases present difficulties and despite extensive research efforts to develop new disease-modifying therapies, there is still no effective treatment for halting the neurodegenerative process. Polyphenols are biologically active organic compounds abundantly found in various plants. It has been reported that plant-derived dietary polyphenols may improve some disease states and promote health. Emerging pieces of evidence indicate that polyphenols are associated with neurodegenerative diseases. This review aims to overview the potential neuroprotective roles of polyphenols in most common neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, epilepsy, and ischemic stroke.
Collapse
Affiliation(s)
- Ruidie Shi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| | - Attila Sik
- Institute of Transdisciplinary Discoveries, Medical School, University of Pecs, Pecs, Hungary
- Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Institute of Physiology, Medical School, University of Pecs, Pecs, Hungary
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, Shandong Province, People's Republic of China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Ji'nan, Shandong Province, People's Republic of China
| |
Collapse
|
8
|
Xie R, Zhao W, Lowe S, Bentley R, Hu G, Mei H, Jiang X, Sun C, Wu Y, Yueying Liu. Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway. Free Radic Biol Med 2022; 191:212-226. [PMID: 36087883 DOI: 10.1016/j.freeradbiomed.2022.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epilepsy is one of the most common neurological disorders in childhood. However, classical antiepileptic drugs are linked with drug toxicity and cognitive function impairment in children. Hence, it is essential to develop a novel therapy to solve this problem. Currently, studies indicate regulating the nuclear factor-erythroid 2-related factor 2 (Nrf2)-mediated ferroptosis pathway represents a potential advanced therapy for seizures. Hence, the present study aimed to explore whether quercetin, a natural polyphenol, could alleviate seizure-induced neuron death and preserve cognitive function by inhibiting Nrf2-mediated ferroptosis. METHODS Kainic acid-induced epileptic mice model, morris water maze (MWM) test, cell counting kit-8 (CCK-8) assays, western blotting analysis, enzyme-linked immunosorbent assay, flow cytometry, quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence staining, and RNA sequencing analysis were employed to explore the potential mechanisms by which quercetin exerts protective effects on seizure-induced neuron death in kainic acid-induced epileptic mice model and glutamate-induced HT22 neuronal cell death. RESULTS Our findings suggested the association between the Nrf2-mediated ferroptosis pathway and seizures in a clinical setting. Quercetin pretreatment alleviates seizure-like behaviors and cognitive impairment in KA-induced epileptic mice. Additionally, in vitro, co-treatment with quercetin effectively exerts neuroprotective effects in glutamate-induced HT22 neuronal cell death. These protective effects were also closely linked to regulating the Nrf2-mediated ferroptosis pathway. Furthermore, bioinformatic profiling revealed that the SIRT1/Nrf2/SLC7A11/GPX4 pathway plays a crucial role in the Glu-induced HT22 cell death pretreated with quercetin. CONCLUSIONS These findings indicated that quercetin effectively protects against seizure-induced neuron death in vivo and in vitro and alleviates cognitive function impairment via the SIRT1/Nrf2/SLC7A11/GPX4 pathway.
Collapse
Affiliation(s)
- Ruijin Xie
- Jiangnan University, School of Medicine, Wuxi, China; Affiliated Hospital of Jiangnan University, Department of Pediatrics, Wuxi, China
| | - Wenjing Zhao
- Jiangnan University, School of Medicine, Wuxi, China; Affiliated Northern Jiangsu People's Hospital of Yangzhou University, Yangzhou, China
| | - Scott Lowe
- Kansas City University, College of Osteopathic Medicine, Kansas City, USA
| | - Rachel Bentley
- Kansas City University, College of Osteopathic Medicine, Kansas City, USA
| | - Guoqin Hu
- Jiangnan University, School of Medicine, Wuxi, China; Affiliated Hospital of Jiangnan University, Department of Pediatrics, Wuxi, China
| | - Huiya Mei
- Jiangnan University, School of Medicine, Wuxi, China; Affiliated Hospital of Jiangnan University, Department of Pediatrics, Wuxi, China
| | - Xiaofan Jiang
- Jiangnan University, School of Medicine, Wuxi, China; Affiliated Hospital of Jiangnan University, Department of Pediatrics, Wuxi, China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital, Chicago, USA.
| | - Yu Wu
- Jiangnan University, School of Medicine, Wuxi, China.
| | - Yueying Liu
- Jiangnan University, School of Medicine, Wuxi, China; Affiliated Hospital of Jiangnan University, Department of Pediatrics, Wuxi, China.
