1
|
Liu X, Yao L, Ye X, Qin Y, Chen S, Jiang Q, Liu M, Chen X, Li W, Lin C, Zhu C, Zhao W, Wang Q. Danggui-Shaoyao-San (DSS) ameliorating cognitive impairment in ischemia-reperfusion vascular dementia mice through miR-124 regulating PI3K/Akt signaling pathway. Brain Res 2024; 1845:149135. [PMID: 39155035 DOI: 10.1016/j.brainres.2024.149135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Vascular dementia (VD) is a disease characterized by cognitive impairment and memory loss due to brain cell damage caused by cerebral vascular ischemia. Danggui-Shaoyao-San (DSS) has been used clinically to treat diseases for centuries. The VD model was established by bilateral common carotid artery (BCCA) repeated ischemia-reperfusion (I/R) and caudal bleeding. Target prediction of DSS and miR-124 in PI3K/Akt signaling pathway by network pharmacology. The effect of DSS on cognitive dysfunction were evaluated through methods such as behavioral experiments, cerebral blood flow monitoring, HE and Nissl staining, western blot, and q-PCR. Prediction result showed that both DSS and miR-124 could target Akt1. DSS treatment significantly reduced hippocampal cell damage, improved learning and memory ability. Mechanically, DSS treatment up-regulated the expression levels of PI3K and Akt protein, and its gene. Bcl-2/Bax index is up-regulated and cell apoptosis reduced. LC3II/LC3I index decreased and autophagy of brain cells increased. Moreover, DSS down-regulated the expression level of miR-124. And inhibition of miR-124 up-regulate the expression of PI3K, Akt. These results suggested that DSS can reduce the content of miR-124 in the hippocampus of VD mice, thus regulating the PI3K/Akt signaling pathway and improving the learning and memory ability of VD mice.
Collapse
Affiliation(s)
- Xian Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, CACMS, Beijing 100029, China.
| | - Liwei Yao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xinyi Ye
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yuyun Qin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Meng Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaotong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Chaozhan Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine 510405, China.
| | - Chenchen Zhu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine 510405, China.
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
2
|
Guo X, Jiang P, Pan M, Ding Y, Lin Y, Jiang T, Li R, Wang W, Dai Y, Wang S, Cao Y, Lin H, Yang M, Liu W, Tao J. Overexpression of miR-124 in astrocyte improves neurological deficits in rat with ischemic stroke via DLL4 modulation. Exp Neurol 2023; 370:114571. [PMID: 37848121 DOI: 10.1016/j.expneurol.2023.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/27/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Astrocytes have been demonstrated to undergo conversion into functional neurons, presenting a promising approach for stroke treatment. However, the development of small molecules capable of effectively inducing this cellular reprogramming remains a critical challenge. METHODS Initially, we introduced a glial cell marker gene, GFaABC1D, as the promoter within an adeno-associated virus vector overexpressing miR-124 into the motor cortex of an ischemia-reperfusion model in rats. Additionally, we administered NeuroD1 as a positive control. Lentiviral vectors overexpressing miR-124 were constructed and transfected into primary rat astrocytes. We assessed the cellular distribution of GFAP, DCX, and NeuN on days 7, 14, and 28, respectively. RESULTS In rats with ischemic stroke, miR-124-transduced glial cells exhibited positive staining for the immature neuron marker doublecortin (DCX) and the mature neuron marker NeuN after 4 weeks. In contrast, NeuroD1-overexpressing model rats only expressed NeuN, and the positive percentage was higher in co-transfection with miR-124 and NeuroD1. Overexpression of miR-124 effectively ameliorated neurological deficits and motor functional impairment in the model rats. In primary rat astrocytes transduced with miR-124, DCX was not observed after 7 days of transfection, but it appeared at 14 days, with the percentage further increasing to 44.6% at 28 days. Simultaneously, 15.1% of miR-124-transduced cells exhibited NeuN positivity, which was not detected at 7 and 14 days. In vitro, double fluorescence assays revealed that miR-124 targeted Dll4, and in vivo experiments confirmed that miR-124 inhibited the expression of Notch1 and DLL4. CONCLUSIONS The overexpression of miR-124 in astrocytes demonstrates significant potential for improving neurological deficits following ischemic stroke by inhibiting DLL4 expression, and it may facilitate astrocyte-to-neuronal transformation.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Pingli Jiang
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Meihua Pan
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanyi Ding
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yanting Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Tao Jiang
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Rui Li
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Wenju Wang
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Yaling Dai
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, China
| | - Sinuo Wang
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Yajun Cao
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Huawei Lin
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Minguang Yang
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| | - Jing Tao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China.
