1
|
Chang R, Wang C, Kong X, Li W, Wu J. Retracted article: The role of second generation sequencing technology and nanomedicine in the monitoring and treatment of lower extremity deep vein thrombosis susceptibility genes. Bioengineered 2024; 15:2003926. [PMID: 34787073 PMCID: PMC10826625 DOI: 10.1080/21655979.2021.2003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Rong Chang, Chunsheng Wang, Xiangqi Kong, Wenhui Li and Jinchun Wu. The role of second generation sequencing technology and nanomedicine in the monitoring and treatment of lower extremity deep vein thrombosis susceptibility genes. Bioengineered. 2021 Nov. doi: 10.1080/21655979.2021.2003926.Since publication, significant concerns have been raised about the compliance with ethical policies for human research and the integrity of the data reported in the article.When approached for an explanation, the authors provided some original data but were not able to provide all the necessary supporting information. As verifying the validity of published work is core to the scholarly record's integrity, we are retracting the article. All authors listed in this publication have been informed.We have been informed in our decision-making by our editorial policies and the COPE guidelines.The retracted article will remain online to maintain the scholarly record, but it will be digitally watermarked on each page as 'Retracted.'
Collapse
Affiliation(s)
- Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Chunsheng Wang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Xiangqi Kong
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Wenhui Li
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong Province, China
- Department of Cardiovascular Medicine, Longhua Hospital Affiliated to Guangdong Medical University, Shenzhen, Guangdong Province, China
| | - Jinchun Wu
- Department of Cardiovascular Medicine, Qinghai Provincial People’s Hospital, Xining, Qinghai Province, China
| |
Collapse
|
2
|
Wang X, Yan J, Ni X, Hu S, Zhang M, Ying Y. Phloretin targets SIRT1 to alleviate oxidative stress, apoptosis, and inflammation in deep venous thrombosis. Toxicol Res 2024; 40:83-96. [PMID: 38223667 PMCID: PMC10786814 DOI: 10.1007/s43188-023-00207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/04/2023] [Accepted: 08/14/2023] [Indexed: 01/16/2024] Open
Abstract
Deep vein thrombosis (DVT) is a type of venous thromboembolism posing a serious threat to health on a global scale. Phloretin is a potential natural product that has a variety of pharmacological activities. Besides, some Chinese medicines reported that deacetylase sirtuin (SIRT)1 treats DVT by anti-inflammatory and anti-platelet production. However, the specific binding targets and binding modes have not been elaborated. The present study was to investigate whether phloretin attenuates DVT in model rats and oxidized low‑density lipoprotein (ox‑LDL) induced human umbilical vein endothelial cells (HUVECs), and to explore its potential target. The results revealed that the treatment of phloretin, especially pretreatment of it elevated tissue plasminogen activator (t-PA), superoxide dismutase (SOD), prothrombin time (PT), thrombin time (TT), activated partial thromboplastin time (APTT), and cell apoptosis proteins whereas it suppressed plasminogen activator inhibitor (PAI), malondialdehyde (MDA), reactive oxygen species (ROS), fibrinogen (FIB) in DVT rats and cells. Concurrently, phloretin inhibited collagen type I alpha 1 (COL1A1), transforming growth factor-β1 (TGF-β1), and inflammatory factors while it enhanced nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase 1 (HO-1). In addition, 20 μM phloretin exerted powerful effective protection in HUVECs with DVT model. Later, the surface plasmon resonance (SPR) confirmed that phloretin has a high affinity with SIRT1. Furthermore, siRNA-SIRT1 transfection abolished the protective effect of phloretin against ox‑LDL‑induced DVT in HUVECs, indicating that phloretin targets SIRT1 to alleviate oxidative stress, cell apoptosis, and inflammation in DVT rats and HUVECs. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00207-y.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Jin Yan
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Xiaolong Ni
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Sipin Hu
- Department of Vascular Surgery, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Mingwan Zhang
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang China
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang China
| |
Collapse
|
3
|
Molnár AÁ, Nádasy GL, Dörnyei G, Patai BB, Delfavero J, Fülöp GÁ, Kirkpatrick AC, Ungvári Z, Merkely B. The aging venous system: from varicosities to vascular cognitive impairment. GeroScience 2021; 43:2761-2784. [PMID: 34762274 PMCID: PMC8602591 DOI: 10.1007/s11357-021-00475-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/12/2021] [Indexed: 10/25/2022] Open
Abstract
Aging-induced pathological alterations of the circulatory system play a critical role in morbidity and mortality of older adults. While the importance of cellular and molecular mechanisms of arterial aging for increased cardiovascular risk in older adults is increasingly appreciated, aging processes of veins are much less studied and understood than those of arteries. In this review, age-related cellular and morphological alterations in the venous system are presented. Similarities and dissimilarities between arterial and venous aging are highlighted, and shared molecular mechanisms of arterial and venous aging are considered. The pathogenesis of venous diseases affecting older adults, including varicose veins, chronic venous insufficiency, and deep vein thrombosis, is discussed, and the potential contribution of venous pathologies to the onset of vascular cognitive impairment and neurodegenerative diseases is emphasized. It is our hope that a greater appreciation of the cellular and molecular processes of vascular aging will stimulate further investigation into strategies aimed at preventing or retarding age-related venous pathologies.