| |
Collapse
|
9
|
Green TRF, Murphy SM, Moreno-Montano MP, Audinat E, Rowe RK. Reactive morphology of dividing microglia following kainic acid administration. Front Neurosci 2022; 16:972138. [PMID: 36248637 PMCID: PMC9556904 DOI: 10.3389/fnins.2022.972138] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The microglial response to a pathological microenvironment is hallmarked by a change in cellular morphology. Following a pathological stimulus, microglia become reactive and simultaneously divide to create daughter cells. Although a wide array of microglial morphologies has been observed, the exact functions of these distinct morphologies are unknown, as are the morphology and reactivity status of dividing microglia. In this study, we used kainic acid to trigger microglial activation and cell division. Following a cortical kainic acid injection, microglial morphology and proliferation were examined at 3 days post-injection using immunohistochemistry for ionized calcium binding adapter molecule 1 (Iba1) to stain for microglia, and KI67 as a marker of cell division. Individual microglial cells were isolated from photomicrographs and skeletal and fractal analyses were used to examine cell size and spatial complexity. We examined the morphology of microglia in both wildtype and microglia-specific tumor necrosis factor (TNF)-α knockout mice. Data were analyzed using generalized linear mixed models or a two-way ANOVA. We found that dividing microglia had a more reactive morphology (larger cell body area, longer cell perimeter, and less ramification) compared to microglia that were not dividing, regardless of microglial release of TNF-α. However, we also observed dividing microglia with a complex, more ramified morphology. Changes in microglial morphology and division were greatest near the kainic acid injection site. This study uses robust and quantitative techniques to better understand microglial cell division, morphology, and population dynamics, which are essential for the development of novel therapeutics that target microglia.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Maria P. Moreno-Montano
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Audinat
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Rachel K. Rowe
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- *Correspondence: Rachel K. Rowe,
| |
Collapse
|
10
|
Sun Q, Xu W, Piao J, Su J, Ge T, Cui R, Yang W, Li B. Transcription factors are potential therapeutic targets in epilepsy. J Cell Mol Med 2022; 26:4875-4885. [PMID: 36065764 PMCID: PMC9549512 DOI: 10.1111/jcmm.17518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Academics generally believe that imbalance between excitation and inhibition of the nervous system is the root cause of epilepsy. However, the aetiology of epilepsy is complex, and its pathogenesis remains unclear. Many studies have shown that epilepsy is closely related to genetic factors. Additionally, the involvement of a variety of tumour‐related transcription factors in the pathogenesis of epilepsy has been confirmed, which also confirms the heredity of epilepsy. In this review, we summarize the existing research on a variety of transcription factors and epilepsy and present relevant evidence related to transcription factors that may be targets in epilepsy. This information is of great significance for revealing the in‐depth molecular and cellular mechanisms of epilepsy.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wenbo Xu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingjing Piao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Tongtong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Prakash C, Tyagi J, Rabidas SS, Kumar V, Sharma D. Therapeutic Potential of Quercetin and its Derivatives in Epilepsy: Evidence from Preclinical Studies. Neuromolecular Med 2022:10.1007/s12017-022-08724-z. [PMID: 35951285 DOI: 10.1007/s12017-022-08724-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
Quercetin is a polyphenolic bioactive compound highly enriched in dietary fruits, vegetables, nuts, and berries. Quercetin and its derivatives like rutin and hyperoside are known for their beneficial effects in various neurological conditions including epilepsy. The clinical studies of quercetin and its derivatives in relation to epilepsy are limited. This review provides the evidence of most recent knowledge of anticonvulsant properties of quercetin and its derivatives on preclinical studies. Additionally, the studies demonstrating antiseizure potential of various plants extracts enriched with quercetin and its derivatives has been included in this review. Herein, we have also discussed neuroprotective effect of these bioactive compound and presented underlying mechanisms responsible for anticonvulsant properties in brief. Finally, limitations of quercetin and its derivatives as antiseizure compounds as well as possible strategies to enhance efficacy have also been discussed.
Collapse
Affiliation(s)
- Chandra Prakash
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Tyagi
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shyam Sunder Rabidas
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Sharma
- Neurobiology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Protective effect of Grewia asiatica leaves extract in animal models of epilepsy and anxiety. J Ayurveda Integr Med 2022; 13:100616. [PMID: 35933940 PMCID: PMC9364022 DOI: 10.1016/j.jaim.2022.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Grewia asiatica Linn. is a well-known plant for its nutritional and therapeutic attributes. It has been mentioned in ancient Indian literature as Rasayana due to its stimulant and tonic effects. Thus, present investigation was carried out to evaluate the antiepileptic and anxiolytic action of G. asiatica Linn. leaves using animal models. Methanol extract at dose levels of 100 and 200 mg/kg was capable of providing protection against both pentylenetetrazole and maximal electroshock induced seizures in mice. Extract also showed significant anxiolytic activity in elevated plus maze, light/dark box and mirror chamber mice models at same dose levels. Results of this study indicated that the methanol extract of leaves of G. asiatica plant possess significant antiepileptic and anxiolytic effect.