| |
Collapse
|
3
|
Zhang L, Han Y, Wu X, Chen B, Liu S, Huang J, Kong L, Wang G, Ye Z. Research progress on the mechanism of curcumin in cerebral ischemia/reperfusion injury: a narrative review. Apoptosis 2023; 28:1285-1303. [PMID: 37358747 DOI: 10.1007/s10495-023-01869-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury can result in different levels of cerebral impairment, and in severe cases, death. Curcumin, an essential bioactive component of turmeric, has a rich history as a traditional medicine for various ailments in numerous countries. Experimental and clinical research has established that curcumin offers a protective effect against cerebral I/R injury. Curcumin exerts its protective effects by acting on specific mechanisms such as antioxidant, anti-inflammatory, inhibition of ferroptosis and pyroptosis, protection of mitochondrial function and structure, reduction of excessive autophagy, and improvement of endoplasmic reticulum (ER) stress, which ultimately help to preserve the blood-brain barrier (BBB) and reducing apoptosis. There is currently a shortage of drugs undergoing clinical trials for the treatment of cerebral I/R injury, highlighting the pressing need for research and development of novel treatments to address this injury. The primary objective of this study is to establish a theoretical basis for future clinical applications of curcumin by delineating the mechanisms and protective effects of curcumin against cerebral I/R injury. Adapted with permission from [1].
Collapse
Affiliation(s)
- Liyuan Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Yibo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xuelan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Baoyu Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Shuaiyuan Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Junyang Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, 400014, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Zhiyi Ye
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
4
|
Abdel Mageed SS, Doghish AS, Ismail A, El-Husseiny AA, Fawzi SF, Mahmoud AMA, El-Mahdy HA. The role of miRNAs in insulin resistance and diabetic macrovascular complications - A review. Int J Biol Macromol 2023; 230:123189. [PMID: 36623613 DOI: 10.1016/j.ijbiomac.2023.123189] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Sylvia F Fawzi
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| |
Collapse
|
5
|
Ye Z, Wang Q, Dai S, Ji X, Cao P, Xu C, Bao G. The Berberis vulgaris L. extract berberine exerts its anti-oxidant effects to ameliorate cholesterol overloading-induced cell apoptosis in the primary mice hepatocytes: an in vitro study. In Vitro Cell Dev Biol Anim 2022; 58:855-866. [PMID: 36481977 DOI: 10.1007/s11626-022-00737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022]
Abstract
Cholesterol overloading stress damages normal cellular functions in hepatocytes and induces metabolic disorders to facilitate the development of multiple diseases, including cardiovascular diseases, which seriously degrades the life quality of human beings. Recent data suggest that the Berberis vulgaris L. extract berberine is capable of regulating cholesterol homeostasis, which is deemed as potential therapeutic drug for the treatment of cholesterol overloading-associated diseases, but its detailed functions and molecular mechanisms are still largely unknown. In the present study, we evidenced that berberine suppressed cell apoptosis in high-cholesterol-diet mice liver and cholesterol-overloaded mice hepatocytes. Also, cholesterol overloading promoted reactive oxygen species (ROS) generation to trigger oxidative damages in hepatocytes, which were reversed by co-treating cells with both berberine and the ROS scavenger N-acetylcysteine (NAC). Moreover, the underlying mechanisms were uncovered, and we validated that berberine downregulated Keap1, and upregulated Nrf2 to activate the anti-oxidant Nrf2/HO-1 signaling pathway in cholesterol overloading-treated hepatocytes, and both Keap1 upregulation and Nrf2 downregulation abrogated the suppressing effects of berberine on cell apoptosis in the hepatocytes with cholesterol exposure. Taken together, we concluded that berberine activated the anti-oxidant Keap1/Nrf2/HO-1 pathway to eliminate cholesterol overloading-induced oxidative stress and apoptotic cell death in mice hepatocytes, and those evidences hinted that berberine might be used as putative therapeutic drug for the treatment of cholesterol overloading-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Zhengchen Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Shupeng Dai
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Xiang Ji
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Pingli Cao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Chenglei Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China
| | - Guoqing Bao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan Province, China.