Collapse
Affiliation(s)
- Andrea Ágnes Molnár
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary.
| | | | - Gabriella Dörnyei
- Department of Morphology and Physiology, Health Sciences Faculty, Semmelweis University, Budapest, Hungary
| | | | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gábor Áron Fülöp
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| | - Angelia C Kirkpatrick
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Veterans Affairs Medical Center, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center On Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor Street 68, 1121, Budapest, Hungary
| |
Collapse
|
4
|
Ding Y, Li Y, Zhao Z, Cliff Zhang Q, Liu F. The chromatin-remodeling enzyme Smarca5 regulates erythrocyte aggregation via Keap1-Nrf2 signaling. eLife 2021; 10:72557. [PMID: 34698638 PMCID: PMC8594921 DOI: 10.7554/elife.72557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/23/2021] [Indexed: 12/30/2022] Open
Abstract
Although thrombosis has been extensively studied using various animal models, our understanding of the underlying mechanism remains elusive. Here, using zebrafish model, we demonstrated that smarca5-deficient red blood cells (RBCs) formed blood clots in the caudal vein plexus. We further used the anti-thrombosis drugs to treat smarca5zko1049a embryos and found that a thrombin inhibitor, argatroban, partially prevented blood clot formation in smarca5zko1049a. To explore the regulatory mechanism of smarca5 in RBC homeostasis, we profiled the chromatin accessibility landscape and transcriptome features in RBCs from smarca5zko1049a and their siblings and found that both the chromatin accessibility at the keap1a promoter and expression of keap1a were decreased. Keap1 is a suppressor protein of Nrf2, which is a major regulator of oxidative responses. We further identified that the expression of hmox1a, a downstream target of Keap1-Nrf2 signaling pathway, was markedly increased upon smarca5 deletion. Importantly, overexpression of keap1a or knockdown of hmox1a partially rescued the blood clot formation, suggesting that the disrupted Keap1-Nrf2 signaling is responsible for the RBC aggregation in smarca5 mutants. Together, our study using zebrafish smarca5 mutants characterizes a novel role for smarca5 in RBC aggregation, which may provide a new venous thrombosis animal model to support drug screening and pre-clinical therapeutic assessments to treat thrombosis.
Collapse
Affiliation(s)
- Yanyan Ding
- The Max-Planck Center for Tissue Stem Cell Research and Regenerative Medicine, Bioland Laboratory, Guangzhou, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhe Li
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ziqian Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Stenvinkel P, Avesani CM, Gordon LJ, Schalling M, Shiels PG. Biomimetics provides lessons from nature for contemporary ways to improve human health. J Clin Transl Sci 2021; 5:e128. [PMID: 34367673 PMCID: PMC8327543 DOI: 10.1017/cts.2021.790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023] Open
Abstract
Homo sapiens is currently living in serious disharmony with the rest of the natural world. For our species to survive, and for our well-being, we must gather knowledge from multiple perspectives and actively engage in studies of planetary health. The enormous diversity of species, one of the most striking aspects of life on our planet, provides a source of solutions that have been developed through evolution by natural selection by animals living in extreme environments. The food system is central to finding solutions; our current global eating patterns have a negative impact on human health, driven climate change and loss of biodiversity. We propose that the use of solutions derived from nature, an approach termed biomimetics, could mitigate the effects of a changing climate on planetary health as well as human health. For example, activation of the transcription factor Nrf2 may play a role in protecting animals living in extreme environments, or animals exposed to heat stress, pollution and pesticides. In order to meet these challenges, we call for the creation of novel interdisciplinary planetary health research teams.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Carla M. Avesani
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Line J. Gordon
- Stockholm Resilience Centre Stockholm University, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|