Collapse
|
13
|
Sharma K, Verma R, Kumar D, Nepovimova E, Kuča K, Kumar A, Raghuvanshi D, Dhalaria R, Puri S. Ethnomedicinal plants used for the treatment of neurodegenerative diseases in Himachal Pradesh, India in Western Himalaya. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115318. [PMID: 35469830 DOI: 10.1016/j.jep.2022.115318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are considered as a healthcare resource and widely used by rural people in their traditional medicine system for curing neurodegenerative diseases. Neurodegenerative diseases refer to incurable and debilitating conditions that result in progressive degeneration/death of nerve cells or neurons in the human brain. This review is mainly focused on the usage of different ethnomedicinal plants in the treatment of different neurodegenerative diseases in Himachal Pradesh. Study reveals total of 73 ethnomedicinal plants, which are used for treating different neurological disorders in different areas of Himachal Pradesh. The data is compiled from the different sources that described the detailed information of plants in tabular form and highlights the significance of different phytochemicals on neuroprotective function. The present study also provides the scientific data and clinical (in-vivo and in-vitro) studies in support of ethnomedicinal use. AIM OF THE STUDY This review aims to provide information of ethnomedicinal plants which are used for the treatment of neurodegenerative diseases in Himachal Pradesh. MATERIALS AND METHODS Information on the use of ethnomedicinal plants to treat various neurological disorders has been gathered from a variety of sources, including various types of literature, books, and relevant publications in Google Scholar, Research Gate, Science Direct, Scopus, and Pub Med, among others. The collected data is tabulated, including the botanical names of plants, mode of use and the disease for which it is used for curing, etc. RESULTS: There are 73 ethnomedicinal plants that are used to cure various neurological disorders, with the most plants being used to treat epilepsy problem in Himachal Pradesh. CONCLUSION Numerous phytochemicals and extracts from diverse plants were found to have a protective effect against neurodegenerative diseases. Antioxidant activity is known to exist in a variety of herbal plants. The most common bioactive antioxidant chemicals having their significant impacts include flavonoids, flavones, coumarins, lignans, isoflavones, catechins, anthocyanins, and isocatechins.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Dinesh Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, 50003, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005, Hradec, Kralove, Czech Republic.
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.
| | - Disha Raghuvanshi
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, (H.P.), India.
| |
Collapse
|
14
|
Iftikhar A, Nausheen R, Muzaffar H, Naeem MA, Farooq M, Khurshid M, Almatroudi A, Alrumaihi F, Allemailem KS, Anwar H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103297. [PMID: 35630774 PMCID: PMC9143627 DOI: 10.3390/molecules27103297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Rimsha Nausheen
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Humaira Muzaffar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Muhammad Farooq
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
- Correspondence: (H.A.); (K.S.A.)
| | - Haseeb Anwar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
- Correspondence: (H.A.); (K.S.A.)
| |
Collapse
|
15
|
Chen S, Tang Y, Gao Y, Nie K, Wang H, Su H, Wang Z, Lu F, Huang W, Dong H. Antidepressant Potential of Quercetin and its Glycoside Derivatives: A Comprehensive Review and Update. Front Pharmacol 2022; 13:865376. [PMID: 35462940 PMCID: PMC9024056 DOI: 10.3389/fphar.2022.865376] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Depression is a global health problem with growing prevalence rates and serious impacts on the daily life of patients. However, the side effects of currently used antidepressants greatly reduce the compliance of patients. Quercetin is a flavonol present in fruits, vegetables, and Traditional Chinese medicine (TCM) that has been proved to have various pharmacological effects such as anti-depressant, anti-cancer, antibacterial, antioxidant, anti-inflammatory, and neuroprotective. This review summarizes the evidence for the pharmacological application of quercetin to treat depression. We clarified the mechanisms of quercetin regulating the levels of neurotransmitters, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and reducing inflammatory states and anti-oxidative stress. We also summarized the antidepressant effects of some quercetin glycoside derivatives to provide a reference for further research and clinical application.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Grade 2017 of Integrated Traditional Chinese and Western Clinical Medicine, Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hui Dong,
| |
Collapse
|
16
|
Du M, Wang Z, Su G, Zhou Y, Luo C. Mammalian Target of Rapamycin (mTOR) Inhibitor Improves Local Immune Microenvironment and Reduces Seizures via Increasing miR-211 Level in Rat Brain. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aims to analyze the role of mTOR inhibitor on the expression of miR-211 in rat brain tissue and the biological effect of miR-211 in attenuating seizure. Rats were randomly divided into four groups, and the number of seizures and the duration of single seizure were observed
within 24 hours after intervention. The level of miR-211 in brain tissue was detected by RT qPCR, the apoptosis of nerve cells was assessed by TUNEL staining, the level of immune cells was detected by flow cytometry, and the level of serum inflammatory factors was determined by ELISA. The
number of seizures and the duration of single seizure in the three groups treated by rapamycin within 24 hours were lower than those in the control group, and the symptom relief in group C was the best. After treatment, the expression level of miR-211 in the brain tissue of epileptic rats
increased. TUNEL staining showed that neuronal apoptosis was obvious in epileptic rats. The anti apoptotic ability of group C was the most significant, followed by group D and group B. Compared with group A, the levels of CD3+ cells, CD8+ cells and CD4+/CD25+
cells in brain tissue of group C were decreased, while the levels of IL-2 and IFN-γ were lower in group C than those in control. In group C (n = 5), the levels of CD3+ cells, CD8+ cells and CD4+/CD25+ cells were elevated, and
the levels of immune related cytokines IL-2 and IFN-γ were higher than those of rats without miR-211 inhibition. mTOR inhibitors can improve the local immune microenvironment, reduce the release of inflammatory factors, and finally decrease the frequency and duration of seizures
by up regulating the level of miR-211 in rat brain tissue.