| |
Collapse
|
6
|
Zheng Y, Xu X, Chi F, Cong N. Pyroptosis: A Newly Discovered Therapeutic Target for Ischemia-Reperfusion Injury. Biomolecules 2022; 12:1625. [PMID: 36358975 PMCID: PMC9687982 DOI: 10.3390/biom12111625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 09/15/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury, uncommon among patients suffering from myocardial infarction, stroke, or acute kidney injury, can result in cell death and organ dysfunction. Previous studies have shown that different types of cell death, including apoptosis, necrosis, and autophagy, can occur during I/R injury. Pyroptosis, which is characterized by cell membrane pore formation, pro-inflammatory cytokine release, and cell burst, and which differentiates itself from apoptosis and necroptosis, has been found to be closely related to I/R injury. Therefore, targeting the signaling pathways and key regulators of pyroptosis may be favorable for the treatment of I/R injury, which is far from adequate at present. This review summarizes the current status of pyroptosis and its connection to I/R in different organs, as well as potential treatment strategies targeting it to combat I/R injury.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Xinda Xu
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| | - Ning Cong
- Department of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
- Shanghai Clinical Medical Center of Hearing Medicine, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
- Research Institute of Otorhinolaryngology, Fudan University, Shanghai 200031, China
| |
Collapse
|
7
|
Rozi R, Zhou Y, Rong K, Chen P. miR-124-3p sabotages lncRNA MALAT1 stability to repress chondrocyte pyroptosis and relieve cartilage injury in osteoarthritis. J Orthop Surg Res 2022; 17:453. [PMID: 36243708 PMCID: PMC9571420 DOI: 10.1186/s13018-022-03334-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Background Osteoarthritis (OA) is a prevalent inflammatory joint disorder. microRNAs (miRNAs) are increasingly involved in OA. Aim Our study is proposed to clarify the role of miR-124-3p in chondrocyte pyroptosis and cartilage injury in OA.
Methods OA mouse model was established via the treatment of destabilization of the medial meniscus (DMM), and the in vitro cell model was also established as mouse chondrocytes were induced by lipopolysaccharide (LPS). Mouse cartilage injury was assessed using safranin-O-fast green staining, hematoxylin–eosin staining, and OARSI grading method. Expressions of miR-124-3p, MALAT1, KLF5, and CXCL11 were determined. Cartilage injury (MMP-13, osteocalcin), inflammation (IL-6, IL-2, TNF-, IL-1β, and IL-18)- and pyroptosis-related factors (Cleaved Caspase-1 and GSDMD-N) levels were detected. Mechanically, MALAT1 subcellular localization was confirmed. The binding relationships of miR-124-3p and MALAT1 and MALAT1 and KLF5 were verified. MALAT1 half-life period was detected. Then, miR-124-3p was overexpressed using agomiR-124-3p to perform the rescue experiments with oe-MALAT1 or oe-CXCL11. Results miR-124-3p was downregulated in DMM mice and LPS-induced chondrocytes where cartilage injury, and increased levels of inflammation- and pyroptosis-related factors were found. miR-124-3p overexpression relieved cartilage injury and repressed chondrocyte pyroptosis. miR-124-3p bounds to MALAT1 to downregulate its stability and expression, and MALAT1 bounds to KLF5 to enhance CXCL11 transcription. Overexpression of MALAT1 or CXCL11 annulled the repressive function of miR-124-3p in chondrocyte pyroptosis. Conclusion miR-124-3p reduced MALAT1 stability and inhibited the binding of MALAT1 and KLF5 to downregulate CXCL11, thereby suppressing chondrocyte pyroptosis and cartilage injury in OA.