Collapse
Affiliation(s)
- Meijiao Du
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Zhengmei Wang
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Geng Su
- Department of Medical Administration, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Yunxia Zhou
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| | - Chuan Luo
- Department of Emergency, Xiantao First People’s Hospital Affiliated to Changjiang University, Xiantao, Hubei, 433000, China
| |
Collapse
|
17
|
Bazhanova E, Kozlov A. Mechanisms of apoptosis in drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:43-50. [DOI: 10.17116/jnevro202212205143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
NMDA Receptor Mediates the Anticonvulsant Effect of Hydroalcoholic Extract of Artemisia persica in PTZ-Induced Seizure in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6422451. [PMID: 34394390 PMCID: PMC8360731 DOI: 10.1155/2021/6422451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/29/2021] [Indexed: 01/05/2023]
Abstract
It is necessary to seek more effective sources to design new drug against epilepsy. This study aimed to evaluate the effect of hydroalcoholic extract of Artemisia persica on pentylenetetrazole- (PTZ-) induced seizure in male mice by investigating the possible role of the NMDA receptor and antioxidative stress effect. The phenolic profile of A. persica extract was determined by HPLC-DAD analysis. Mice were treated with normal saline or A. persica extract or pentobarbital or a subeffective dose of extract plus ketamine (NMDA receptor antagonist) and/or effective dose of extract plus NMDA. PTZ (90 mg/kg) was injected intravenously for induction of seizure. The seizure threshold was measured. Then mice were euthanized and the antioxidant capacity and the level of malondialdehyde (MDA) of the prefrontal cortex and serum were measured. The gene expression of NMDA receptor subunits (Nr2a and Nr2b) was determined by real-time PCR. Findings showed that A. persica extract increased the seizure threshold, increased antioxidant capacity, and decreased MDA levels in the serum and brain samples. A. persica extract reduced the expression of NMDA receptor subunits. The result showed that ketamine potentiated the effect of the subeffective dose of extract. HPLC analysis showed that quercetin had the highest flavonoid content and also caffeic acid had the highest content of the phenolic acids. A. persica extract probably via NMDA receptor exerts anticonvulsant properties.
Collapse
|
19
|
Enlightening the neuroprotective effect of quercetin in epilepsy: From mechanism to therapeutic opportunities. Epilepsy Behav 2021; 115:107701. [PMID: 33412369 DOI: 10.1016/j.yebeh.2020.107701] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
Epilepsy is a devastating neurological disorder characterized by the repeated occurrence of epileptic seizures. Epilepsy stands as a global health concern affecting around 70 million people worldwide. The mainstream antiepileptic drugs (AEDs) only exert symptomatic relief and drug-resistant epilepsy occurs in up to 33 percent of patients. Hence, the investigation of novel therapeutic strategies against epileptic seizures that could exert disease modifying effects is of paramount importance. In this context, compounds of natural origin with potential antiepileptic properties have recently gained increasing attention. Quercetin is a plant-derived flavonoid with several pharmacological activities. Emerging evidence has demonstrated the antiepileptic potential of quercetin as well. Herein, based on the available evidence, we discuss the neuroprotective effects of quercetin against epileptic seizures and further analyze the plausible underlying molecular mechanisms. Our review suggests that quercetin might be a potential therapeutic candidate against epilepsy that deserves further investigation, and paves the way for the development of plant-derived antiepileptic treatment approaches.
Collapse
|