Collapse
Affiliation(s)
- Rigbat Rozi
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Yubo Zhou
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Kai Rong
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China
| | - Pingbo Chen
- Department of Fourth Orthopedics, Traditional Chinese Medicine Hospital, Affiliated to Xinjiang Medical University, No. 116, Huanghe Road, Ürümqi, 830000, Xinjiang, People's Republic of China.
| |
Collapse
|
8
|
Zhang J, Sun H, Zhu L, Du L, Ma Y, Ma Y, Yu J, Meng A. MicroRNA‑27a Aggravates Ferroptosis during early Ischemic Stroke of Rats Through Nrf2. Neuroscience 2022; 504:10-20. [PMID: 36180007 DOI: 10.1016/j.neuroscience.2022.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
Ischaemic stroke (IS) is characterized by high morbidity, disability and mortality and lacks effective solutions. MiRNA-27a has been implicated in ferroptosis, but evidence that miRNA-27a regulates ferroptosis in ischaemic stroke is lacking. Nrf2 could reduce brain tissue injury in ischaemic stroke and resist ferroptosis. The current study aimed to investigate the relationship between miRNA-27a/Nrf2 and ferroptosis in ischaemic stroke. In this study, IS was simulated using a permanent middle cerebral artery occlusion (pMCAO) model. The degree of brain tissue injury was assessed by conducting TTC staining and neurological function scoring. MiRNA-27a expression levels were altered via the intracerebroventricular injection of miRNA‑27a agonist or antagonist. Glutathione peroxidase 4 (GPX4), glutathione (GSH), Fe and malondialdehyde (MDA) are considered biomarkers for ferroptosis. The expression of GPX4 and Nrf2 was analysed by Western blot assay. The GSH, Fe and MDA contents were detected by detection kits. We found that the expression levels of Fe and MDA were increased, while GPX4 and GSH were decreased in the pMCAO groups compared with the control group. These results indicated that ferroptosis intensified over time during IS. In addition, the miRNA‑27a agonist significantly aggravated ferroptosis and reduced neurological function scores compared with those of the control group. Subsequently, a luciferase reporter gene system verified the targeted binding of miRNA‑27a to Nrf2. The results showed that miRNA‑27a inhibited Nrf2 in a targeted manner, which also exacerbated the extent of ferroptosis. However, the miRNA‑27a antagonist reversed the miR‑27a agonist‑mediated effects. Therefore, the present study indicated that miRNA‑27a may aggravate brain tissue ferroptosis during ischaemic stroke, potentially by inhibiting Nrf2.
Collapse
Affiliation(s)
- Jing Zhang
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Hui Sun
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Lijun Zhu
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Lin Du
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Ye Ma
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Yuqin Ma
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Jiayu Yu
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China
| | - Aiguo Meng
- Affiliated hospital of North China university of Science and Technology, Tangshan, China; Key Laboratory of Medical Molecular Testing and Diagnosis in Tangshan, Tangshan, China.
| |
Collapse
|
9
|
Cell Death Mechanisms in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2022; 47:3525-3542. [PMID: 35976487 DOI: 10.1007/s11064-022-03697-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality, affecting millions of people worldwide. Inevitably, the interruption of cerebral blood supply after ischemia may promote a cascade of pathophysiological processes. Moreover, the subsequent restoration of blood flow and reoxygenation may further aggravate brain tissue injury. Although recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for restoring blood perfusion, the reperfusion injury and the narrow therapeutic time window restrict its application for most stroke patients. Increasing evidence indicates that multiple cell death mechanisms are relevant to cerebral ischemia-reperfusion injury, including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, ferroptosis, and so on. Therefore, it is crucial to comprehend various cell death mechanisms and their interactions. In this review, we summarize the various signaling pathways underlying cerebral ischemia-reperfusion injury and elaborate on the crosstalk between the different mechanisms.
Collapse
|
10
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
11
|
Zeng T, Zhang S, He Y, Liu Z, Cheng Q. MiR-361-5p promotes oxygen-glucose deprivation/re-oxygenation induced neuronal injury by negatively regulating SQSTM1 in vitro. Metab Brain Dis 2021; 36:2359-2368. [PMID: 34581931 DOI: 10.1007/s11011-021-00845-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023]
Abstract
It has been reported that microRNAs (miRNAs) play essential roles in cerebral ischemia and reperfusion (I/R) injury. This study aimed to explore the role of miR-361-5p in oxygen-glucose deprivation/re-oxygenation-induced neuronal injury in vitro. Cerebral I/R injury cell model was established by using PC12 cells exposed to oxygen-glucose deprivation/re-oxygenation (OGD/R). The expression of miR-361-5p and SQSTM1 was evaluated by qRT-PCR or western blot. Neuronal apoptosis was detected by flow cytometry, and cell viability was assessed by CCK-8 assay. The effects of miR-361-5p on the release of LDH and the levels of MDA, SOD, and GSH-Px were investigated by respective detection kits. Dual-luciferase reporter assay and RIP assay were performed to determine the interaction between miR-361-5p and SQSTM1. Rescue experiments were performed to evaluate the function of miR-361-5p and SQSTM1. MiR-361-5p was significantly upregulated, and SQSTM1 was significantly downregulated in OGD/R-stimulated PC12 cells. MiR-361-5p could directly interact with SQSTM1 and negatively regulated it. Inhibition of miR-361-5p efficiently inhibited OGD/R-induced apoptosis and attenuated OGD/R-induced growth defect in PC12 cells. In addition, SQSTM1 overexpression partially attenuates the apoptosis and promoted the viability of OGD/R-treated PC12 cells, which were aggravated by miR-361-5p mimics. Our study demonstrated that miR-361-5p promotes OGD/R-induced neuronal injury via regulating SQSTM1 in PC12 cells.
Collapse
Affiliation(s)
- Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China.
| | - Sai Zhang
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Yan He
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Zhenxing Liu
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| | - Qiusheng Cheng
- Department of Neurology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Yuexiu District, Guangzhou, 510180, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Xiao Y, Zheng S, Duan N, Li X, Wen J. MicroRNA-26b-5p alleviates cerebral ischemia-reperfusion injury in rats via inhibiting the N-myc/PTEN axis by downregulating KLF10 expression. Hum Exp Toxicol 2021; 40:1250-1262. [PMID: 33559506 DOI: 10.1177/0960327121991899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs plays important role in cerebral ischemia-reperfusion (CIR). However, the role of miR-26b-5p in CIR injury remains unclear. PC12 cells were treated with oxygen-glucose deprivation (OGD) for 0 h, 2 h, 4 h, 6 h, and then reoxygenated for 24 h to construct an in vitro I/R model. Then, miR-26b-5p mimic, small interfering RNA of KLF10 and KLF10 overexpression plasmid were transfected into cells respectively for mechanism study. Our results showed that miR-26b-5p was downregulated in OGD/R-induced PC12 cells. After overexpression of miR-26b-5p, cell proliferation ability was enhanced, apoptosis, ROS and inflammatory mediators were inhibited. Bioinformatics analysis indicated that miR-26b-5p was directly bound to the 3' UTR of KLF10, and downregulated the expression of KLF10. KLF10 was upregulated in OGD/R cells, and transfection with si-KLF10 promoted cell proliferation and reduced apoptosis, NO concentration and inflammatory factor secretion. Moreover, pcDNA-KLF10 reversed the inhibitory effects of miR-26b-5p mimic on apoptosis, NO content and inflammatory factor secretion, as well as the downregulation of N-myc and PTEN expression. Meanwhile, I/R rat models were constructed and divided into sham operation group (femoral artery isolation only), model group (middle cerebral artery occlusion model of rats was prepared by thread embolization), treatment group (200 µL of miR-26b-5p mimic was injected into the brain of model rats). We observed that the infarct size of brain tissue was reduced, KLF10 expression was downregulated, and apoptosis and inflammatory response were reduced. These results suggest that miR-26b-5p had protective effects on CIRI and it may be a potential treatment target.
Collapse
Affiliation(s)
- Y Xiao
- Department of Anesthesiology, The First Affiliated Hospital of 162798Xi'an Jiaotong University, Xi'an, China
| | - S Zheng
- Department of Anesthesiology, The First Affiliated Hospital of 162798Xi'an Jiaotong University, Xi'an, China
| | - N Duan
- Department of Anesthesiology, The First Affiliated Hospital of 162798Xi'an Jiaotong University, Xi'an, China
| | - X Li
- Department of Anesthesiology, The First Affiliated Hospital of 162798Xi'an Jiaotong University, Xi'an, China
| | - J Wen
- Department of Anesthesiology, The First Affiliated Hospital of 162798Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Ren X, Wang Z, Guo C. MiR-195-5p Ameliorates Cerebral Ischemia-Reperfusion Injury by Regulating the PTEN-AKT Signaling Pathway. Neuropsychiatr Dis Treat 2021; 17:1231-1242. [PMID: 33958865 PMCID: PMC8093143 DOI: 10.2147/ndt.s297975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/07/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MiR-195-5p has been shown to play crucial roles in tumor inhibition, but its biological functions in cerebral ischemia-reperfusion (I/R) injury are unclear. METHODS To mimic cerebral I/R injury, mice were induced by transient middle cerebral artery occlusion (MCAO). Human brain microvascular endothelial cells (HBMVECs) were treated with oxygen-glucose deprivation (OGD) to mimic I/R injury in vitro. The expression of miR-195-5p and PTEN was detected by qRT-PCR or Western blot. Cell viability was evaluated by CCK-8 assay. Cell apoptosis was detected by flow cytometer. Cell death was detected using specific lactate dehydrogenase (LDH) cytotoxicity kit. Infarct volume in mice brains was evaluated by TTC staining. Histopathological analysis was performed by HE staining and TUNEL staining. The interaction between miR-195-5p and PTEN was determined by TargetScan and luciferase reporter assay. RESULTS MiR-195-5p was significantly downregulated and PTEN was upregulated during cerebral I/R injury both in vitro and in vivo. Overexpression of miR-195-5p efficiently enhanced cell viability, while reduced LDH release and apoptotic rate of OGD-treated HBMVECs in vitro. MiR-195-5p could negatively regulate the expression of PTEN by directly binding to its 3'-UTR. Overexpression of PTEN obviously attenuated the protective effect of miR-195-5p mimics on cell viability, LDH release and apoptosis in OGD-treated HBMVECs. Meanwhile, overexpression of miR-195-5p increased the expression levels of p-AKT in OGD-treated HBMVECs, while this effect was reversed by overexpression of PTEN. Moreover, overexpression of miR-195-5p efficiently ameliorated brain injury of mice after MCAO treatment in vivo. CONCLUSION Overexpression of miR-195-5p ameliorated cerebral I/R injury by regulating the PTEN-AKT signaling pathway, providing a potential therapeutic target for cerebral I/R injury.
Collapse
Affiliation(s)
- Xiaoli Ren
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| | - Congfang Guo
- Department of Emergency, Tianjin First Central Hospital, Tianjin, 300192, People's Republic of China
| |
Collapse
|